Ejemplo n.º 1
0
void solveSingleScatterers(LSMSSystemParameters &lsms, LocalTypeInfo &local,
                           std::vector<Matrix<Real> > &vr, Complex energy,
                           std::vector<NonRelativisticSingleScattererSolution> &solution,int iie)
{
// ========================== SINGLE SCATTERER STUFF
  Complex prel=std::sqrt(energy*(1.0+energy*c2inv));
  Complex pnrel=std::sqrt(energy);


  for(int i=0; i<local.num_local; i++)
    solution[i].init(lsms,local.atom[i],&local.tmatStore(iie*local.blkSizeTmatStore,i));

  if(lsms.nrelv>0) prel=pnrel;

  if(local.atom.size()>solution.size()) solution.resize(local.atom.size());

// this is not ready for multithreading yet
// else: pragma omp parallel for
  // if(lsms.global.iprint>=0) printf("calculate single scatterer solutions.\n");
  for(int i=0; i<local.atom.size(); i++)
  {
    // if(lsms.global.iprint>=1) printf("calc single scatterer %d.%d\n",comm.rank,i);
    //printf("calc single scatterer atom no. = %d\n",i);
    calculateSingleScattererSolution(lsms,local.atom[i],vr[i],energy,prel,pnrel,solution[i]);
// calculate pmat_m (needed for tr_pxtau)
    int kkrsz=local.atom[i].kkrsz;
    int kkrszsqr=kkrsz*kkrsz;
    int info;
    int ipvt[kkrsz];
    if(lsms.n_spin_cant==2 && lsms.nrel_rel==0)
    {
      local.atom[i].pmat_m[iie].resize(kkrsz,kkrsz);
      Complex *pmat = new Complex[kkrszsqr];
      Complex *wbig = new Complex[kkrszsqr];
      Complex *pmat_m_ptr=&local.atom[i].pmat_m[iie](0,0);
      cblas_zcopy(kkrszsqr,&solution[i].tmat_l(0,0,0),1,pmat,1);
      cblas_zcopy(kkrszsqr,&solution[i].tmat_l(0,0,1),1,pmat_m_ptr,1);
      zgetrf_(&kkrsz,&kkrsz,pmat_m_ptr,&kkrsz,ipvt,&info);
      zgetri_(&kkrsz,pmat_m_ptr,&kkrsz,ipvt,wbig,&kkrszsqr,&info);
//    -------------------------------------------------------------
      zgetrf_(&kkrsz,&kkrsz,pmat,&kkrsz,ipvt,&info);
      zgetri_(&kkrsz,pmat,&kkrsz,ipvt,wbig,&kkrszsqr,&info);

      for(int j=0; j<kkrszsqr; j++) pmat_m_ptr[j]-=pmat[j];

      delete [] wbig;
      delete [] pmat;
    }
  }



// ========= END SINGLE SCATTERER STUFF ======================
}
Ejemplo n.º 2
0
	DLLEXPORT int z_lu_factor(int m, doublecomplex a[], int ipiv[])
	{
		int info = 0;
		zgetrf_(&m,&m,a,&m,ipiv,&info);
		for(int i = 0; i < m; ++i ){
			ipiv[i] -= 1;
		}
		return info;
	}
Ejemplo n.º 3
0
	DLLEXPORT MKL_INT z_lu_factor(MKL_INT m, MKL_Complex16 a[], MKL_INT ipiv[])
	{
		MKL_INT info = 0;
		zgetrf_(&m,&m,a,&m,ipiv,&info);
		for(MKL_INT i = 0; i < m; ++i ){
			ipiv[i] -= 1;
		}
		return info;
	}
  void QuasiNewton<dcomplex>::symmNonHerDiag(int NTrial, ostream &output){
    char JOBVL = 'N';
    char JOBVR = 'V';
    int TwoNTrial = 2*NTrial;
    int *IPIV = new int[TwoNTrial];
    int INFO;

    ComplexCMMap  SSuper(this->SSuperMem, TwoNTrial,TwoNTrial);
    ComplexCMMap  ASuper(this->ASuperMem, TwoNTrial,TwoNTrial);
    ComplexCMMap    SCPY(this->SCPYMem,   TwoNTrial,TwoNTrial);
    ComplexCMMap NHrProd(this->NHrProdMem,TwoNTrial,TwoNTrial);

    SCPY = SSuper; // Copy of original matrix to use for re-orthogonalization

    // Invert the metric (maybe not needed?)
    zgetrf_(&TwoNTrial,&TwoNTrial,this->SSuperMem,&TwoNTrial,IPIV,&INFO);
    zgetri_(&TwoNTrial,this->SSuperMem,&TwoNTrial,IPIV,this->WORK,&this->LWORK,
            &INFO);
    delete [] IPIV;

    NHrProd = SSuper * ASuper;
//  cout << "PROD" << endl << NHrProd << endl;

    zgeev_(&JOBVL,&JOBVR,&TwoNTrial,NHrProd.data(),&TwoNTrial,this->ERMem,
           this->SSuperMem,&TwoNTrial,this->SSuperMem,&TwoNTrial,
           this->WORK,&this->LWORK,this->RWORK,&INFO);
    // Sort eigensystem using Bubble Sort
    ComplexVecMap E(this->ERMem,TwoNTrial);
    ComplexCMMap  VR(this->SSuperMem,TwoNTrial,TwoNTrial);
//  cout << endl << ER << endl;
    this->eigSrt(VR,E);
//  cout << endl << ER << endl;
  
    // Grab the "positive paired" roots (throw away other element of the pair)
    this->ERMem += NTrial;
    new (&E    ) ComplexVecMap(this->ERMem,NTrial);
    new (&SSuper) ComplexCMMap(this->SSuperMem+2*NTrial*NTrial,2*NTrial,NTrial);
    RealVecMap ER(this->RealEMem,NTrial);
    ER = E.real();

