EnumPayload EnumPayload::fromBitPattern(IRGenModule &IGM, APInt bitPattern, EnumPayloadSchema schema) { EnumPayload result; schema.forEachType(IGM, [&](llvm::Type *type) { unsigned bitSize = IGM.DataLayout.getTypeSizeInBits(type); llvm::IntegerType *intTy = llvm::IntegerType::get(IGM.getLLVMContext(), bitSize); // Take some bits off of the bottom of the pattern. auto bits = bitPattern.zextOrTrunc(bitSize); auto val = llvm::ConstantInt::get(intTy, bits); if (val->getType() != type) { if (type->isPointerTy()) val = llvm::ConstantExpr::getIntToPtr(val, type); else val = llvm::ConstantExpr::getBitCast(val, type); } result.PayloadValues.push_back(val); // Shift the remaining bits down. bitPattern = bitPattern.lshr(bitSize); }); return result; }
/// isBytewiseValue - If the specified value can be set by repeating the same /// byte in memory, return the i8 value that it is represented with. This is /// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated /// byte store (e.g. i16 0x1234), return null. static Value *isBytewiseValue(Value *V) { LLVMContext &Context = V->getContext(); // All byte-wide stores are splatable, even of arbitrary variables. if (V->getType()->isIntegerTy(8)) return V; // Constant float and double values can be handled as integer values if the // corresponding integer value is "byteable". An important case is 0.0. if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { if (CFP->getType()->isFloatTy()) V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context)); if (CFP->getType()->isDoubleTy()) V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context)); // Don't handle long double formats, which have strange constraints. } // We can handle constant integers that are power of two in size and a // multiple of 8 bits. if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { unsigned Width = CI->getBitWidth(); if (isPowerOf2_32(Width) && Width > 8) { // We can handle this value if the recursive binary decomposition is the // same at all levels. APInt Val = CI->getValue(); APInt Val2; while (Val.getBitWidth() != 8) { unsigned NextWidth = Val.getBitWidth()/2; Val2 = Val.lshr(NextWidth); Val2.trunc(Val.getBitWidth()/2); Val.trunc(Val.getBitWidth()/2); // If the top/bottom halves aren't the same, reject it. if (Val != Val2) return 0; } return ConstantInt::get(Context, Val); } } // Conceptually, we could handle things like: // %a = zext i8 %X to i16 // %b = shl i16 %a, 8 // %c = or i16 %a, %b // but until there is an example that actually needs this, it doesn't seem // worth worrying about. return 0; }
APInt swift::constantFoldBitOperation(APInt lhs, APInt rhs, BuiltinValueKind ID) { switch (ID) { default: llvm_unreachable("Not all cases are covered!"); case BuiltinValueKind::And: return lhs & rhs; case BuiltinValueKind::AShr: return lhs.ashr(rhs); case BuiltinValueKind::LShr: return lhs.lshr(rhs); case BuiltinValueKind::Or: return lhs | rhs; case BuiltinValueKind::Shl: return lhs.shl(rhs); case BuiltinValueKind::Xor: return lhs ^ rhs; } }
void EnumPayload::emitApplyAndMask(IRGenFunction &IGF, APInt mask) { // Early exit if the mask has no effect. if (mask.isAllOnesValue()) return; auto &DL = IGF.IGM.DataLayout; for (auto &pv : PayloadValues) { auto payloadTy = getPayloadType(pv); unsigned size = DL.getTypeSizeInBits(payloadTy); // Break off a chunk of the mask. auto maskPiece = mask.zextOrTrunc(size); mask = mask.lshr(size); // If this piece is all ones, it has no effect. if (maskPiece.isAllOnesValue()) continue; // If the payload value is vacant, the mask can't change it. if (pv.is<llvm::Type *>()) continue; // If this piece is zero, it wipes out the chunk entirely, and we can // drop it. if (maskPiece == 0) { pv = payloadTy; continue; } // Otherwise, apply the mask to the existing value. auto v = pv.get<llvm::Value*>(); auto payloadIntTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(), size); auto maskConstant = llvm::ConstantInt::get(payloadIntTy, maskPiece); v = IGF.Builder.CreateBitOrPointerCast(v, payloadIntTy); v = IGF.Builder.CreateAnd(v, maskConstant); v = IGF.Builder.CreateBitOrPointerCast(v, payloadTy); pv = v; } }
void BDCE::determineLiveOperandBits(const Instruction *UserI, const Instruction *I, unsigned OperandNo, const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, APInt &KnownOne2) { unsigned BitWidth = AB.getBitWidth(); // We're called once per operand, but for some instructions, we need to // compute known bits of both operands in order to determine the live bits of // either (when both operands are instructions themselves). We don't, // however, want to do this twice, so we cache the result in APInts that live // in the caller. For the two-relevant-operands case, both operand values are // provided here. auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1, const Value *V2) { const DataLayout &DL = I->getModule()->getDataLayout(); KnownZero = APInt(BitWidth, 0); KnownOne = APInt(BitWidth, 0); computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0, AC, UserI, DT); if (V2) { KnownZero2 = APInt(BitWidth, 0); KnownOne2 = APInt(BitWidth, 0); computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL, 0, AC, UserI, DT); } }; switch (UserI->getOpcode()) { default: break; case Instruction::Call: case Instruction::Invoke: if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: // The alive bits of the input are the swapped alive bits of // the output. AB = AOut.byteSwap(); break; case Intrinsic::ctlz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the left of, and including, the leftmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getHighBitsSet(BitWidth, std::min(BitWidth, KnownOne.countLeadingZeros()+1)); } break; case Intrinsic::cttz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the right of, and including, the rightmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getLowBitsSet(BitWidth, std::min(BitWidth, KnownOne.countTrailingZeros()+1)); } break; } break; case Instruction::Add: case Instruction::Sub: // Find the highest live output bit. We don't need any more input // bits than that (adds, and thus subtracts, ripple only to the // left). AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); break; case Instruction::Shl: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.lshr(ShiftAmt); // If the shift is nuw/nsw, then the high bits are not dead // (because we've promised that they *must* be zero). const ShlOperator *S = cast<ShlOperator>(UserI); if (S->hasNoSignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); else if (S->hasNoUnsignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); } break; case Instruction::LShr: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.shl(ShiftAmt); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast<LShrOperator>(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::AShr: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.shl(ShiftAmt); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) .getBoolValue()) AB.setBit(BitWidth-1); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast<AShrOperator>(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::And: AB = AOut; // For bits that are known zero, the corresponding bits in the // other operand are dead (unless they're both zero, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~KnownZero2; } else { if (!isa<Instruction>(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(KnownZero & ~KnownZero2); } break; case Instruction::Or: AB = AOut; // For bits that are known one, the corresponding bits in the // other operand are dead (unless they're both one, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~KnownOne2; } else { if (!isa<Instruction>(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(KnownOne & ~KnownOne2); } break; case Instruction::Xor: case Instruction::PHI: AB = AOut; break; case Instruction::Trunc: AB = AOut.zext(BitWidth); break; case Instruction::ZExt: AB = AOut.trunc(BitWidth); break; case Instruction::SExt: AB = AOut.trunc(BitWidth); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), AOut.getBitWidth() - BitWidth)) .getBoolValue()) AB.setBit(BitWidth-1); break; case Instruction::Select: if (OperandNo != 0) AB = AOut; break; } }
/// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bit sets. This code only analyzes bits in Mask, in order to short-circuit /// processing. /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that /// we cannot optimize based on the assumption that it is zero without changing /// it to be an explicit zero. If we don't change it to zero, other code could /// optimized based on the contradictory assumption that it is non-zero. /// Because instcombine aggressively folds operations with undef args anyway, /// this won't lose us code quality. void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, TargetData *TD, unsigned Depth) { const unsigned MaxDepth = 6; assert(V && "No Value?"); assert(Depth <= MaxDepth && "Limit Search Depth"); unsigned BitWidth = Mask.getBitWidth(); assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) && "Not integer or pointer type!"); assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) && (!isa<IntegerType>(V->getType()) || V->getType()->getPrimitiveSizeInBits() == BitWidth) && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && "V, Mask, KnownOne and KnownZero should have same BitWidth"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & Mask; KnownZero = ~KnownOne & Mask; return; } // Null is all-zeros. if (isa<ConstantPointerNull>(V)) { KnownOne.clear(); KnownZero = Mask; return; } // The address of an aligned GlobalValue has trailing zeros. if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { unsigned Align = GV->getAlignment(); if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) Align = TD->getPrefTypeAlignment(GV->getType()->getElementType()); if (Align > 0) KnownZero = Mask & APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); else