Ejemplo n.º 1
0
Archivo: qr.cpp Proyecto: nvmd/itpp
bool qr(const cmat &A, cmat &Q, cmat &R, bmat &P)
{
  int info;
  int m = A.rows();
  int n = A.cols();
  int lwork = n;
  int k = std::min(m, n);
  cvec tau(k);
  cvec work(lwork);
  vec rwork(std::max(1, 2*n));
  ivec jpvt(n);
  jpvt.zeros();

  R = A;

  // perform workspace query for optimum lwork value
  int lwork_tmp = -1;
  zgeqp3_(&m, &n, R._data(), &m, jpvt._data(), tau._data(), work._data(),
          &lwork_tmp, rwork._data(), &info);
  if (info == 0) {
    lwork = static_cast<int>(real(work(0)));
    work.set_size(lwork, false);
  }
  zgeqp3_(&m, &n, R._data(), &m, jpvt._data(), tau._data(), work._data(),
          &lwork, rwork._data(), &info);

  Q = R;
  Q.set_size(m, m, true);

  // construct permutation matrix
  P = zeros_b(n, n);
  for (int j = 0; j < n; j++)
    P(jpvt(j) - 1, j) = 1;

  // construct R
  for (int i = 0; i < m; i++)
    for (int j = 0; j < std::min(i, n); j++)
      R(i, j) = 0;

  // perform workspace query for optimum lwork value
  lwork_tmp = -1;
  zungqr_(&m, &m, &k, Q._data(), &m, tau._data(), work._data(), &lwork_tmp,
          &info);
  if (info == 0) {
    lwork = static_cast<int>(real(work(0)));
    work.set_size(lwork, false);
  }
  zungqr_(&m, &m, &k, Q._data(), &m, tau._data(), work._data(), &lwork,
          &info);

  return (info == 0);
}
Ejemplo n.º 2
0
/* Subroutine */ int zerrqp_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    doublecomplex a[9]	/* was [3][3] */, w[15];
    char c2[2];
    integer ip[3], lw;
    doublereal rw[6];
    doublecomplex tau[3];
    integer info;
    extern /* Subroutine */ int zgeqp3_(integer *, integer *, doublecomplex *, 
	     integer *, integer *, doublecomplex *, doublecomplex *, integer *
, doublereal *, integer *), alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zgeqpf_(integer *, integer *, 
	    doublecomplex *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *);

    /* Fortran I/O blocks */
    static cilist io___4 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRQP tests the error exits for ZGEQPF and CGEQP3. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    lw = 4;
    a[0].r = 1., a[0].i = -1.;
    a[3].r = 2., a[3].i = -2.;
    a[4].r = 3., a[4].i = -3.;
    a[1].r = 4., a[1].i = -4.;
    infoc_1.ok = TRUE_;
    io___4.ciunit = infoc_1.nout;
    s_wsle(&io___4);
    e_wsle();

/*     Test error exits for QR factorization with pivoting */

    if (lsamen_(&c__2, c2, "QP")) {

/*        ZGEQPF */

	s_copy(srnamc_1.srnamt, "ZGEQPF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgeqpf_(&c_n1, &c__0, a, &c__1, ip, tau, w, rw, &info);
	chkxer_("ZGEQPF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgeqpf_(&c__0, &c_n1, a, &c__1, ip, tau, w, rw, &info);
	chkxer_("ZGEQPF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgeqpf_(&c__2, &c__0, a, &c__1, ip, tau, w, rw, &info);
	chkxer_("ZGEQPF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGEQP3 */

	s_copy(srnamc_1.srnamt, "ZGEQP3", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgeqp3_(&c_n1, &c__0, a, &c__1, ip, tau, w, &lw, rw, &info);
	chkxer_("ZGEQP3", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgeqp3_(&c__1, &c_n1, a, &c__1, ip, tau, w, &lw, rw, &info);
	chkxer_("ZGEQP3", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgeqp3_(&c__2, &c__3, a, &c__1, ip, tau, w, &lw, rw, &info);
	chkxer_("ZGEQP3", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	i__1 = lw - 10;
	zgeqp3_(&c__2, &c__2, a, &c__2, ip, tau, w, &i__1, rw, &info);
	chkxer_("ZGEQP3", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRQP */

} /* zerrqp_ */
Ejemplo n.º 3
0
/* Subroutine */ int zgelsy_(integer *m, integer *n, integer *nrhs, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work, 
	integer *lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double z_abs(doublecomplex *);

    /* Local variables */
    static integer i__, j;
    static doublecomplex c1, c2, s1, s2;
    static integer nb, mn, nb1, nb2, nb3, nb4;
    static doublereal anrm, bnrm, smin, smax;
    static integer iascl, ibscl, ismin, ismax;
    static doublereal wsize;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *
	    , integer *, integer *, doublecomplex *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), 
	    zlaic1_(integer *, integer *, doublecomplex *, doublereal *, 
	    doublecomplex *, doublecomplex *, doublereal *, doublecomplex *, 
	    doublecomplex *), dlabad_(doublereal *, doublereal *), zgeqp3_(
	    integer *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublereal *, 
	    integer *);
    extern doublereal dlamch_(char *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, ftnlen);
    static doublereal bignum;
    extern /* Subroutine */ int zlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublecomplex *,
	     integer *, integer *, ftnlen), zlaset_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, ftnlen);
    static doublereal sminpr, smaxpr, smlnum;
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *,
	     ftnlen, ftnlen), zunmrz_(char *, char *, integer *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
	    , ftnlen, ftnlen), ztzrzf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGELSY computes the minimum-norm solution to a complex linear least */
/*  squares problem: */
/*      minimize || A * X - B || */
/*  using a complete orthogonal factorization of A.  A is an M-by-N */
/*  matrix which may be rank-deficient. */

/*  Several right hand side vectors b and solution vectors x can be */
/*  handled in a single call; they are stored as the columns of the */
/*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/*  matrix X. */

/*  The routine first computes a QR factorization with column pivoting: */
/*      A * P = Q * [ R11 R12 ] */
/*                  [  0  R22 ] */
/*  with R11 defined as the largest leading submatrix whose estimated */
/*  condition number is less than 1/RCOND.  The order of R11, RANK, */
/*  is the effective rank of A. */

/*  Then, R22 is considered to be negligible, and R12 is annihilated */
/*  by unitary transformations from the right, arriving at the */
/*  complete orthogonal factorization: */
/*     A * P = Q * [ T11 0 ] * Z */
/*                 [  0  0 ] */
/*  The minimum-norm solution is then */
/*     X = P * Z' [ inv(T11)*Q1'*B ] */
/*                [        0       ] */
/*  where Q1 consists of the first RANK columns of Q. */

/*  This routine is basically identical to the original xGELSX except */
/*  three differences: */
/*    o The permutation of matrix B (the right hand side) is faster and */
/*      more simple. */
/*    o The call to the subroutine xGEQPF has been substituted by the */
/*      the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
/*      version of the QR factorization with column pivoting. */
/*    o Matrix B (the right hand side) is updated with Blas-3. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of */
/*          columns of matrices B and X. NRHS >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, A has been overwritten by details of its */
/*          complete orthogonal factorization. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the M-by-NRHS right hand side matrix B. */
/*          On exit, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,M,N). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of AP, otherwise column i is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  RCOND   (input) DOUBLE PRECISION */
/*          RCOND is used to determine the effective rank of A, which */
/*          is defined as the order of the largest leading triangular */
/*          submatrix R11 in the QR factorization with pivoting of A, */
/*          whose estimated condition number < 1/RCOND. */

/*  RANK    (output) INTEGER */
/*          The effective rank of A, i.e., the order of the submatrix */
/*          R11.  This is the same as the order of the submatrix T11 */
/*          in the complete orthogonal factorization of A. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          The unblocked strategy requires that: */
/*            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */
/*          where MN = min(M,N). */
/*          The block algorithm requires that: */
/*            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */
/*          where NB is an upper bound on the blocksize returned */
/*          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR, */
/*          and ZUNMRZ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/*    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
/*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --jpvt;
    --work;
    --rwork;