    /*
     * Re-orthogonalize the eigenvectors with respect to the metric S(R)
     * because DSYGV orthogonalzies the vectors with respect to E(R)
     * because we solve the opposite problem.
     *
     * Gramm-Schmidt
     */
    this->metBiOrth(SSuper,SCPY);

    // Separate the eigenvectors into gerade and ungerade parts
    ComplexCMMap XTSigmaR(this->XTSigmaRMem,NTrial,NTrial);
    ComplexCMMap XTSigmaL(this->XTSigmaLMem,NTrial,NTrial);
    XTSigmaR = SSuper.block(0,     0,NTrial,NTrial);
    XTSigmaL = SSuper.block(NTrial,0,NTrial,NTrial);
//  CErr();
  }
Ejemplo n.º 5
0
// Interface to lapack routine zgetrf
// mm: nrow of A
// nn: ncol of A
void lapack_zgetrf(int mm, int nn, dcmplx *AA, int *ipiv)
{
  int lda, info;
  
  lda = (1 > mm) ? 1 : mm;
  
  zgetrf_(&mm, &nn, AA, &lda, ipiv, &info);
  check(info == 0, "Failed zgetrf, info = %d", info);
  
  return;
  
 error:
  abort();
}
Ejemplo n.º 6
0
	DLLEXPORT int z_lu_inverse(int n, doublecomplex a[], doublecomplex work[], int lwork)
	{
		int* ipiv = new int[n];
		int info = 0;
		zgetrf_(&n,&n,a,&n,ipiv,&info);

		if (info != 0){
			delete[] ipiv;
			return info;
		}

		zgetri_(&n,a,&n,ipiv,work,&lwork,&info);
		delete[] ipiv;
		return info;
	}
Ejemplo n.º 7
0
	DLLEXPORT MKL_INT z_lu_inverse(MKL_INT n, MKL_Complex16 a[], MKL_Complex16 work[], MKL_INT lwork)
	{
		MKL_INT* ipiv = new MKL_INT[n];
		MKL_INT info = 0;
		zgetrf_(&n,&n,a,&n,ipiv,&info);

		if (info != 0){
			delete[] ipiv;
			return info;
		}

		zgetri_(&n,a,&n,ipiv,work,&lwork,&info);
		delete[] ipiv;
		return info;
	}
Ejemplo n.º 8
0
bool inv(const cmat &X, cmat &Y)
{
  // it_assert1(X.rows() == X.cols(), "inv: matrix is not square");

  int m = X.rows(), info, lwork;
  lwork = m; // may be choosen better

  ivec p(m);
  Y = X;
  cvec work(lwork);

  zgetrf_(&m, &m, Y._data(), &m, p._data(), &info); // LU-factorization
  if (info!=0)
    return false;

  zgetri_(&m, Y._data(), &m, p._data(), work._data(), &lwork, &info);
  return (info==0);
}
Ejemplo n.º 9
0
matrix LU(const matrix& A)
{	static StopWatch watch("LU(matrix)");
	watch.start();
	
	// Perform LU decomposition
	int N = A.nRows();
	myassert(N > 0);
	myassert(N == A.nCols());
	matrix LU(A); //destructible copy
	int ldA = A.nRows(); //leading dimension
	std::vector<int> iPivot(N); //pivot info
	int info; //error code in return
	//LU decomposition (in place):
	zgetrf_(&N, &N, LU.data(), &ldA, iPivot.data(), &info);
	if(info<0) { logPrintf("Argument# %d to LAPACK LU decomposition routine ZGETRF is invalid.\n", -info); stackTraceExit(1); }

	watch.stop();
	return LU;
}
Ejemplo n.º 10
0
    //! build and factorize "complex" matrix
    //! \param alpha : we add alpha*I to the real part of the Jacobian.
    //! \param beta  : we add alpha*I to the imaginary part of the Jacobian.
    //! \param Jac the jacobian.
    inline void decomc(double alpha,double beta,const MatrixReal& Jac)
    {

      for(int j=1;j<=n;j++)
#include "Ivdep.hpp"
	for(int i=1;i<=n;i++)
	  E2R.set(i,j,-Jac(i,j));
#include "Ivdep.hpp"
      for(int i=1;i<=n;i++)
	{
	  E2R.Re(i,i)+=alpha;
	  E2R.Im(i,i)=beta;
	}
      int nn=n,info;
      zgetrf_(&nn,&nn,&E2R,&nn,&(ipivc[0]),&info);
      if(info!=0)
	throw OdesException("odes::Matrices::decomc zgetrf,info=",info);
      
    }
Ejemplo n.º 11
0
void zinverma ( doubleComplex* in, doubleComplex* out, int leadDimIn )
{
   int info = 0 ;
   int* vectPivot = (int*) malloc ( sizeof(int) * (unsigned int)( leadDimIn) );
   doubleComplex* work  =  (doubleComplex*) malloc ( sizeof(doubleComplex) * (unsigned int) (leadDimIn*leadDimIn) );

   int i = 0 ;

   for ( i = 0 ; i < leadDimIn*leadDimIn ; i ++)
      {
         out[i] = in[i] ;
      }

    zgetrf_ ( &leadDimIn, &leadDimIn, out, &leadDimIn, vectPivot, &info );  
    zgetri_ ( &leadDimIn, out, &leadDimIn , vectPivot,  work , &leadDimIn , &info ); 

    free(vectPivot);
    free(work);
}
Ejemplo n.º 12
0
int
mad_cmat_det (const cnum_t x[], cnum_t *r, ssz_t n)
{
  CHKX;
  const int nn=n;
  int info=0, ipiv[n];
  mad_alloc_tmp(cnum_t, a, n*n);
  mad_cvec_copy(x, a, n*n);
  zgetrf_(&nn, &nn, a, &nn, ipiv, &info);

  if (info < 0) error("invalid input argument");

  int perm = 0;
  cnum_t det = 1;
  for (int i=0, j=0; i < n; i++, j+=n+1)
    det *= a[j], perm += ipiv[i] != i+1;
  mad_free_tmp(a);
  *r = perm & 1 ? -det : det;
  return info;
}
Ejemplo n.º 13
0
	DLLEXPORT MKL_INT z_lu_solve(MKL_INT n, MKL_INT nrhs, MKL_Complex16 a[],  MKL_Complex16 b[])
	{
		MKL_Complex16* clone = new MKL_Complex16[n*n];
		std::memcpy(clone, a, n*n*sizeof(MKL_Complex16));

