Ejemplo n.º 1
0
        void init(const Wells* wells, const State& state, const PrevState& prevState, const PhaseUsage& pu)
        {
            // call init on base class
            BaseType :: init(wells, state, prevState);

            // if there are no well, do nothing in init
            if (wells == 0) {
                return;
            }

            const int nw = wells->number_of_wells;
            if( nw == 0 ) return ;

            const int np = wells->number_of_phases;

            well_solutions_.clear();
            well_solutions_.resize(nw * np, 0.0);
            std::vector<double> g = {1.0,1.0,0.01};
            for (int w = 0; w < nw; ++w) {
                WellControls* wc = wells->ctrls[w];

                // The current control in the well state overrides
                // the current control set in the Wells struct, which
                // is instead treated as a default.
                const int current = currentControls()[w];
                well_controls_set_current( wc, current);
                const WellType& well_type = wells->type[w];

                switch (well_controls_iget_type(wc, current)) {
                case THP: // Intentional fall-through
                case BHP:
                {
                    if (well_type == INJECTOR) {
                        for (int p = 0; p < np; ++p)  {
                            well_solutions_[w] += wellRates()[np*w + p] * wells->comp_frac[np*w + p];
                        }
                    } else {
                        for (int p = 0; p < np; ++p) {
                            well_solutions_[w] += g[p] * wellRates()[np*w + p];
                        }
                    }
                }
                    break;


                case RESERVOIR_RATE: // Intentional fall-through
                case SURFACE_RATE:
                {
                    wellSolutions()[w] = bhp()[w];

                }
                    break;
                }

                double total_rates = 0.0;
                for (int p = 0; p < np; ++p)  {
                    total_rates += g[p] * wellRates()[np*w + p];
                }

                const int waterpos = pu.phase_pos[Water];
                const int gaspos = pu.phase_pos[Gas];

                assert(np == 3 || (np == 2 && !pu.phase_used[Gas]));
                // assumes the gas fractions are stored after water fractions
                if(std::abs(total_rates) > 0) {
                    if( pu.phase_used[Water] ) {
                        wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + waterpos] / total_rates;
                    }
                    if( pu.phase_used[Gas] ) {
                        wellSolutions()[2*nw + w] = g[Gas] * wellRates()[np*w + gaspos] / total_rates ;
                    }
                } else {
                    if( pu.phase_used[Water] ) {
                        wellSolutions()[nw + w] = wells->comp_frac[np*w + waterpos];
                    }
                    if( pu.phase_used[Gas] ) {
                        wellSolutions()[2*nw + w] = wells->comp_frac[np*w + gaspos];
                    }
                }
            }


            // intialize wells that have been there before
            // order may change so the mapping is based on the well name
            if( ! prevState.wellMap().empty() )
            {
                typedef typename WellMapType :: const_iterator const_iterator;
                const_iterator end = prevState.wellMap().end();
                int nw_old = prevState.bhp().size();
                for (int w = 0; w < nw; ++w) {
                    std::string name( wells->name[ w ] );
                    const_iterator it = prevState.wellMap().find( name );
                    if( it != end )
                    {
                        const int oldIndex = (*it).second[ 0 ];
                        const int newIndex = w;

                        // wellSolutions
                        for( int i = 0;  i < np; ++i)
                        {
                            wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
                        }

                    }
                }
            }
        }
        /// Set wellSolutions() based on the base class members.
        void setWellSolutions(const PhaseUsage& pu)
        {
            // Set nw and np, or return if no wells.
            if (wells_.get() == nullptr) {
                return;
            }
            const int nw = wells_->number_of_wells;
            if (nw == 0) {
                return;
            }
            const int np = wells_->number_of_phases;

            well_solutions_.clear();
            well_solutions_.resize(nw * np, 0.0);
            std::vector<double> g = {1.0,1.0,0.01};
            for (int w = 0; w < nw; ++w) {
                WellControls* wc = wells_->ctrls[w];

                // The current control in the well state overrides
                // the current control set in the Wells struct, which
                // is instead treated as a default.
                const int current = currentControls()[w];
                well_controls_set_current( wc, current);
                const WellType& well_type = wells_->type[w];

                switch (well_controls_iget_type(wc, current)) {
                case THP: // Intentional fall-through
                case BHP:
                    if (well_type == INJECTOR) {
                        for (int p = 0; p < np; ++p)  {
                            well_solutions_[w] += wellRates()[np*w + p] * wells_->comp_frac[np*w + p];
                        }
                    } else {
                        for (int p = 0; p < np; ++p) {
                            well_solutions_[w] += g[p] * wellRates()[np*w + p];
                        }
                    }
                    break;
                case RESERVOIR_RATE: // Intentional fall-through
                case SURFACE_RATE:
                    wellSolutions()[w] = bhp()[w];
                    break;
                }

                double total_rates = 0.0;
                for (int p = 0; p < np; ++p)  {
                    total_rates += g[p] * wellRates()[np*w + p];
                }

                const int waterpos = pu.phase_pos[Water];
                const int gaspos = pu.phase_pos[Gas];

                assert(np == 3 || (np == 2 && !pu.phase_used[Gas]));
                // assumes the gas fractions are stored after water fractions
                if(std::abs(total_rates) > 0) {
                    if( pu.phase_used[Water] ) {
                        wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + waterpos] / total_rates;
                    }
                    if( pu.phase_used[Gas] ) {
                        wellSolutions()[2*nw + w] = g[Gas] * wellRates()[np*w + gaspos] / total_rates ;
                    }
                } else {
                    if( pu.phase_used[Water] ) {
                        wellSolutions()[nw + w] = wells_->comp_frac[np*w + waterpos];
                    }
                    if( pu.phase_used[Gas] ) {
                        wellSolutions()[2*nw + w] = wells_->comp_frac[np*w + gaspos];
                    }
                }
            }
        }