Expression* CombineSummationPass::RemoveValue(Expression* original,
					      VariableSymbol* v)
{
  assert(original != NULL) ;
  assert(v != NULL) ;

  BinaryExpression* binExp = dynamic_cast<BinaryExpression*>(original) ;
  if (binExp == NULL)
  {
    return NULL ;
  }

  Expression* leftSide = binExp->get_source1() ;
  Expression* rightSide = binExp->get_source2() ;

  // Check to see if we are the correct format
  LoadVariableExpression* leftVar = 
    dynamic_cast<LoadVariableExpression*>(leftSide) ;
  LoadVariableExpression* rightVar = 
    dynamic_cast<LoadVariableExpression*>(rightSide) ;
  if (leftVar != NULL && leftVar->get_source() == v)
  {
    binExp->set_source2(NULL) ;
    return rightSide ;
  }
  if (rightVar != NULL && rightVar->get_source() == v)
  {
    binExp->set_source1(NULL) ;
    return leftSide ;
  }
  // Recursively go through and find the value
  Expression* leftSideReplacement = RemoveValue(leftSide, v) ;
  if (leftSideReplacement != NULL)
  {
    binExp->set_source2(leftSideReplacement) ;
    return binExp ;
  }
  Expression* rightSideReplacement = RemoveValue(rightSide, v) ;
  if (rightSideReplacement != NULL)
  {
    binExp->set_source2(rightSideReplacement) ;
    return binExp ;
  }
  return NULL ;
}
Ejemplo n.º 2
0
static
String handle_static_binary_expression(CPrintStyleModule *state,
				       const SuifObject *obj)
{
  BinaryExpression *expr = to<BinaryExpression>(obj);
  LString opc = expr->get_opcode();
  String src_string1 = state->print_to_string(expr->get_source1());
  String src_string2 = state->print_to_string(expr->get_source2());
  // Should we special case: add, mod, etc?
  for (size_t i = 0; i < NUM_BINARY_OPER; i++ ) {
    if (*(binary_oper_table[i]._oper) == opc) {
      const char *op_char = binary_oper_table[i]._op_char;
      return(String("(") + src_string1 + op_char + src_string2 + ")");
    }
  }
      
  return(String(opc) + "(" + src_string1 + "," + src_string2 + ")");
}
bool CombineSummationPass::IsSummation(Expression* e, VariableSymbol* v)
{
  assert(e != NULL) ;
  assert(v != NULL) ;

  BinaryExpression* binExp = dynamic_cast<BinaryExpression*>(e) ;
  if (binExp == NULL)
  {
    return false ;
  }

  if (binExp->get_opcode() != LString("add"))
  {
    return false ;
  }

  Expression* leftSide = binExp->get_source1() ;
  Expression* rightSide = binExp->get_source2() ;

  LoadVariableExpression* leftLoadVar = 
    dynamic_cast<LoadVariableExpression*>(leftSide) ;
  LoadVariableExpression* rightLoadVar = 
    dynamic_cast<LoadVariableExpression*>(rightSide) ;

  if (leftLoadVar != NULL && leftLoadVar->get_source() == v)
  {
    return true ;
  }
  
  if (rightLoadVar != NULL && rightLoadVar->get_source() == v)
  {
    return true ;
  }

  return IsSummation(leftSide, v) || IsSummation(rightSide, v) ;
}
Ejemplo n.º 4
0
/* Another helper function for print_var_def().   This function
 * expects that it will need to add a return before printing
 * anything, and it expects that you will add a return after
 * it is done.
 * It returns the number of bits of initialization data that it
 * generates.
 */
int
PrinterX86::process_value_block(ValueBlock *vblk)
{
    int bits_filled = 0;

    if (is_a<ExpressionValueBlock>(vblk)) {
	// An ExpressionValueBlock either holds a constant value or a
	// simple expression representing either an address relative to
	// a symbol or a pointer generated by conversion from an integer
	// constant (presumably zero).