		MKL_INT* ipiv = new MKL_INT[n];
		MKL_INT info = 0;
		zgetrf_(&n, &n, clone, &n, ipiv, &info);

		if (info != 0){
			delete[] ipiv;
			delete[] clone;
			return info;
		}

		char trans ='N';
		zgetrs_(&trans, &n, &nrhs, clone, &n, ipiv, b, &n, &info);
		delete[] ipiv;
		delete[] clone;
		return info;
	}
Ejemplo n.º 14
0
	DLLEXPORT int z_lu_solve(int n, int nrhs, doublecomplex a[],  doublecomplex b[])
	{
		doublecomplex* clone = new doublecomplex[n*n];
		memcpy(clone, a, n*n*sizeof(doublecomplex));

		int* ipiv = new int[n];
		int info = 0;
		zgetrf_(&n, &n, clone, &n, ipiv, &info);

		if (info != 0){
			delete[] ipiv;
			delete[] clone;
			return info;
		}

		char trans ='N';
		zgetrs_(&trans, &n, &nrhs, clone, &n, ipiv, b, &n, &info);
		delete[] ipiv;
		delete[] clone;
		return info;
	}
Ejemplo n.º 15
0
matrix inv(const matrix& A)
{	static StopWatch watch("inv(matrix)");
	watch.start();
	int N = A.nRows();
	myassert(N > 0);
	myassert(N == A.nCols());
	matrix invA(A); //destructible copy
	int ldA = A.nRows(); //leading dimension
	std::vector<int> iPivot(N); //pivot info
	int info; //error code in return
	//LU decomposition (in place):
	zgetrf_(&N, &N, invA.data(), &ldA, iPivot.data(), &info);
	if(info<0) { logPrintf("Argument# %d to LAPACK LU decomposition routine ZGETRF is invalid.\n", -info); stackTraceExit(1); }
	if(info>0) { logPrintf("LAPACK LU decomposition routine ZGETRF found input matrix to be singular at the %d'th step.\n", info); stackTraceExit(1); }
	//Compute inverse in place:
	int lWork = (64+1)*N;
	std::vector<complex> work(lWork);
	zgetri_(&N, invA.data(), &ldA, iPivot.data(), work.data(), &lWork, &info);
	if(info<0) { logPrintf("Argument# %d to LAPACK matrix inversion routine ZGETRI is invalid.\n", -info); stackTraceExit(1); }
	if(info>0) { logPrintf("LAPACK matrix inversion routine ZGETRI found input matrix to be singular at the %d'th step.\n", info); stackTraceExit(1); }
	watch.stop();
	return invA;
}
Ejemplo n.º 16
0
/**
 * <p>Same as {@link dlm_invert_gel} but for complex input</p>
 *
 */
INT16 dlm_invert_gelC(COMPLEX64* A, INT32 nXA, COMPLEX64* lpnDet) {
  integer n = (integer) nXA;
  integer c__1 = 1;
  integer c_n1 = -1;
  integer info = 0;
  integer* ipiv = dlp_calloc(n, sizeof(integer));
  void* work = NULL;
  char opts[1] = { ' ' };
  extern integer ilaenv_(integer*,char*,char*,integer*,integer*,integer*,integer*,ftnlen,ftnlen);

#ifdef __MAX_TYPE_32BIT
  extern int cgetrf_(integer*,integer*,complex*,integer*,integer*,integer*);
  extern int cgetri_(integer*,complex*,integer*,integer*,complex*,integer*,integer*);
  char name[8] = { 'C', 'G', 'E', 'T', 'R', 'I' };
  integer lwork = n * ilaenv_(&c__1, name, opts, &n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  work = dlp_calloc(lwork, sizeof(complex));
  if(!ipiv || !work) return ERR_MEM;
  cgetrf_(&n,&n,(complex*)A,&n,ipiv,&info);
  if(lpnDet != NULL) *lpnDet = (info > 0) ? CMPLX(0.0) : dlm_get_det_trfC(A, nXA, ipiv);
  cgetri_(&n,(complex*)A,&n,ipiv,work,&lwork,&info);
#else
  extern int zgetrf_(integer*,integer*,doublecomplex*,integer*,integer*,integer*);
  extern int zgetri_(integer*,doublecomplex*,integer*,integer*,doublecomplex*,integer*,integer*);
  char name[8] = { 'Z', 'G', 'E', 'T', 'R', 'I' };
  integer lwork = n * ilaenv_(&c__1, name, opts, &n, &c_n1, &c_n1, &c_n1, (ftnlen) 6, (ftnlen) 1);
  work = dlp_calloc(lwork, sizeof(doublecomplex));
  if (!ipiv || !work) return ERR_MEM;
  zgetrf_(&n, &n, (doublecomplex*) A, &n, ipiv, &info);
  if (lpnDet != NULL) *lpnDet = (info > 0) ? CMPLX(0.0) : dlm_get_det_trfC(A, nXA, ipiv);
  zgetri_(&n, (doublecomplex*) A, &n, ipiv, work, &lwork, &info);
#endif

  dlp_free(work);
  dlp_free(ipiv);
  return (info == 0) ? O_K : NOT_EXEC;
}
Ejemplo n.º 17
0
/* Subroutine */ int zgesv_(integer *n, integer *nrhs, doublecomplex *a, 
	integer *lda, integer *ipiv, doublecomplex *b, integer *ldb, integer *
	info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern /* Subroutine */ int xerbla_(char *, integer *), zgetrf_(
	    integer *, integer *, doublecomplex *, integer *, integer *, 
	    integer *), zgetrs_(char *, integer *, integer *, doublecomplex *, 
	     integer *, integer *, doublecomplex *, integer *, integer *);