KnownZero.clear(); KnownOne.clear(); return; } KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. if (Depth == MaxDepth || Mask == 0) return; // Limit search depth. User *I = dyn_cast<User>(V); if (!I) return; APInt KnownZero2(KnownZero), KnownOne2(KnownOne); switch (getOpcode(I)) { default: break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); APInt Mask2(Mask & ~KnownZero); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; } case Instruction::Or: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); APInt Mask2(Mask & ~KnownOne); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; } case Instruction::Xor: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case Instruction::Mul: { APInt Mask2 = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. KnownOne.clear(); unsigned TrailZ = KnownZero.countTrailingOnes() + KnownZero2.countTrailingOnes(); unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + KnownZero2.countLeadingOnes(), BitWidth) - BitWidth; TrailZ = std::min(TrailZ, BitWidth); LeadZ = std::min(LeadZ, BitWidth); KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; return; } case Instruction::UDiv: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); unsigned LeadZ = KnownZero2.countLeadingOnes(); KnownOne2.clear(); KnownZero2.clear(); ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; return; } case Instruction::Select: ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::SIToFP: case Instruction::UIToFP: return; // Can't work with floating point. case Instruction::PtrToInt: case Instruction::IntToPtr: // We can't handle these if we don't know the pointer size. if (!TD) return; // FALL THROUGH and handle them the same as zext/trunc. case Instruction::ZExt: case Instruction::Trunc: { // Note that we handle pointer operands here because of inttoptr/ptrtoint // which fall through here. const Type *SrcTy = I->getOperand(0)->getType(); unsigned SrcBitWidth = TD ? TD->getTypeSizeInBits(SrcTy) : SrcTy->getPrimitiveSizeInBits(); APInt MaskIn(Mask); MaskIn.zextOrTrunc(SrcBitWidth); KnownZero.zextOrTrunc(SrcBitWidth); KnownOne.zextOrTrunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, Depth+1); KnownZero.zextOrTrunc(BitWidth); KnownOne.zextOrTrunc(BitWidth); // Any top bits are known to be zero. if (BitWidth > SrcBitWidth) KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::BitCast: { const Type *SrcTy = I->getOperand(0)->getType(); if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) { ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, Depth+1); return; } break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); unsigned SrcBitWidth = SrcTy->getBitWidth(); APInt MaskIn(Mask); MaskIn.trunc(SrcBitWidth); KnownZero.trunc(SrcBitWidth); KnownOne.trunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::Shl: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); APInt Mask2(Mask.lshr(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= ShiftAmt; KnownOne <<= ShiftAmt; KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 return; } break; case Instruction::LShr: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); // high bits known zero. KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); return; } break; case Instruction::AShr: // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Signed shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. KnownZero |= HighBits; else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. KnownOne |= HighBits; return; } break; case Instruction::Sub: { if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { // We know that the top bits of C-X are clear if X contains less bits // than C (i.e. no wrap-around can happen). For example, 20-X is // positive if we can prove that X is >= 0 and < 16. if (!CLHS->getValue().isNegative()) { unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); // NLZ can't be BitWidth with no sign bit APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, TD, Depth+1); // If all of the MaskV bits are known to be zero, then we know the // output top bits are zero, because we now know that the output is // from [0-C]. if ((KnownZero2 & MaskV) == MaskV) { unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); // Top bits known zero. KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; } } } } // fall through case Instruction::Add: { // If one of the operands has trailing zeros, than the bits that the // other operand has in those bit positions will be preserved in the // result. For an add, this works with either operand. For a subtract, // this only works if the known zeros are in the right operand. APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); APInt Mask2 = APInt::getLowBitsSet(BitWidth, BitWidth - Mask.countLeadingZeros()); ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, Depth+1); assert((LHSKnownZero & LHSKnownOne) == 0 && "Bits known to be one AND zero?"); unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); // Determine which