    /* Function Body */
    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    nb1 = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "ZUNMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
    nb4 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
/* Computing MAX */
    i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), 
	    i__2 = (mn << 1) + nb * *nrhs;
    lwkopt = max(i__1,i__2);
    z__1.r = (doublereal) lwkopt, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = mn << 1, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = mn + 
		    *nrhs;
	    if (*lwork < mn + max(i__1,i__2) && ! lquery) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGELSY", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

/* Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S", (ftnlen)1) / dlamch_("P", (ftnlen)1);
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max entries outside range [SMLNUM,BIGNUM] */

    anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1], (ftnlen)1);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1);
	*rank = 0;
	goto L70;
    }

    bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1], (ftnlen)1);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A: */
/*        A * P = Q * R */

    i__1 = *lwork - mn;
    zgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
	     &rwork[1], info);
    i__1 = mn + 1;
    wsize = mn + work[i__1].r;

/*     complex workspace: MN+NB*(N+1). real workspace 2*N. */
/*     Details of Householder rotations stored in WORK(1:MN). */

/*     Determine RANK using incremental condition estimation */

    i__1 = ismin;
    work[i__1].r = 1., work[i__1].i = 0.;
    i__1 = ismax;
    work[i__1].r = 1., work[i__1].i = 0.;
    smax = z_abs(&a[a_dim1 + 1]);
    smin = smax;
    if (z_abs(&a[a_dim1 + 1]) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1);
	goto L70;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
		i__ + i__ * a_dim1], &sminpr, &s1, &c1);
	zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
		i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = ismin + i__ - 1;
		i__3 = ismin + i__ - 1;
		z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i = 
			s1.r * work[i__3].i + s1.i * work[i__3].r;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
		i__2 = ismax + i__ - 1;
		i__3 = ismax + i__ - 1;
		z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i = 
			s2.r * work[i__3].i + s2.i * work[i__3].r;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/* L20: */
	    }
	    i__1 = ismin + *rank;
	    work[i__1].r = c1.r, work[i__1].i = c1.i;
	    i__1 = ismax + *rank;
	    work[i__1].r = c2.r, work[i__1].i = c2.i;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     complex workspace: 3*MN. */

/*     Logically partition R = [ R11 R12 ] */
/*                             [  0  R22 ] */
/*     where R11 = R(1:RANK,1:RANK) */

/*     [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	i__1 = *lwork - (mn << 1);
	ztzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 
		1], &i__1, info);
    }

/*     complex workspace: 2*MN. */
/*     Details of Householder rotations stored in WORK(MN+1:2*MN) */

/*     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    i__1 = *lwork - (mn << 1);
    zunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
	    work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info, (
	    ftnlen)4, (ftnlen)19);
/* Computing MAX */
    i__1 = (mn << 1) + 1;
    d__1 = wsize, d__2 = (mn << 1) + work[i__1].r;
    wsize = max(d__1,d__2);

/*     complex workspace: 2*MN+NB*NRHS. */

/*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
	    a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (ftnlen)5, (ftnlen)
	    12, (ftnlen)8);

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = *rank + 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    b[i__3].r = 0., b[i__3].i = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *n - *rank;
	i__2 = *lwork - (mn << 1);
	zunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[
		a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn <<
		 1) + 1], &i__2, info, (ftnlen)4, (ftnlen)19);
    }

/*     complex workspace: 2*MN+NRHS. */

/*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = jpvt[i__];
	    i__4 = i__ + j * b_dim1;
	    work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
/* L50: */
	}
	zcopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
/* L60: */
    }

/*     complex workspace: N. */

/*     Undo scaling */

    if (iascl == 1) {
	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info, (ftnlen)1);
    } else if (iascl == 2) {
	zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info, (ftnlen)1);
    }
    if (ibscl == 1) {
	zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
    } else if (ibscl == 2) {
	zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
    }

L70:
    z__1.r = (doublereal) lwkopt, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;

    return 0;

/*     End of ZGELSY */

} /* zgelsy_ */