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGESV computes the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */

/*  The LU decomposition with partial pivoting and row interchanges is */
/*  used to factor A as */
/*     A = P * L * U, */
/*  where P is a permutation matrix, L is unit lower triangular, and U is */
/*  upper triangular.  The factored form of A is then used to solve the */
/*  system of equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the N-by-N coefficient matrix A. */
/*          On exit, the factors L and U from the factorization */
/*          A = P*L*U; the unit diagonal elements of L are not stored. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          The pivot indices that define the permutation matrix P; */
/*          row i of the matrix was interchanged with row IPIV(i). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS matrix of right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization */
/*                has been completed, but the factor U is exactly */
/*                singular, so the solution could not be computed. */

/*  ===================================================================== */

/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*nrhs < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGESV ", &i__1);
	return 0;
    }

/*     Compute the LU factorization of A. */

    zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
		b_offset], ldb, info);
    }
    return 0;

/*     End of ZGESV */

} /* zgesv_ */
Ejemplo n.º 18
0
/* Main program */
int main() {
        /* Locals */
        int n = N, info,i,j;
		int iter = 1;
        /* Local arrays */
	
		static complex A2[N][N];
		static complex B2[N][N];
		static complex A[N][N];
		static complex U[N][N];
		static complex b[N];
		
		
			
	    srand (1337);
        static int ipiv[N];

		int max = 0;
		int min = 0;
		int mu = 3;
		int ml = 3;
		int md = ml+mu+1;
		complex sumA = 0;
		complex sumU = 0;
		complex ratio = 0;
		
//Initialize random band matrix		
		for (i=0;i<n;i++){
			for (j=0; j<n; j++){
				A2[i][j]=0;
				B2[i][j]=0;
				U[i][j]=0;				
			}
		}

		for (j=0;j<n;j++){
			max = 0 > j-mu ? 0    : j-mu ;
			min = n < j+ml+1 ? n    : j+ml+1 ;
			for(i=max;i<min;i++){
				A2[i][j] =  ((1 - ( 20.0 * rand() / ( RAND_MAX + 1.0 ) )),(1 - ( 20.0 * rand() / ( RAND_MAX + 1.0 ))));	
			                                       }
						}


		for (i=0;i<n;i++){
				for (j=0;j<n;j++){
					A[i][j]=A2[i][j];
								}			
						}


		for (i=0;i<n;i++){
			U[i][i]=1;	
						}
/// B2(ML+MU+1+i-j,j) = A(i,j) for max(1,j-MU)<=i<=min(N,j+ML)						
		for (j=0;j<n;j++){
			max = (0 < j-mu) ? j-mu : 0    ;
			min = (n < j+ml+1) ? n    : j+ml+1 ;
			for(i=max;i<min;i++){
				B2[j][md+i-j-1]= A[j][i];			
			                     }
						}
						
				 printf( "Matrix A\n" );	
				 						for( i = 0; i < n; i++ ) {
				                for( j = 0; j < n; j++ ) printf( " (%6.2f ,%6.2f) ", A[j][i] );
				                printf( "\n" );
				        }
				 						printf( "Compressed A\n" );
				        for( i = 0; i < n; i++ ) {
				                for( j = 0; j < n; j++ ) printf( " (%6.2f, %6.2f)", B2[j][i] );
				                printf( "\n" );
				        }				
		printf( "Enter General Factor\n" );				
						for (i=0;i<iter;i++){	
//		printf( "Enter General Factor\n" );				
		zgetrf_(&n, &n, A2, &n, ipiv, &info);
//		printf( "%d",info );
//		printf( "Enter Inversion\n" );
		zgetri_( &n, A2, &n, ipiv, b, &n, &info );
//		printf( "%d",info );
//		printf( "Exit inversion\n" );
			}
		printf( "\nExit inversion\n" );				
						
		 printf( "Entering Banded Solve\n" );
		for (i=0;i<iter;i++){			
		zgbsv_( &n, &ml, &mu, &n, B2, &n, ipiv, U, &n, &info );
//		printf( "%d",info );
	     }
		 printf( "Exited Banded Solve\n" );	
		
		for (i=0;i<N;i++){
			for (j=0;j<N;j++){
				sumA = A2[j][i]+sumA;
				sumU = U[j][i]+sumU;

			}
		}
		ratio = sumA/sumU;
		printf( "Accuracy - %f\n",ratio );
		printf( "%d\n",info );

		printf( "Inversed A\n" );
		        for( i = 0; i < n; i++ ) {
		                for( j = 0; j < n; j++ ) printf( "   (%6.8f, %6.2f)", A2[j][i] );
		                printf( "\n" );
		        }
		printf( "Inversed A (solve)\n" );
		        for( i = 0; i < n; i++ ) {
		                for( j = 0; j < n; j++ ) printf( "   (%6.8f, %6.2f)", U[j][i] );
		                printf( "\n" );
		        }

