Ejemplo n.º 1
0
void ParameterizeCopyArray:: ApplyXform(
                DepCompCopyArrayCollect::CopyArrayUnit& curarray,
                CopyArrayConfig& config, LoopTreeNode* repl,
                LoopTreeNode* init, LoopTreeNode* save)
{
  AutoTuningInterface* tuning = LoopTransformInterface::getAutoTuningInterface();
  assert(tuning != 0);

  tuning->CopyArray(config, repl);
}
Ejemplo n.º 2
0
LoopTreeNode* ParameterizeBlocking::
ApplyBlocking( const CompSliceDepGraphNode::FullNestInfo& nestInfo, 
              LoopTreeDepComp& comp, DependenceHoisting &op, 
                                      LoopTreeNode *&top)
{
  const CompSliceNest* pslices = nestInfo.GetNest();
  assert(pslices != 0);
  const CompSliceNest& slices = *pslices;
  AstInterface& fa = LoopTransformInterface::getAstInterface();
  int size = slices.NumberOfEntries();
  assert (size > 0);

  for (int j=size-1;j >= 0; --j)  /*QY: arrange the desired loop nesting order*/
     top = op.Transform( comp, slices[j], top);

  AutoTuningInterface* tuning = LoopTransformInterface::getAutoTuningInterface();
  assert(tuning != 0);

  const CompSlice* slice_innermost = slices[size-1];
  if (size > 1) {
     const CompSlice* slice_pivot = slices[size-2];
     CompSlice::ConstLoopIterator p_pivot=slice_pivot->GetConstLoopIterator();
     if  (slice_innermost->SliceCommonLoop(slice_pivot)) { 
         /*QY: outer loops are not perfectly nested*/
         FuseLoopInfo loops_innermost(p_pivot.Current());
         for (CompSlice::ConstLoopIterator p_inner 
                     = slice_innermost->GetConstLoopIterator();
              !p_inner.ReachEnd(); ++p_inner) {
             LoopTreeNode* cur = p_inner.Current();
             if (slice_pivot->QuerySliceLoop(cur)) continue;
             loops_innermost.loops.push_back(FuseLoopInfo::Entry(cur,p_inner.CurrentInfo().minalign-p_pivot.CurrentInfo().minalign)); 
         }
         assert(loops_innermost.loops.size() > 0);
         /*QY: right now do not block the deeper inner loops */
         tuning->BlockLoops(top, loops_innermost.loops[0].first, this, &loops_innermost);
         return top;
     }
  }

  CompSlice::ConstLoopIterator p_inner 
                     = slice_innermost->GetConstLoopIterator();
  LoopTreeNode* loop_innermost=*p_inner;

  /*QY: nonperfect!=0 only if there is a single inner loop nest inside*/
  const CompSliceDepGraphNode::NestInfo* nonperfect = DoNonPerfectBlocking(nestInfo);
  
  if (nonperfect == 0) { /*QY: all loops are perfectly nested*/
     if (size > 1)
         tuning->BlockLoops(top, loop_innermost, this);
  }
  else {
      LoopTreeNode* innerTop = LoopTreeTransform().InsertHandle(loop_innermost,1);
      /*QY: need to call GenXformRoot for each innerNest before nonperfect*/ 
      for (const CompSliceDepGraphNode::NestInfo* p = nestInfo.InnerNest(); 
           p != 0 ;  p = p->InnerNest()) {
         LoopTreeNode* curTop = p->GenXformRoot(innerTop);
         assert(curTop != 0);
         if (p == nonperfect) { innerTop = curTop; break; }
      }
      const CompSliceNest* innerNest=nonperfect->GetNest();
      assert(innerNest!=0);
      for (int j = innerNest->NumberOfEntries()-1; j >= 0; --j) 
      {
         innerTop = op.Transform( comp, innerNest->Entry(j),innerTop);
      }
      /*QY: inner loops that are not involved in outer slice fusion*/
      FuseLoopInfo innerloops;
      CompSlice::ConstLoopIterator p_inner2 = innerNest->Entry(innerNest->NumberOfEntries()-1)->GetConstLoopIterator();
      LoopTreeNode *inner2 = p_inner2.Current();
      for ( ; !p_inner2.ReachEnd(); ++p_inner2) 
       { 
          innerloops.loops.push_back(FuseLoopInfo::Entry(p_inner2.Current(),p_inner2.CurrentInfo().minalign));
       }
      tuning->BlockLoops(top, inner2, this, &innerloops);
  }
  return top;
}
Ejemplo n.º 3
0
LoopTreeNode* ParameterizeBlocking::
ApplyBlocking( const CompSliceDepGraphNode::FullNestInfo& nestInfo, 
              LoopTreeDepComp& comp, DependenceHoisting &op, 
                                      LoopTreeNode *&top)
{
  const CompSliceNest* pslices = nestInfo.GetNest();
  assert(pslices != 0);
  const CompSliceNest& slices = *pslices;
  AstInterface& fa = LoopTransformInterface::getAstInterface();
  int size = slices.NumberOfEntries();
  assert (size > 0);