operand has more trailing zeros, and use that // many bits from the other operand. if (LHSKnownZeroOut > RHSKnownZeroOut) { if (getOpcode(I) == Instruction::Add) { APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); KnownZero |= KnownZero2 & Mask; KnownOne |= KnownOne2 & Mask; } else { // If the known zeros are in the left operand for a subtract, // fall back to the minimum known zeros in both operands. KnownZero |= APInt::getLowBitsSet(BitWidth, std::min(LHSKnownZeroOut, RHSKnownZeroOut)); } } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); KnownZero |= LHSKnownZero & Mask; KnownOne |= LHSKnownOne & Mask; } return; } case Instruction::SRem: if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { APInt RA = Rem->getValue(); if (RA.isPowerOf2() || (-RA).isPowerOf2()) { APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); // If the sign bit of the first operand is zero, the sign bit of // the result is zero. If the first operand has no one bits below // the second operand's single 1 bit, its sign will be zero. if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) KnownZero2 |= ~LowBits; KnownZero |= KnownZero2 & Mask; assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); } } break; case Instruction::URem: { if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { APInt RA = Rem->getValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); APInt Mask2 = LowBits & Mask; KnownZero |= ~LowBits & Mask; ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); break; } } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); unsigned Leaders = std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); KnownOne.clear(); KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; break; } case Instruction::Alloca: case Instruction::Malloc: { AllocationInst *AI = cast<AllocationInst>(V); unsigned Align = AI->getAlignment(); if (Align == 0 && TD) { if (isa<AllocaInst>(AI)) Align = TD->getABITypeAlignment(AI->getType()->getElementType()); else if (isa<MallocInst>(AI)) { // Malloc returns maximally aligned memory. Align = TD->getABITypeAlignment(AI->getType()->getElementType()); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::DoubleTy)); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::Int64Ty)); } } if (Align > 0) KnownZero = Mask & APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); break; } case Instruction::GetElementPtr: { // Analyze all of the subscripts of this getelementptr instruction // to determine if we can prove known low zero bits. APInt LocalMask = APInt::getAllOnesValue(BitWidth); APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); ComputeMaskedBits(I->getOperand(0), LocalMask, LocalKnownZero, LocalKnownOne, TD, Depth+1); unsigned TrailZ = LocalKnownZero.countTrailingOnes(); gep_type_iterator GTI = gep_type_begin(I); for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { Value *Index = I->getOperand(i); if (const StructType *STy = dyn_cast<StructType>(*GTI)) { // Handle struct member offset arithmetic. if (!TD) return; const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); uint64_t Offset = SL->getElementOffset(Idx); TrailZ = std::min(TrailZ, CountTrailingZeros_64(Offset)); } else { // Handle array index arithmetic. const Type *IndexedTy = GTI.getIndexedType(); if (!IndexedTy->isSized()) return; unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits(); uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; LocalMask = APInt::getAllOnesValue(GEPOpiBits); LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); ComputeMaskedBits(Index, LocalMask, LocalKnownZero, LocalKnownOne, TD, Depth+1); TrailZ = std::min(TrailZ, unsigned(CountTrailingZeros_64(TypeSize) + LocalKnownZero.countTrailingOnes())); } } KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; break; } case Instruction::PHI: { PHINode *P = cast<PHINode>(I); // Handle the case of a simple two-predecessor recurrence PHI. // There's a lot more that could theoretically be done here, but // this is sufficient to catch some interesting cases. if (P->getNumIncomingValues() == 2) { for (unsigned i = 0; i != 2; ++i) { Value *L = P->getIncomingValue(i); Value *R = P->getIncomingValue(!i); User *LU = dyn_cast<User>(L); if (!LU) continue; unsigned Opcode = getOpcode(LU); // Check for operations that have the property that if // both their operands have low zero bits, the result // will have low zero bits. if (Opcode == Instruction::Add || Opcode == Instruction::Sub || Opcode == Instruction::And || Opcode == Instruction::Or || Opcode == Instruction::Mul) { Value *LL = LU->getOperand(0); Value *LR = LU->getOperand(1); // Find a recurrence. if (LL == I) L = LR; else if (LR == I) L = LL; else break; // Ok, we have a PHI of the form L op= R. Check for low // zero bits. APInt Mask2 = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); Mask2 = APInt::getLowBitsSet(BitWidth, KnownZero2.countTrailingOnes()); // We need to take the minimum number of known bits APInt