        exit( 0 );
}
Ejemplo n.º 19
0
/* Subroutine */ int zerrge_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer ip[4], info;
    doublereal anrm, ccond, rcond;
    extern /* Subroutine */ int zgbtf2_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, integer *), 
	    zgetf2_(integer *, integer *, doublecomplex *, integer *, integer 
	    *, integer *), alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, integer *, doublereal *, 
	    doublereal *, doublecomplex *, doublereal *, integer *), 
	    chkxer_(char *, integer *, integer *, logical *, logical *), zgecon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgbequ_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublereal *, doublereal *, doublereal *, integer *), zgbrfs_(
	    char *, integer *, integer *, integer *, integer *, doublecomplex 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgbtrf_(integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, integer *), 
	    zgeequ_(integer *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *), zgerfs_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zgetrf_(integer *, integer *, doublecomplex *, 
	     integer *, integer *, integer *), zgetri_(integer *, 
	    doublecomplex *, integer *, integer *, doublecomplex *, integer *, 
	     integer *), zgbtrs_(char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *), zgetrs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRGE tests the error exits for the COMPLEX*16 routines */
/*  for general matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
	ip[j - 1] = j;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the LU decomposition */
/*     of a general matrix. */

    if (lsamen_(&c__2, c2, "GE")) {

/*        ZGETRF */

	s_copy(srnamc_1.srnamt, "ZGETRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetrf_(&c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetrf_(&c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgetrf_(&c__2, &c__1, a, &c__1, ip, &info);
	chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETF2 */

	s_copy(srnamc_1.srnamt, "ZGETF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetf2_(&c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetf2_(&c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgetf2_(&c__2, &c__1, a, &c__1, ip, &info);
	chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETRI */

	s_copy(srnamc_1.srnamt, "ZGETRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetri_(&c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgetri_(&c__2, a, &c__1, ip, w, &c__2, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgetri_(&c__2, a, &c__2, ip, w, &c__1, &info);
	chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGETRS */

	s_copy(srnamc_1.srnamt, "ZGETRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgetrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgetrs_("N", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgetrs_("N", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgetrs_("N", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zgetrs_("N", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGERFS */

	s_copy(srnamc_1.srnamt, "ZGERFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgerfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgerfs_("N", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgerfs_("N", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgerfs_("N", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGECON */

	s_copy(srnamc_1.srnamt, "ZGECON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgecon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgecon_("1", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgecon_("1", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGEEQU */

	s_copy(srnamc_1.srnamt, "ZGEEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgeequ_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgeequ_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgeequ_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info);
	chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the LU decomposition */
/*     of a general band matrix. */

    } else if (lsamen_(&c__2, c2, "GB")) {

/*        ZGBTRF */

	s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtrf_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtrf_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtrf_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtrf_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbtrf_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info);
	chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBTF2 */

	s_copy(srnamc_1.srnamt, "ZGBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtf2_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtf2_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtf2_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtf2_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbtf2_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info);
	chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBTRS */

	s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbtrs_("/", &c__0, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbtrs_("N", &c_n1, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbtrs_("N", &c__1, &c_n1, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbtrs_("N", &c__1, &c__0, &c_n1, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgbtrs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgbtrs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, ip, b, &c__2, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zgbtrs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, &
		info);
	chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBRFS */

	s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbrfs_("/", &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbrfs_("N", &c_n1, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbrfs_("N", &c__1, &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbrfs_("N", &c__1, &c__0, &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgbrfs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__2, af, &c__4, ip, b, &
		c__2, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, b, &
		c__2, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, &
		c__1, x, &c__2, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 14;
	zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, &
		c__2, x, &c__1, r1, r2, w, r__, &info);
	chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBCON */

	s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbcon_("/", &c__0, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbcon_("1", &c_n1, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbcon_("1", &c__1, &c_n1, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbcon_("1", &c__1, &c__0, &c_n1, a, &c__1, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbcon_("1", &c__2, &c__1, &c__1, a, &c__3, ip, &anrm, &rcond, w, r__, 
		 &info);
	chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZGBEQU */

	s_copy(srnamc_1.srnamt, "ZGBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zgbequ_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgbequ_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgbequ_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgbequ_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zgbequ_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, 
		&anrm, &info);
	chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRGE */

} /* zerrge_ */
Ejemplo n.º 20
0
/* Subroutine */ int zgesvxx_(char *fact, char *trans, integer *n, integer *
	nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *
	ldaf, integer *ipiv, char *equed, doublereal *r__, doublereal *c__, 
	doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, 
	doublereal *rcond, doublereal *rpvgrw, doublereal *berr, integer *
	n_err_bnds__, doublereal *err_bnds_norm__, doublereal *
	err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex *
	work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j;
    extern doublereal zla_rpvgrw__(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    doublereal amax;
    extern logical lsame_(char *, char *);
    doublereal rcmin, rcmax;
    logical equil;
    extern doublereal dlamch_(char *);
    doublereal colcnd;
    logical nofact;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum;
    extern /* Subroutine */ int zlaqge_(integer *, integer *, doublecomplex *, 
	     integer *, doublereal *, doublereal *, doublereal *, doublereal *
, doublereal *, char *);
    integer infequ;
    logical colequ;
    doublereal rowcnd;
    logical notran;
    extern /* Subroutine */ int zgetrf_(integer *, integer *, doublecomplex *, 
	     integer *, integer *, integer *), zlacpy_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    doublereal smlnum;
    extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *, doublecomplex *, integer *, 
	     integer *);
    logical rowequ;
    extern /* Subroutine */ int zlascl2_(integer *, integer *, doublereal *, 
	    doublecomplex *, integer *), zgeequb_(integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *), zgerfsx_(
	    char *, char *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, doublereal *, doublereal *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
	     integer *, doublereal *, doublecomplex *, doublereal *, integer *
);


/*     -- LAPACK driver routine (version 3.2)                          -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- November 2008                                                -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*     Purpose */
/*     ======= */

/*     ZGESVXX uses the LU factorization to compute the solution to a */
/*     complex*16 system of linear equations  A * X = B,  where A is an */
/*     N-by-N matrix and X and B are N-by-NRHS matrices. */

/*     If requested, both normwise and maximum componentwise error bounds */
/*     are returned. ZGESVXX will return a solution with a tiny */
/*     guaranteed error (O(eps) where eps is the working machine */
/*     precision) unless the matrix is very ill-conditioned, in which */
/*     case a warning is returned. Relevant condition numbers also are */
/*     calculated and returned. */

