Ejemplo n.º 1
0
/* Subroutine */ int zpprfs_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *ap, doublecomplex *afp, doublecomplex *b, integer *ldb, 
	 doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    integer i__, j, k;
    doublereal s;
    integer ik, kk;
    doublereal xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3], count;
    logical upper;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zhpmv_(char *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *), zaxpy_(
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zlacn2_(integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal lstres;
    extern /* Subroutine */ int zpptrs_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPPRFS improves the computed solution to a system of linear */
/*  equations when the coefficient matrix is Hermitian positive definite */
/*  and packed, and provides error bounds and backward error estimates */
/*  for the solution. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          The upper or lower triangle of the Hermitian matrix A, packed */
/*          columnwise in a linear array.  The j-th column of A is stored */
/*          in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */

/*  AFP     (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          The triangular factor U or L from the Cholesky factorization */
/*          A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, */
/*          packed columnwise in a linear array in the same format as A */
/*          (see AP). */

/*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
/*          On entry, the solution matrix X, as computed by ZPPTRS. */
/*          On exit, the improved solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Internal Parameters */
/*  =================== */

/*  ITMAX is the maximum number of steps of iterative refinement. */

/*  ==================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --afp;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else if (*ldx < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPPRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
/* L10: */
	}
	return 0;
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

    nz = *n + 1;
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

	count = 1;
	lstres = 3.;
L20:

/*        Loop until stopping criterion is satisfied. */

/*        Compute residual R = B - A * X */

	zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	z__1.r = -1., z__1.i = -0.;
	zhpmv_(uplo, n, &z__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
		work[1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */

/*        where abs(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
		    i__ + j * b_dim1]), abs(d__2));
/* L30: */
	}

/*        Compute abs(A)*abs(X) + abs(B). */

	kk = 1;
	if (upper) {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.;
		i__3 = k + j * x_dim1;
		xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
			 x_dim1]), abs(d__2));
		ik = kk;
		i__3 = k - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    i__4 = ik;
		    rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = 
			    d_imag(&ap[ik]), abs(d__2))) * xk;
		    i__4 = ik;
		    i__5 = i__ + j * x_dim1;
		    s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
			    ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
			     + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
			    ));
		    ++ik;
/* L40: */
		}
		i__3 = kk + k - 1;
		rwork[k] = rwork[k] + (d__1 = ap[i__3].r, abs(d__1)) * xk + s;
		kk += k;
/* L50: */
	    }
	} else {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.;
		i__3 = k + j * x_dim1;
		xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
			 x_dim1]), abs(d__2));
		i__3 = kk;
		rwork[k] += (d__1 = ap[i__3].r, abs(d__1)) * xk;
		ik = kk + 1;
		i__3 = *n;
		for (i__ = k + 1; i__ <= i__3; ++i__) {
		    i__4 = ik;
		    rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = 
			    d_imag(&ap[ik]), abs(d__2))) * xk;
		    i__4 = ik;
		    i__5 = i__ + j * x_dim1;
		    s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
			    ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
			     + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
			    ));
		    ++ik;
/* L60: */
		}
		rwork[k] += s;
		kk += *n - k + 1;
/* L70: */
	    }
	}
	s = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
/* Computing MAX */
		i__3 = i__;
		d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2))) / rwork[i__];
		s = max(d__3,d__4);
	    } else {
/* Computing MAX */
		i__3 = i__;
		d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__] 
			+ safe1);
		s = max(d__3,d__4);
	    }
/* L80: */
	}
	berr[j] = s;

/*        Test stopping criterion. Continue iterating if */
/*           1) The residual BERR(J) is larger than machine epsilon, and */
/*           2) BERR(J) decreased by at least a factor of 2 during the */
/*              last iteration, and */
/*           3) At most ITMAX iterations tried. */

	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {

/*           Update solution and try again. */

	    zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info);
	    zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
	    lstres = berr[j];
	    ++count;
	    goto L20;
	}

/*        Bound error from formula */

/*        norm(X - XTRUE) / norm(X) .le. FERR = */
/*        norm( abs(inv(A))* */
/*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */

/*        where */
/*          norm(Z) is the magnitude of the largest component of Z */
/*          inv(A) is the inverse of A */
/*          abs(Z) is the componentwise absolute value of the matrix or */
/*             vector Z */
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
/*          EPS is machine epsilon */

/*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
/*        is incremented by SAFE1 if the i-th component of */
/*        abs(A)*abs(X) + abs(B) is less than SAFE2. */

/*        Use ZLACN2 to estimate the infinity-norm of the matrix */
/*           inv(A) * diag(W), */
/*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
		i__3 = i__;
		rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
			;
	    } else {
		i__3 = i__;
		rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
			 + safe1;
	    }
/* L90: */
	}

	kase = 0;
L100:
	zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(A'). */

		zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
			;
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__;
		    z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4] 
			    * work[i__5].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L110: */
		}
	    } else if (kase == 2) {

/*              Multiply by inv(A)*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__;
		    z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4] 
			    * work[i__5].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L120: */
		}
		zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
			;
	    }
	    goto L100;
	}

/*        Normalize error. */

	lstres = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    i__3 = i__ + j * x_dim1;
	    d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = 
		    d_imag(&x[i__ + j * x_dim1]), abs(d__2));
	    lstres = max(d__3,d__4);
/* L130: */
	}
	if (lstres != 0.) {
	    ferr[j] /= lstres;
	}

/* L140: */
    }

    return 0;

/*     End of ZPPRFS */

} /* zpprfs_ */
Ejemplo n.º 2
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *, 
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
, integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
, integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRPO tests the error exits for the COMPLEX*16 routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Ejemplo n.º 3
0
/* Subroutine */ int zppsv_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *ap, doublecomplex *b, integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZPPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N Hermitian positive definite matrix stored in   
    packed format and X and B are N-by-NRHS matrices.   

