Ejemplo n.º 1
0
/* Subroutine */ int zspsvx_(char *fact, char *uplo, integer *n, integer *
                             nrhs, doublecomplex *ap, doublecomplex *afp, integer *ipiv,
                             doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
                             doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex *
                             work, doublereal *rwork, integer *info)
{
    /*  -- LAPACK driver routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           June 30, 1999


        Purpose
        =======

        ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
        A = L*D*L**T to compute the solution to a complex system of linear
        equations A * X = B, where A is an N-by-N symmetric matrix stored
        in packed format and X and B are N-by-NRHS matrices.

        Error bounds on the solution and a condition estimate are also
        provided.

        Description
        ===========

        The following steps are performed:

        1. If FACT = 'N', the diagonal pivoting method is used to factor A as
              A = U * D * U**T,  if UPLO = 'U', or
              A = L * D * L**T,  if UPLO = 'L',
           where U (or L) is a product of permutation and unit upper (lower)
           triangular matrices and D is symmetric and block diagonal with
           1-by-1 and 2-by-2 diagonal blocks.

        2. If some D(i,i)=0, so that D is exactly singular, then the routine
           returns with INFO = i. Otherwise, the factored form of A is used
           to estimate the condition number of the matrix A.  If the
           reciprocal of the condition number is less than machine precision,
           INFO = N+1 is returned as a warning, but the routine still goes on
           to solve for X and compute error bounds as described below.

        3. The system of equations is solved for X using the factored form
           of A.

        4. Iterative refinement is applied to improve the computed solution
           matrix and calculate error bounds and backward error estimates
           for it.

        Arguments
        =========

        FACT    (input) CHARACTER*1
                Specifies whether or not the factored form of A has been
                supplied on entry.
                = 'F':  On entry, AFP and IPIV contain the factored form
                        of A.  AP, AFP and IPIV will not be modified.
                = 'N':  The matrix A will be copied to AFP and factored.

        UPLO    (input) CHARACTER*1
                = 'U':  Upper triangle of A is stored;
                = 'L':  Lower triangle of A is stored.

        N       (input) INTEGER
                The number of linear equations, i.e., the order of the
                matrix A.  N >= 0.

        NRHS    (input) INTEGER
                The number of right hand sides, i.e., the number of columns
                of the matrices B and X.  NRHS >= 0.

        AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
                The upper or lower triangle of the symmetric matrix A, packed
                columnwise in a linear array.  The j-th column of A is stored
                in the array AP as follows:
                if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                See below for further details.

        AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
                If FACT = 'F', then AFP is an input argument and on entry
                contains the block diagonal matrix D and the multipliers used
                to obtain the factor U or L from the factorization
                A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
                a packed triangular matrix in the same storage format as A.

                If FACT = 'N', then AFP is an output argument and on exit
                contains the block diagonal matrix D and the multipliers used
                to obtain the factor U or L from the factorization
                A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
                a packed triangular matrix in the same storage format as A.

        IPIV    (input or output) INTEGER array, dimension (N)
                If FACT = 'F', then IPIV is an input argument and on entry
                contains details of the interchanges and the block structure
                of D, as determined by ZSPTRF.
                If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                interchanged and D(k,k) is a 1-by-1 diagonal block.
                If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

                If FACT = 'N', then IPIV is an output argument and on exit
                contains details of the interchanges and the block structure
                of D, as determined by ZSPTRF.

        B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                The N-by-NRHS right hand side matrix B.

        LDB     (input) INTEGER
                The leading dimension of the array B.  LDB >= max(1,N).

        X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.

        LDX     (input) INTEGER
                The leading dimension of the array X.  LDX >= max(1,N).

        RCOND   (output) DOUBLE PRECISION
                The estimate of the reciprocal condition number of the matrix
                A.  If RCOND is less than the machine precision (in
                particular, if RCOND = 0), the matrix is singular to working
                precision.  This condition is indicated by a return code of
                INFO > 0.

        FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                The estimated forward error bound for each solution vector
                X(j) (the j-th column of the solution matrix X).
                If XTRUE is the true solution corresponding to X(j), FERR(j)
                is an estimated upper bound for the magnitude of the largest
                element in (X(j) - XTRUE) divided by the magnitude of the
                largest element in X(j).  The estimate is as reliable as
                the estimate for RCOND, and is almost always a slight
                overestimate of the true error.

        BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                The componentwise relative backward error of each solution
                vector X(j) (i.e., the smallest relative change in
                any element of A or B that makes X(j) an exact solution).

        WORK    (workspace) COMPLEX*16 array, dimension (2*N)

        RWORK   (workspace) DOUBLE PRECISION array, dimension (N)

        INFO    (output) INTEGER
                = 0: successful exit
                < 0: if INFO = -i, the i-th argument had an illegal value
                > 0:  if INFO = i, and i is
                      <= N:  D(i,i) is exactly zero.  The factorization
                             has been completed but the factor D is exactly
                             singular, so the solution and error bounds could
                             not be computed. RCOND = 0 is returned.
                      = N+1: D is nonsingular, but RCOND is less than machine
                             precision, meaning that the matrix is singular
                             to working precision.  Nevertheless, the
                             solution and error bounds are computed because
                             there are a number of situations where the
                             computed solution can be more accurate than the
                             value of RCOND would suggest.

        Further Details
        ===============

        The packed storage scheme is illustrated by the following example
        when N = 4, UPLO = 'U':

        Two-dimensional storage of the symmetric matrix A:

           a11 a12 a13 a14
               a22 a23 a24
                   a33 a34     (aij = aji)
                       a44

        Packed storage of the upper triangle of A:

        AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

        =====================================================================


           Test the input parameters.

           Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;

    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
                                       doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    static logical nofact;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacpy_(
        char *, integer *, integer *, doublecomplex *, integer *,
        doublecomplex *, integer *);
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *,
                              doublereal *);
    extern /* Subroutine */ int zspcon_(char *, integer *, doublecomplex *,
                                        integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *,
                                                doublecomplex *, integer *, doublecomplex *, integer *,
                                                doublecomplex *, integer *, doublereal *, doublereal *,
                                                doublecomplex *, doublereal *, integer *), zsptrf_(char *,
                                                        integer *, doublecomplex *, integer *, integer *),
                                                                zsptrs_(char *, integer *, integer *, doublecomplex *, integer *,
                                                                        doublecomplex *, integer *, integer *);


    --ap;
    --afp;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    if (! nofact && ! lsame_(fact, "F")) {
        *info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo,
               "L")) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*nrhs < 0) {
        *info = -4;
    } else if (*ldb < max(1,*n)) {
        *info = -9;
    } else if (*ldx < max(1,*n)) {
        *info = -11;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZSPSVX", &i__1);
        return 0;
    }

    if (nofact) {

        /*        Compute the factorization A = U*D*U' or A = L*D*L'. */

        i__1 = *n * (*n + 1) / 2;
        zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
        zsptrf_(uplo, n, &afp[1], &ipiv[1], info);

        /*        Return if INFO is non-zero. */

        if (*info != 0) {
            if (*info > 0) {
                *rcond = 0.;
            }
            return 0;
        }
    }

    /*     Compute the norm of the matrix A. */

    anorm = zlansp_("I", uplo, n, &ap[1], &rwork[1]);

    /*     Compute the reciprocal of the condition number of A. */

    zspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info);

    /*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
        *info = *n + 1;
    }

    /*     Compute the solution vectors X. */

    zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    zsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);

    /*     Use iterative refinement to improve the computed solutions and
           compute error bounds and backward error estimates for them. */

    zsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
                x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);

    return 0;

    /*     End of ZSPSVX */

} /* zspsvx_ */
Ejemplo n.º 2
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    double anorm, anorm_i;
    double rcond, rcond_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *ap = NULL, *ap_i = NULL;
    lapack_int *ipiv = NULL, *ipiv_i = NULL;
    lapack_complex_double *work = NULL, *work_i = NULL;
    lapack_complex_double *ap_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zspcon( &uplo, &n, &anorm );
    uplo_i = uplo;
    n_i = n;
    anorm_i = anorm;

    /* Allocate memory for the LAPACK routine arrays */
    ap = (lapack_complex_double *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_double) );
    ipiv = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    work = (lapack_complex_double *)
        LAPACKE_malloc( 2*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    ap_i = (lapack_complex_double *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_double) );
    ipiv_i = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    work_i = (lapack_complex_double *)
        LAPACKE_malloc( 2*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    ap_r = (lapack_complex_double *)
        LAPACKE_malloc( n*(n+1)/2 * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_ap( (n*(n+1)/2), ap );
    init_ipiv( n, ipiv );
    init_work( 2*n, work );

