Ejemplo n.º 1
0
/* Subroutine */ int zchktz_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, doublereal *thresh, logical *tsterr, 
	doublecomplex *a, doublecomplex *copya, doublereal *s, doublereal *
	copys, doublecomplex *tau, doublecomplex *work, doublereal *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, info;
    static char path[3];
    static integer nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n, nfail, iseed[4], imode, mnmin, nerrs, lwork;
    extern doublereal zqrt12_(integer *, integer *, doublecomplex *, integer *
	    , doublereal *, doublecomplex *, integer *, doublereal *), 
	    zrzt01_(integer *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), zrzt02_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *), ztzt01_(integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *), ztzt02_(integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *);
    static integer im, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *), alasum_(char *, integer *, integer *, integer 
	    *, integer *), zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *), zlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zerrtz_(char *, integer *), ztzrqf_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *), ztzrzf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;
    static integer lda;
    static doublereal eps;

    /* Fortran I/O blocks */
    static cilist io___21 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZCHKTZ tests ZTZRQF and ZTZRZF.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    TAU     (workspace) COMPLEX*16 array, dimension (MMAX)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (MMAX*NMAX + 4*NMAX + MMAX)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	zerrtz_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL for which M .LE. N. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = n * n + (m << 2) + n;
	    lwork = max(i__3,i__4);

	    if (m <= n) {
		for (imode = 1; imode <= 3; ++imode) {

/*                 Do for each type of singular value distribution.   
                      0:  zero matrix   
                      1:  one small singular value   
                      2:  exponential distribution */

		    mode = imode - 1;

/*                 Test ZTZRQF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L20: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRQF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6);
		    ztzrqf_(&m, &n, &a[1], &lda, &tau[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[1] = ztzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[2] = ztzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Test ZTZRZF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L30: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRZF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6);
		    ztzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, &
			    info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[3] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[4] = zrzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[5] = zrzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = 1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___21.ciunit = *nout;
			    s_wsfe(&io___21);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L40: */
		    }
		    nrun += 6;
/* L50: */
		}
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End if ZCHKTZ */

    return 0;
} /* zchktz_ */
Ejemplo n.º 2
0
/* Subroutine */ int zerrtz_(char *path, integer *nunit)
{
    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    doublecomplex a[4]	/* was [2][2] */, w[2];
    char c2[2];
    doublecomplex tau[2];
    integer info;
    extern /* Subroutine */ int alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), ztzrqf_(integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), ztzrzf_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___4 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRTZ tests the error exits for ZTZRQF and ZTZRZF. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    a[0].r = 1., a[0].i = -1.;
    a[2].r = 2., a[2].i = -2.;
    a[3].r = 3., a[3].i = -3.;
    a[1].r = 4., a[1].i = -4.;
    w[0].r = 0., w[0].i = 0.;
    w[1].r = 0., w[1].i = 0.;
    infoc_1.ok = TRUE_;

/*     Test error exits for the trapezoidal routines. */

    io___4.ciunit = infoc_1.nout;
    s_wsle(&io___4);
    e_wsle();
    if (lsamen_(&c__2, c2, "TZ")) {

/*        ZTZRQF */

	s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	ztzrqf_(&c_n1, &c__0, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztzrqf_(&c__1, &c__0, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztzrqf_(&c__2, &c__2, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZTZRZF */

	s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	ztzrzf_(&c_n1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztzrzf_(&c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztzrzf_(&c__2, &c__2, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	ztzrzf_(&c__2, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRTZ */

} /* zerrtz_ */