/*     ZGESVXX accepts user-provided factorizations and equilibration */
/*     factors; see the definitions of the FACT and EQUED options. */
/*     Solving with refinement and using a factorization from a previous */
/*     ZGESVXX call will also produce a solution with either O(eps) */
/*     errors or warnings, but we cannot make that claim for general */
/*     user-provided factorizations and equilibration factors if they */
/*     differ from what ZGESVXX would itself produce. */

/*     Description */
/*     =========== */

/*     The following steps are performed: */

/*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
/*     the system: */

/*       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B */
/*       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
/*       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */

/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
/*     or diag(C)*B (if TRANS = 'T' or 'C'). */

/*     2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
/*     the matrix A (after equilibration if FACT = 'E') as */

/*       A = P * L * U, */

/*     where P is a permutation matrix, L is a unit lower triangular */
/*     matrix, and U is upper triangular. */

/*     3. If some U(i,i)=0, so that U is exactly singular, then the */
/*     routine returns with INFO = i. Otherwise, the factored form of A */
/*     is used to estimate the condition number of the matrix A (see */
/*     argument RCOND). If the reciprocal of the condition number is less */
/*     than machine precision, the routine still goes on to solve for X */
/*     and compute error bounds as described below. */

/*     4. The system of equations is solved for X using the factored form */
/*     of A. */

/*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
/*     the routine will use iterative refinement to try to get a small */
/*     error and error bounds.  Refinement calculates the residual to at */
/*     least twice the working precision. */

/*     6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
/*     that it solves the original system before equilibration. */

/*     Arguments */
/*     ========= */

/*     Some optional parameters are bundled in the PARAMS array.  These */
/*     settings determine how refinement is performed, but often the */
/*     defaults are acceptable.  If the defaults are acceptable, users */
/*     can pass NPARAMS = 0 which prevents the source code from accessing */
/*     the PARAMS argument. */

/*     FACT    (input) CHARACTER*1 */
/*     Specifies whether or not the factored form of the matrix A is */
/*     supplied on entry, and if not, whether the matrix A should be */
/*     equilibrated before it is factored. */
/*       = 'F':  On entry, AF and IPIV contain the factored form of A. */
/*               If EQUED is not 'N', the matrix A has been */
/*               equilibrated with scaling factors given by R and C. */
/*               A, AF, and IPIV are not modified. */
/*       = 'N':  The matrix A will be copied to AF and factored. */
/*       = 'E':  The matrix A will be equilibrated if necessary, then */
/*               copied to AF and factored. */

/*     TRANS   (input) CHARACTER*1 */
/*     Specifies the form of the system of equations: */
/*       = 'N':  A * X = B     (No transpose) */
/*       = 'T':  A**T * X = B  (Transpose) */
/*       = 'C':  A**H * X = B  (Conjugate Transpose) */

/*     N       (input) INTEGER */
/*     The number of linear equations, i.e., the order of the */
/*     matrix A.  N >= 0. */

/*     NRHS    (input) INTEGER */
/*     The number of right hand sides, i.e., the number of columns */
/*     of the matrices B and X.  NRHS >= 0. */

/*     A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is */
/*     not 'N', then A must have been equilibrated by the scaling */
/*     factors in R and/or C.  A is not modified if FACT = 'F' or */
/*     'N', or if FACT = 'E' and EQUED = 'N' on exit. */

/*     On exit, if EQUED .ne. 'N', A is scaled as follows: */
/*     EQUED = 'R':  A := diag(R) * A */
/*     EQUED = 'C':  A := A * diag(C) */
/*     EQUED = 'B':  A := diag(R) * A * diag(C). */

/*     LDA     (input) INTEGER */
/*     The leading dimension of the array A.  LDA >= max(1,N). */

/*     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N) */
/*     If FACT = 'F', then AF is an input argument and on entry */
/*     contains the factors L and U from the factorization */
/*     A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then */
/*     AF is the factored form of the equilibrated matrix A. */

/*     If FACT = 'N', then AF is an output argument and on exit */
/*     returns the factors L and U from the factorization A = P*L*U */
/*     of the original matrix A. */

/*     If FACT = 'E', then AF is an output argument and on exit */
/*     returns the factors L and U from the factorization A = P*L*U */
/*     of the equilibrated matrix A (see the description of A for */
/*     the form of the equilibrated matrix). */

/*     LDAF    (input) INTEGER */
/*     The leading dimension of the array AF.  LDAF >= max(1,N). */

/*     IPIV    (input or output) INTEGER array, dimension (N) */
/*     If FACT = 'F', then IPIV is an input argument and on entry */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     as computed by ZGETRF; row i of the matrix was interchanged */
/*     with row IPIV(i). */

/*     If FACT = 'N', then IPIV is an output argument and on exit */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     of the original matrix A. */

/*     If FACT = 'E', then IPIV is an output argument and on exit */
/*     contains the pivot indices from the factorization A = P*L*U */
/*     of the equilibrated matrix A. */

/*     EQUED   (input or output) CHARACTER*1 */
/*     Specifies the form of equilibration that was done. */
/*       = 'N':  No equilibration (always true if FACT = 'N'). */
/*       = 'R':  Row equilibration, i.e., A has been premultiplied by */
/*               diag(R). */
/*       = 'C':  Column equilibration, i.e., A has been postmultiplied */
/*               by diag(C). */
/*       = 'B':  Both row and column equilibration, i.e., A has been */
/*               replaced by diag(R) * A * diag(C). */
/*     EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*     output argument. */

/*     R       (input or output) DOUBLE PRECISION array, dimension (N) */
/*     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
/*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
/*     is not accessed.  R is an input argument if FACT = 'F'; */
/*     otherwise, R is an output argument.  If FACT = 'F' and */
/*     EQUED = 'R' or 'B', each element of R must be positive. */
/*     If R is output, each element of R is a power of the radix. */
/*     If R is input, each element of R should be a power of the radix */
/*     to ensure a reliable solution and error estimates. Scaling by */
/*     powers of the radix does not cause rounding errors unless the */
/*     result underflows or overflows. Rounding errors during scaling */
/*     lead to refining with a matrix that is not equivalent to the */
/*     input matrix, producing error estimates that may not be */
/*     reliable. */