KnownZero3(KnownZero), KnownOne3(KnownOne); ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); KnownZero = Mask & APInt::getLowBitsSet(BitWidth, std::min(KnownZero2.countTrailingOnes(), KnownZero3.countTrailingOnes())); break; } } } // Otherwise take the unions of the known bit sets of the operands, // taking conservative care to avoid excessive recursion. if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { KnownZero = APInt::getAllOnesValue(BitWidth); KnownOne = APInt::getAllOnesValue(BitWidth); for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { // Skip direct self references. if (P->getIncomingValue(i) == P) continue; KnownZero2 = APInt(BitWidth, 0); KnownOne2 = APInt(BitWidth, 0); // Recurse, but cap the recursion to one level, because we don't // want to waste time spinning around in loops. ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, KnownZero2, KnownOne2, TD, MaxDepth-1); KnownZero &= KnownZero2; KnownOne &= KnownOne2; // If all bits have been ruled out, there's no need to check // more operands. if (!KnownZero && !KnownOne) break; } } break; } case Instruction::Call: if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: { unsigned LowBits = Log2_32(BitWidth)+1; KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); break; } } } break; } }
static void emitSubSwitch(IRGenFunction &IGF, MutableArrayRef<EnumPayload::LazyValue> values, APInt mask, MutableArrayRef<std::pair<APInt, llvm::BasicBlock *>> cases, SwitchDefaultDest dflt) { recur: assert(!values.empty() && "didn't exit out when exhausting all values?!"); assert(!cases.empty() && "switching with no cases?!"); auto &DL = IGF.IGM.DataLayout; auto &pv = values.front(); values = values.slice(1); auto payloadTy = getPayloadType(pv); unsigned size = DL.getTypeSizeInBits(payloadTy); // Grab a chunk of the mask. auto maskPiece = mask.zextOrTrunc(size); mask = mask.lshr(size); // If the piece is zero, this doesn't affect the switch. We can just move // forward and recur. if (maskPiece == 0) { for (auto &casePair : cases) casePair.first = casePair.first.lshr(size); goto recur; } // Force the value we will test. auto v = forcePayloadValue(pv); auto payloadIntTy = llvm::IntegerType::get(IGF.IGM.getLLVMContext(), size); // Need to coerce to integer for 'icmp eq' if it's not already an integer // or pointer. (Switching or masking will also require a cast to integer.) if (!isa<llvm::IntegerType>(v->getType()) && !isa<llvm::PointerType>(v->getType())) v = IGF.Builder.CreateBitOrPointerCast(v, payloadIntTy); // Apply the mask if it's interesting. if (!maskPiece.isAllOnesValue()) { v = IGF.Builder.CreateBitOrPointerCast(v, payloadIntTy); auto maskConstant = llvm::ConstantInt::get(payloadIntTy, maskPiece); v = IGF.Builder.CreateAnd(v, maskConstant); } // Gather the values we will switch over for this payload chunk. // FIXME: std::map is lame. Should hash APInts. std::map<APInt, SmallVector<std::pair<APInt, llvm::BasicBlock*>, 2>, ult> subCases; for (auto casePair : cases) { // Grab a chunk of the value. auto valuePiece = casePair.first.zextOrTrunc(size); // Index the case according to this chunk. subCases[valuePiece].push_back({std::move(casePair.first).lshr(size), casePair.second}); } bool needsAdditionalCases = !values.empty() && mask != 0; SmallVector<std::pair<llvm::BasicBlock *, decltype(cases)>, 2> recursiveCases; auto blockForCases = [&](MutableArrayRef<std::pair<APInt, llvm::BasicBlock*>> cases) -> llvm::BasicBlock * { // If we need to recur, emit a new block. if (needsAdditionalCases) { auto newBB = IGF.createBasicBlock(""); recursiveCases.push_back({newBB, cases}); return newBB; } // Otherwise, we can jump directly to the ultimate destination. assert(cases.size() == 1 && "more than one case for final destination?!"); return cases.front().second; }; // If there's only one case, do a cond_br. if (subCases.size() == 1) { auto &subCase = *subCases.begin(); llvm::BasicBlock *block = blockForCases(subCase.second); // If the default case is unreachable, we don't need to conditionally // branch. if (dflt.getInt()) { IGF.Builder.CreateBr(block); goto next; } auto &valuePiece = subCase.first; llvm::Value *valueConstant = llvm::ConstantInt::get(payloadIntTy, valuePiece); valueConstant = IGF.Builder.CreateBitOrPointerCast(valueConstant, v->getType()); auto cmp = IGF.Builder.CreateICmpEQ(v, valueConstant); IGF.Builder.CreateCondBr(cmp, block, dflt.getPointer()); goto next; } // Otherwise, do a switch. { v = IGF.Builder.CreateBitOrPointerCast(v, payloadIntTy); auto swi = IGF.Builder.CreateSwitch(v, dflt.getPointer(), subCases.size()); for (auto &subCase : subCases) { auto &valuePiece = subCase.first; auto valueConstant = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), valuePiece); swi->addCase(valueConstant, blockForCases(subCase.second)); } } next: // Emit the recursive cases. for (auto &recursive : recursiveCases) { IGF.Builder.emitBlock(recursive.first); emitSubSwitch(IGF, values, mask, recursive.second, dflt); } }