  AutoTuningInterface* tuning = LoopTransformInterface::getAutoTuningInterface();
  assert(tuning != 0);

  for (int j=size-1;j >= 0; --j)  //QY: arrange the desired loop nesting order
     top = op.Transform( comp, slices[j], top);

  /*QY: check for non-perfectness which can be solved via loop distribution */
  const CompSliceDepGraphNode::NestInfo* inner = DoNonPerfectBlocking(nestInfo);
  if (inner == 0 && size == 1) { /*QY: all loops are perfectly nested*/ return top;}

  const CompSlice* slice_innermost = slices[size-1], *slice_top=slices[0];
  CompSlice::ConstLoopIterator p_inner 
                     = slice_innermost->GetConstLoopIterator();
  LoopTreeNode* loop_innermost=*p_inner;
  if (size > 1)
    while (slice_top->QuerySliceLoop(loop_innermost))
     { ++p_inner; assert(!p_inner.ReachEnd()); loop_innermost = *p_inner; }

  /*QY: this is for triangular non-perfect nests where a single loop is shared by multiple slices; loops cannot be distributed in spite of non-perfectness */
  std::vector<FuseLoopInfo> non_perfects;
  if (size > 1) {
    for (unsigned i = 1; i < size; ++i) {
       const CompSlice* slice_inner=slices[i];
       const CompSlice* slice_pivot = slices[i-1];
       CompSlice::ConstLoopIterator p_pivot=slice_pivot->GetConstLoopIterator();
       if  (slice_inner->SliceCommonLoop(slice_pivot)) { 
         /*QY: outer loops are not perfectly nested*/
         FuseLoopInfo loops_cur(p_pivot.Current());
         for (LoopTreeTraverseSelectLoop p_inner(top);
         /*for (CompSlice::ConstLoopIterator p_inner=slice_inner->GetConstLoopIterator(); QY: the ordering of loops are not enforced in CompSlice*/
              !p_inner.ReachEnd(); ++p_inner) {
             LoopTreeNode* cur = p_inner.Current();
             if (!slice_inner->QuerySliceLoop(cur) || slice_pivot->QuerySliceLoop(cur)) continue;
             CompSlice::SliceLoopInfo curinfo = slice_inner->QuerySliceLoopInfo(cur);
             loops_cur.loops.push_back(FuseLoopInfo::Entry(cur,curinfo.minalign-p_pivot.CurrentInfo().minalign)); 
         }
         assert(loops_cur.loops.size() > 0);
         non_perfects.push_back(loops_cur);
       }
     }
  }
#ifdef DEBUG
  std::cerr << "Number of non-perfect entries: " << non_perfects.size() << "\n";
#endif


  if (inner == 0) { /*QY: no inner loops that can be blocked together*/
     if (non_perfects.size() > 0) 
         tuning->BlockLoops(top, loop_innermost, this, &non_perfects);
     else tuning->BlockLoops(top, loop_innermost, this);
  }
  else {
      LoopTreeNode* innerTop = LoopTreeTransform().InsertHandle(loop_innermost,1);
      /*QY: need to call GenXformRoot for each innerNest before inner*/ 
      for (const CompSliceDepGraphNode::NestInfo* p = nestInfo.InnerNest(); 
           p != 0 ;  p = p->InnerNest()) {
         LoopTreeNode* curTop = p->GenXformRoot(innerTop);
         assert(curTop != 0);
         if (p == inner) { innerTop = curTop; break; }
      }
      const CompSliceNest* innerNest=inner->GetNest();
      assert(innerNest!=0);
      for (int j = innerNest->NumberOfEntries()-1; j >= 0; --j) 
      {
         innerTop = op.Transform( comp, innerNest->Entry(j),innerTop);
      }
      /*QY: inner loops that are not involved in outer slice fusion*/
      LoopTreeNode* inner2=0;
      for (int i = 0; i < innerNest->NumberOfEntries(); ++i) {
         CompSlice::ConstLoopIterator p_inner2 = innerNest->Entry(i)->GetConstLoopIterator();
         inner2 = p_inner2.Current();
         FuseLoopInfo cur;
         for ( ; !p_inner2.ReachEnd(); ++p_inner2) 
          { 
             cur.loops.push_back(FuseLoopInfo::Entry(p_inner2.Current(),p_inner2.CurrentInfo().minalign));
          }
          non_perfects.push_back(cur); 
      }
      tuning->BlockLoops(top, inner2, this, &non_perfects);
  }
  return top;
}
Ejemplo n.º 4
0
bool LoopUnrolling::operator() ( AstInterface& fa, const AstNodePtr& s, AstNodePtr& r)
{
   bool isLoop = false;
   if (enclosingloop == s || (enclosingloop == AST_NULL && (isLoop = fa.IsLoop(s)))) {
       for (enclosingloop = fa.GetParent(s); 
            enclosingloop != AST_NULL && !fa.IsLoop(enclosingloop); 
            enclosingloop = fa.GetParent(enclosingloop));
       if (!isLoop)
          return false;
   }