/*     C       (input or output) DOUBLE PRECISION array, dimension (N) */
/*     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
/*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
/*     is not accessed.  C is an input argument if FACT = 'F'; */
/*     otherwise, C is an output argument.  If FACT = 'F' and */
/*     EQUED = 'C' or 'B', each element of C must be positive. */
/*     If C is output, each element of C is a power of the radix. */
/*     If C is input, each element of C should be a power of the radix */
/*     to ensure a reliable solution and error estimates. Scaling by */
/*     powers of the radix does not cause rounding errors unless the */
/*     result underflows or overflows. Rounding errors during scaling */
/*     lead to refining with a matrix that is not equivalent to the */
/*     input matrix, producing error estimates that may not be */
/*     reliable. */

/*     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*     On entry, the N-by-NRHS right hand side matrix B. */
/*     On exit, */
/*     if EQUED = 'N', B is not modified; */
/*     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
/*        diag(R)*B; */
/*     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
/*        overwritten by diag(C)*B. */

/*     LDB     (input) INTEGER */
/*     The leading dimension of the array B.  LDB >= max(1,N). */

/*     X       (output) COMPLEX*16 array, dimension (LDX,NRHS) */
/*     If INFO = 0, the N-by-NRHS solution matrix X to the original */
/*     system of equations.  Note that A and B are modified on exit */
/*     if EQUED .ne. 'N', and the solution to the equilibrated system is */
/*     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
/*     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */

/*     LDX     (input) INTEGER */
/*     The leading dimension of the array X.  LDX >= max(1,N). */

/*     RCOND   (output) DOUBLE PRECISION */
/*     Reciprocal scaled condition number.  This is an estimate of the */
/*     reciprocal Skeel condition number of the matrix A after */
/*     equilibration (if done).  If this is less than the machine */
/*     precision (in particular, if it is zero), the matrix is singular */
/*     to working precision.  Note that the error may still be small even */
/*     if this number is very small and the matrix appears ill- */
/*     conditioned. */

/*     RPVGRW  (output) DOUBLE PRECISION */
/*     Reciprocal pivot growth.  On exit, this contains the reciprocal */
/*     pivot growth factor norm(A)/norm(U). The "max absolute element" */
/*     norm is used.  If this is much less than 1, then the stability of */
/*     the LU factorization of the (equilibrated) matrix A could be poor. */
/*     This also means that the solution X, estimated condition numbers, */
/*     and error bounds could be unreliable. If factorization fails with */
/*     0<INFO<=N, then this contains the reciprocal pivot growth factor */
/*     for the leading INFO columns of A.  In ZGESVX, this quantity is */
/*     returned in WORK(1). */

/*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*     Componentwise relative backward error.  This is the */
/*     componentwise relative backward error of each solution vector X(j) */
/*     (i.e., the smallest relative change in any element of A or B that */
/*     makes X(j) an exact solution). */

/*     N_ERR_BNDS (input) INTEGER */
/*     Number of error bounds to return for each right hand side */
/*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
/*     ERR_BNDS_COMP below. */

/*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     normwise relative error, which is defined as follows: */

/*     Normwise relative error in the ith solution vector: */
/*             max_j (abs(XTRUE(j,i) - X(j,i))) */
/*            ------------------------------ */
/*                  max_j abs(X(j,i)) */

/*     The array is indexed by the type of error information as described */
/*     below. There currently are up to three pieces of information */
/*     returned. */

/*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_NORM(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated normwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * dlamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*A, where S scales each row by a power of the */
/*              radix so all absolute row sums of Z are approximately 1. */

/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/*     For each right-hand side, this array contains information about */
/*     various error bounds and condition numbers corresponding to the */
/*     componentwise relative error, which is defined as follows: */

/*     Componentwise relative error in the ith solution vector: */
/*                    abs(XTRUE(j,i) - X(j,i)) */
/*             max_j ---------------------- */
/*                         abs(X(j,i)) */

/*     The array is indexed by the right-hand side i (on which the */
/*     componentwise relative error depends), and the type of error */
/*     information as described below. There currently are up to three */
/*     pieces of information returned for each right-hand side. If */
/*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
/*     the first (:,N_ERR_BNDS) entries are returned. */

/*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/*     right-hand side. */

/*     The second index in ERR_BNDS_COMP(:,err) contains the following */
/*     three fields: */
/*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/*              reciprocal condition number is less than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). */

/*     err = 2 "Guaranteed" error bound: The estimated forward error, */
/*              almost certainly within a factor of 10 of the true error */
/*              so long as the next entry is greater than the threshold */
/*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
/*              be trusted if the previous boolean is true. */

/*     err = 3  Reciprocal condition number: Estimated componentwise */
/*              reciprocal condition number.  Compared with the threshold */
/*              sqrt(n) * dlamch('Epsilon') to determine if the error */
/*              estimate is "guaranteed". These reciprocal condition */
/*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/*              appropriately scaled matrix Z. */
/*              Let Z = S*(A*diag(x)), where x is the solution for the */
/*              current right-hand side and S scales each row of */
/*              A*diag(x) by a power of the radix so all absolute row */
/*              sums of Z are approximately 1. */

/*     See Lapack Working Note 165 for further details and extra */
/*     cautions. */

/*     NPARAMS (input) INTEGER */
/*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the */
/*     PARAMS array is never referenced and default values are used. */

/*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS */
/*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then */
/*     that entry will be filled with default value used for that */
/*     parameter.  Only positions up to NPARAMS are accessed; defaults */
/*     are used for higher-numbered parameters. */