	ExpressionValueBlock *evb = (ExpressionValueBlock*)vblk;
	Expression *exp = evb->get_expression();

	if (is_a<IntConstant>(exp)) {
	    IntConstant *ic = (IntConstant*)exp;
	    bits_filled = print_size_directive(ic->get_result_type());
	    fprint(out, ic->get_value());
	    cur_opnd_cnt++;
	}
	else if (is_a<FloatConstant>(exp)) {
	    FloatConstant *fc = (FloatConstant*)exp;
	    bits_filled = print_size_directive(fc->get_result_type());
	    fputs(fc->get_value().c_str(), out);
	    cur_opnd_cnt++;
	}
	else {
	    // We use non-constant ExpressionValueBlocks to hold a symbolic
	    // address, optionally with an offset, or a pointer initializer
	    // consisting of a `convert' expression.
	    // A SymbolAddressExpression represents a plain symbolic
	    // address.
	    // An address obtained by conversion from another type is a
	    // unary expression with opcode "convert".
	    // A symbol+delta is represented by an add whose first operand
	    // is the load-address and whose second is an IntConstant
	    // expression.
	    // No other kind of "expression" is recognized.

	    if (is_a<UnaryExpression>(exp)) {
		UnaryExpression *ux = (UnaryExpression*)exp;
		claim(ux->get_opcode() == k_convert,
		      "unexpected unary expression in expression block");
		DataType *tt = ux->get_result_type();	// target type
		claim(is_kind_of<PointerType>(tt),
		      "unexpected target type when converting initializer");
		exp = ux->get_source();
		if (is_a<IntConstant>(exp)) {
		    IntConstant *ic = (IntConstant*)exp;
		    bits_filled = print_size_directive(tt);
		    fprint(out, ic->get_value());
		    cur_opnd_cnt++;
		    return bits_filled;
		}
		// Fall through to handle symbol-relative address, on the
		// assumption that the front end validated the conversion.
	    }
	    SymbolAddressExpression *sax;
	    long delta;
	    if (is_a<BinaryExpression>(exp)) {
		BinaryExpression *bx = (BinaryExpression*)exp;
		claim(bx->get_opcode() == k_add,
		      "unexpected binary expression in expression block");
		Expression *s1 = bx->get_source1();
		Expression *s2 = bx->get_source2();
		sax = to<SymbolAddressExpression>(s1);
		delta = to<IntConstant>(s2)->get_value().c_long();
	    } else if (is_a<SymbolAddressExpression>(exp)) {
		sax = (SymbolAddressExpression*)exp;
		delta = 0;
	    } else {
		claim(false, "unexpected kind of expression block");
	    }
	    Sym *sym = sax->get_addressed_symbol();

	    // symbol initialization
	    bits_filled = print_size_directive(type_ptr);
	    print_sym(sym);
	    if (delta != 0) {
		fprintf(out, "%+ld", delta);
	    }
	    // always force the start of a new data directive
	    cur_opcode = opcode_null;
	    cur_opnd_cnt = 0;
	}
    }

    else if (is_a<MultiValueBlock>(vblk)) {
	MultiValueBlock *mvb = (MultiValueBlock*)vblk;
	for (int i = 0; i < mvb->get_sub_block_count(); i++ ) {
	    int offset = mvb->get_sub_block(i).first.c_int();
	    claim(offset >= bits_filled);

	    if (bits_filled < offset)		// pad to offset
		bits_filled += print_bit_filler(offset - bits_filled);
	    bits_filled += process_value_block(mvb->get_sub_block(i).second);
	}
	int all_bits = get_bit_size(mvb->get_type());
	if (all_bits > bits_filled)
	    bits_filled += print_bit_filler(all_bits - bits_filled);

    } else if (is_a<RepeatValueBlock>(vblk)) {
	// Simplifying assumption: We now expect the front-end
	// to remove initialization code of large arrays of zeros.
	RepeatValueBlock *rvb = (RepeatValueBlock*)vblk;
	int repeat_cnt = rvb->get_num_repetitions();

	if (repeat_cnt > 1) {		// insert .repeat pseudo-op
	    fprintf(out, "\n\t%s\t%d", x86_opcode_names[REPEAT], repeat_cnt);
	    cur_opcode = opcode_null;	// force new data directive
	}
	// actual data directive
	bits_filled = repeat_cnt * process_value_block(rvb->get_sub_block());

	if (repeat_cnt > 1) {		// insert .endr pseudo-op
	    fprintf(out, "\n\t%s", x86_opcode_names[ENDR]);
	    cur_opcode = opcode_null;	// force new data directive
	}

    } else if (is_a<UndefinedValueBlock>(vblk)) {
	bits_filled += print_bit_filler(get_bit_size(vblk->get_type()));

    } else {
	claim(false, "unexpected kind of ValueBlock");
    }
    return bits_filled;
}