    /* Call the LAPACK routine */
    zspcon_( &uplo, &n, ap, ipiv, &anorm, &rcond, work, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < 2*n; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zspcon_work( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i,
                                  anorm_i, &rcond_i, work_i );

    failed = compare_zspcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zspcon\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zspcon\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < 2*n; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zspcon( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i,
                             anorm_i, &rcond_i );

    failed = compare_zspcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zspcon\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zspcon\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < 2*n; i++ ) {
        work_i[i] = work[i];
    }

    LAPACKE_zpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_zspcon_work( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i,
                                  anorm_i, &rcond_i, work_i );

    failed = compare_zspcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zspcon\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zspcon\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < 2*n; i++ ) {
        work_i[i] = work[i];
    }

    /* Init row_major arrays */
    LAPACKE_zpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_zspcon( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i,
                             anorm_i, &rcond_i );

    failed = compare_zspcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zspcon\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zspcon\n" );
    }

    /* Release memory */
    if( ap != NULL ) {
        LAPACKE_free( ap );
    }
    if( ap_i != NULL ) {
        LAPACKE_free( ap_i );
    }
    if( ap_r != NULL ) {
        LAPACKE_free( ap_r );
    }
    if( ipiv != NULL ) {
        LAPACKE_free( ipiv );
    }
    if( ipiv_i != NULL ) {
        LAPACKE_free( ipiv_i );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }

    return 0;
}
Ejemplo n.º 3
0
/* Subroutine */ int zerrsy_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer ip[4], info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zsytf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *, integer *), alaesm_(char *, logical 
	    *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zspcon_(char *, integer *, doublecomplex *, 
	     integer *, doublereal *, doublereal *, doublecomplex *, integer *
), zsycon_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zsptrf_(char *, 
	     integer *, doublecomplex *, integer *, integer *), 
	    zsptri_(char *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zsyrfs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *, doublecomplex *, integer *, doublecomplex *, integer *
, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zsytrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *, doublecomplex *, integer *, integer *), zsytri_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublecomplex *, integer *), zsptrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zsytrs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRSY tests the error exits for the COMPLEX*16 routines */
/*  for symmetric indefinite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
	ip[j - 1] = j;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite matrix. */

    if (lsamen_(&c__2, c2, "SY")) {

/*        ZSYTRF */

	s_copy(srnamc_1.srnamt, "ZSYTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrf_("/", &c__0, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrf_("U", &c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytrf_("U", &c__2, a, &c__1, ip, w, &c__4, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTF2 */

	s_copy(srnamc_1.srnamt, "ZSYTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytf2_("/", &c__0, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytf2_("U", &c_n1, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytf2_("U", &c__2, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRI */

	s_copy(srnamc_1.srnamt, "ZSYTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytri_("/", &c__0, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytri_("U", &c_n1, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytri_("U", &c__2, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRS */

	s_copy(srnamc_1.srnamt, "ZSYTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrs_("U", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsytrs_("U", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsytrs_("U", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsytrs_("U", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYRFS */

	s_copy(srnamc_1.srnamt, "ZSYRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsyrfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsyrfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsyrfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsyrfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYCON */

	s_copy(srnamc_1.srnamt, "ZSYCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsycon_("/", &c__0, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsycon_("U", &c_n1, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsycon_("U", &c__2, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zsycon_("U", &c__1, a, &c__1, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite packed matrix. */

    } else if (lsamen_(&c__2, c2, "SP")) {

/*        ZSPTRF */

	s_copy(srnamc_1.srnamt, "ZSPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrf_("/", &c__0, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrf_("U", &c_n1, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRI */

	s_copy(srnamc_1.srnamt, "ZSPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptri_("/", &c__0, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptri_("U", &c_n1, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRS */

	s_copy(srnamc_1.srnamt, "ZSPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrs_("/", &c__0, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrs_("U", &c_n1, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsptrs_("U", &c__0, &c_n1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsptrs_("U", &c__2, &c__1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPRFS */

	s_copy(srnamc_1.srnamt, "ZSPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsprfs_("/", &c__0, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsprfs_("U", &c_n1, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsprfs_("U", &c__0, &c_n1, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__1, x, &c__2, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__2, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPCON */

	s_copy(srnamc_1.srnamt, "ZSPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zspcon_("/", &c__0, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zspcon_("U", &c_n1, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zspcon_("U", &c__1, a, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRSY */

} /* zerrsy_ */