/*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
/*            refinement or not. */
/*         Default: 1.0D+0 */
/*            = 0.0 : No refinement is performed, and no error bounds are */
/*                    computed. */
/*            = 1.0 : Use the extra-precise refinement algorithm. */
/*              (other values are reserved for future use) */

/*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
/*            computations allowed for refinement. */
/*         Default: 10 */
/*         Aggressive: Set to 100 to permit convergence using approximate */
/*                     factorizations or factorizations other than LU. If */
/*                     the factorization uses a technique other than */
/*                     Gaussian elimination, the guarantees in */
/*                     err_bnds_norm and err_bnds_comp may no longer be */
/*                     trustworthy. */

/*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
/*            will attempt to find a solution with small componentwise */
/*            relative error in the double-precision algorithm.  Positive */
/*            is true, 0.0 is false. */
/*         Default: 1.0 (attempt componentwise convergence) */

/*     WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*     RWORK   (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*     INFO    (output) INTEGER */
/*       = 0:  Successful exit. The solution to every right-hand side is */
/*         guaranteed. */
/*       < 0:  If INFO = -i, the i-th argument had an illegal value */
/*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
/*         has been completed, but the factor U is exactly singular, so */
/*         the solution and error bounds could not be computed. RCOND = 0 */
/*         is returned. */
/*       = N+J: The solution corresponding to the Jth right-hand side is */
/*         not guaranteed. The solutions corresponding to other right- */
/*         hand sides K with K > J may not be guaranteed as well, but */
/*         only the first such right-hand side is reported. If a small */
/*         componentwise error is not requested (PARAMS(3) = 0.0) then */
/*         the Jth right-hand side is the first with a normwise error */
/*         bound that is not guaranteed (the smallest J such */
/*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
/*         the Jth right-hand side is the first with either a normwise or */
/*         componentwise error bound that is not guaranteed (the smallest */
/*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
/*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
/*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
/*         about all of the right-hand sides check ERR_BNDS_NORM or */
/*         ERR_BNDS_COMP. */

/*     ================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    err_bnds_comp_dim1 = *nrhs;
    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
    err_bnds_comp__ -= err_bnds_comp_offset;
    err_bnds_norm_dim1 = *nrhs;
    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
    err_bnds_norm__ -= err_bnds_norm_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    af_dim1 = *ldaf;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --ipiv;
    --r__;
    --c__;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --berr;
    --params;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    smlnum = dlamch_("Safe minimum");
    bignum = 1. / smlnum;
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE_;
	colequ = FALSE_;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, 
		"B");
	colequ = lsame_(equed, "C") || lsame_(equed, 
		"B");
    }

/*     Default is failure.  If an input parameter is wrong or */
/*     factorization fails, make everything look horrible.  Only the */
/*     pivot growth is set here, the rest is initialized in ZGERFSX. */

    *rpvgrw = 0.;

/*     Test the input parameters.  PARAMS is not tested until ZGERFSX. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldaf < max(1,*n)) {
	*info = -8;
    } else if (lsame_(fact, "F") && ! (rowequ || colequ 
	    || lsame_(equed, "N"))) {
	*info = -10;
    } else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = rcmin, d__2 = r__[j];
		rcmin = min(d__1,d__2);
/* Computing MAX */
		d__1 = rcmax, d__2 = r__[j];
		rcmax = max(d__1,d__2);
/* L10: */
	    }
	    if (rcmin <= 0.) {
		*info = -11;
	    } else if (*n > 0) {
		rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
	    } else {
		rowcnd = 1.;
	    }
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = rcmin, d__2 = c__[j];
		rcmin = min(d__1,d__2);
/* Computing MAX */
		d__1 = rcmax, d__2 = c__[j];
		rcmax = max(d__1,d__2);
/* L20: */
	    }
	    if (rcmin <= 0.) {
		*info = -12;
	    } else if (*n > 0) {
		colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
	    } else {
		colcnd = 1.;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -14;
	    } else if (*ldx < max(1,*n)) {
		*info = -16;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGESVXX", &i__1);
	return 0;
    }

    if (equil) {

/*     Compute row and column scalings to equilibrate the matrix A. */

	zgeequb_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, 
		&amax, &infequ);
	if (infequ == 0) {

/*     Equilibrate the matrix. */

	    zlaqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
		    colcnd, &amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, 
		     "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, 
		     "B");
	}

/*     If the scaling factors are not applied, set them to 1.0. */

	if (! rowequ) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		r__[j] = 1.;
	    }
	}
	if (! colequ) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		c__[j] = 1.;
	    }
	}
    }

/*     Scale the right-hand side. */

    if (notran) {
	if (rowequ) {
	    zlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
	}
    } else {
	if (colequ) {
	    zlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
	}
    }

    if (nofact || equil) {

/*        Compute the LU factorization of A. */

	zlacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
	zgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {

/*           Pivot in column INFO is exactly 0 */
/*           Compute the reciprocal pivot growth factor of the */
/*           leading rank-deficient INFO columns of A. */

	    *rpvgrw = zla_rpvgrw__(n, info, &a[a_offset], lda, &af[af_offset],
		     ldaf);
	    return 0;
	}
    }

/*     Compute the reciprocal pivot growth factor RPVGRW. */

    *rpvgrw = zla_rpvgrw__(n, n, &a[a_offset], lda, &af[af_offset], ldaf);

/*     Compute the solution matrix X. */

    zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    zgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 
	     info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    zgerfsx_(trans, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
	    ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, &x[x_offset], ldx, 
	    rcond, &berr[1], n_err_bnds__, &err_bnds_norm__[
	    err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset], 
	    nparams, &params[1], &work[1], &rwork[1], info);

/*     Scale solutions. */

    if (colequ && notran) {
	zlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
    } else if (rowequ && ! notran) {
	zlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
    }

    return 0;

/*     End of ZGESVXX */

} /* zgesvxx_ */