   AstNodePtr body;
   SymbolicVal stepval, ubval, lbval;
   SymbolicVar ivar;
   if (!SymbolicValGenerator::IsFortranLoop(fa, s, &ivar, &lbval, &ubval, &stepval, &body)) 
      return false; 
    
   if (opt & POET_TUNING) {
     AutoTuningInterface* tune = LoopTransformInterface::getAutoTuningInterface();
     if (tune == 0) {
        std::cerr << "ERROR: AutoTuning Interface not defined!\n";
        assert(0);
     }
     tune->UnrollLoop(fa,s, unrollsize);
   }
   else {
          AstNodePtr r = s;
          SymbolicVal nstepval = stepval * unrollsize;
          SymbolicVal nubval = ubval;

          bool hasleft = true, negativeStep = (stepval < 0);
          std::vector<AstNodePtr> bodylist;
          AstNodePtr leftbody, lefthead;

          int stepnum=0, loopnum = 0;
          SymbolicVal loopval = ubval - lbval + 1;
          if (stepval.isConstInt(stepnum) && loopval.isConstInt(loopnum) 
               && !(loopnum % stepnum)) {
             hasleft = false; 
          }
          else {
             nubval = ubval - SymbolicVal(unrollsize - 1);
             if (opt & COND_LEFTOVER) {
                 leftbody = fa.CreateBlock();
                 lefthead = leftbody;
             }
             else {
                 leftbody = fa.CopyAstTree(body);
                 lefthead = fa.CreateLoop( ivar.CodeGen(fa), 
                                           AstNodePtr(), 
                                           ubval.CodeGen(fa), 
                                           stepval.CodeGen(fa), leftbody,
                                           negativeStep);
             }
          }
          fa.RemoveStmt(body);
          AstNodePtr s1 = fa.CreateLoop(ivar.CodeGen(fa), lbval.CodeGen(fa),
                                          nubval.CodeGen(fa), 
                                          nstepval.CodeGen(fa), body,
                                           negativeStep);
          fa.ReplaceAst( s,s1);
          r = s1; 

          AstNodePtr origbody = fa.CopyAstTree(body);
          std::string nvarname = "";
          SymbolicVal nvar;
          if (opt & USE_NEWVAR) {
               nvarname = fa.NewVar(fa.GetType("int"),"",true,body, ivar.CodeGen(fa)); 
               nvar = SymbolicVar(nvarname,body);
          }
          bodylist.push_back(body);
          for (int i = 1; i < unrollsize; ++i) {
              AstNodePtr bodycopy = fa.CopyAstTree(origbody);
              if (opt & USE_NEWVAR) {
                 AstNodePtr nvarassign = 
                     fa.CreateAssignment(nvar.CodeGen(fa), (nvar+1).CodeGen(fa));
                 fa.BlockAppendStmt( body, nvarassign);
                 AstTreeReplaceVar repl(ivar, nvar);
                 repl( fa, bodycopy);
              }
              else {
                 AstTreeReplaceVar repl(ivar, ivar+i);
                 repl( fa, bodycopy);
              }
              fa.BlockAppendStmt( body, bodycopy);
              bodylist.push_back(bodycopy);
              if (hasleft && (opt & COND_LEFTOVER)) {
                 AstNodePtr cond = 
                      fa.CreateBinaryOP( AstInterface::BOP_LE, ivar.CodeGen(fa), (ubval-(i-1)).CodeGen(fa));
                 AstNodePtr body1 = fa.CopyAstTree(bodylist[i-1]);
                 AstNodePtr ifstmt =  fa.CreateIf( cond, body1);
                 fa.BlockAppendStmt( leftbody, ifstmt);
                 leftbody = body1;
              }
          }
          if (hasleft) {
              fa.InsertStmt( r, lefthead, false, true);
          }
          r  = s;
          return true;
   }
   return false;
}