    The Cholesky decomposition is used to factor A as   
       A = U**H* U,  if UPLO = 'U', or   
       A = L * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is a lower triangular   
    matrix.  The factored form of A is then used to solve the system of   
    equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix 
  
            A, packed columnwise in a linear array.  The j-th column of A 
  
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U**H*U or A = L*L**H, in the same storage   
            format as A.   

    B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i of A is not   
                  positive definite, so the factorization could not be   
                  completed, and the solution has not been computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), zpptrf_(
	    char *, integer *, doublecomplex *, integer *), zpptrs_(
	    char *, integer *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);


#define AP(I) ap[(I)-1]

#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    zpptrf_(uplo, n, &AP(1), info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zpptrs_(uplo, n, nrhs, &AP(1), &B(1,1), ldb, info);

    }
    return 0;

/*     End of ZPPSV */

} /* zppsv_ */
Ejemplo n.º 4
0
 int zppsv_(char *uplo, int *n, int *nrhs, 
	doublecomplex *ap, doublecomplex *b, int *ldb, int *info)
{
    /* System generated locals */
    int b_dim1, b_offset, i__1;

    /* Local variables */
    extern int lsame_(char *, char *);
    extern  int xerbla_(char *, int *), zpptrf_(
	    char *, int *, doublecomplex *, int *), zpptrs_(
	    char *, int *, int *, doublecomplex *, doublecomplex *, 
	    int *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPPSV computes the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  The Cholesky decomposition is used to factor A as */
/*     A = U**H* U,  if UPLO = 'U', or */
/*     A = L * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is a lower triangular */
/*  matrix.  The factored form of A is then used to solve the system of */
/*  equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A. */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i of A is not */
/*                positive definite, so the factorization could not be */
/*                completed, and the solution has not been computed. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < MAX(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    zpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of ZPPSV */

} /* zppsv_ */
Ejemplo n.º 5
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal anrm;
    static doublecomplex a[16]	/* was [4][4] */, b[4];
    static integer i__, j;
    static doublereal r__[4];
    static doublecomplex w[8], x[4];
    static doublereal rcond;
    static char c2[2];
    static doublereal r1[4], r2[4];
    static doublecomplex af[16]	/* was [4][4] */;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *,
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *,
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
	    , integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    ZERRPO tests the error exits for the COMPLEX*16 routines   
    for Hermitian positive definite matrices.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = a_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = af_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Ejemplo n.º 6
0
/* Subroutine */ int zchkpp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, 
	integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *
	ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char packs[1*2] = "C" "R";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, n, in, kl, ku, lda, npp, ioff, mode, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    doublereal rcondc;
    char packit[1];
    doublereal cndnum;
    doublereal result[8];

    /* Fortran I/O blocks */
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___37 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZCHKPP tests ZPPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrpo_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L100;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		*(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1]
			;

/*              Set up parameters with ZLATB4 and generate a test matrix */
/*              with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L90;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			ioff = (izero - 1) * izero / 2;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff += i__;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0., a[i__4].i = 0.;
			    ioff = ioff + n - i__;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

/*              Compute the L*L' or U'*U factorization of the matrix. */

		npp = n * (n + 1) / 2;
		zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)32, (ftnlen)6);
		zpptrf_(uplo, &n, &afac[1], &info);

/*              Check error code from ZPPTRF. */

		if (info != izero) {
		    alaerh_(path, "ZPPTRF", &info, &izero, uplo, &n, &n, &
			    c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L90;
		}

/*              Skip the tests if INFO is not 0. */

		if (info != 0) {
		    goto L90;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		zppt01_(uplo, &n, &a[1], &ainv[1], &rwork[1], result);

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)32, (ftnlen)6);
		zpptri_(uplo, &n, &ainv[1], &info);

/*              Check error code from ZPPTRI. */

		if (info != 0) {
		    alaerh_(path, "ZPPTRI", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[1], 
			&rcondc, &result[1]);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = 1; k <= 2; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___34.ciunit = *nout;
			s_wsfe(&io___34);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L60: */
		}
		nrun += 2;

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)32, (ftnlen)6);
		    zpptrs_(uplo, &n, &nrhs, &afac[1], &x[1], &lda, &info);

/*              Check error code from ZPPTRS. */

		    if (info != 0) {
			alaerh_(path, "ZPPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)32, (ftnlen)6);
		    zpprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &b[1], &lda, &x[
			    1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &
			    rwork[(nrhs << 1) + 1], &info);

/*              Check error code from ZPPRFS. */

		    if (info != 0) {
			alaerh_(path, "ZPPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___37.ciunit = *nout;
			    s_wsfe(&io___37);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += 5;
/* L80: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

		anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)32, (ftnlen)6);
		zppcon_(uplo, &n, &afac[1], &anorm, &rcond, &work[1], &rwork[
			1], &info);

/*              Check error code from ZPPCON. */

		if (info != 0) {
		    alaerh_(path, "ZPPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = dget06_(&rcond, &rcondc);

/*              Print the test ratio if greater than or equal to THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___39.ciunit = *nout;
		    s_wsfe(&io___39);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;

L90:
		;
	    }
L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZCHKPP */

} /* zchkpp_ */