// Quick test of functions int main() { Blip_Buffer buf; Blip_Synth<blip_low_quality,20> synth; // Setup buffer buf.clock_rate( 44100 ); if ( buf.set_sample_rate( 44100 ) ) return 1; synth.output( &buf ); synth.volume( 0.5 ); // Add wave that goes from 0 to 50% to -50% synth.update( 4, 10 ); synth.update( 8, -10 ); buf.end_frame( 30 ); // Read samples as this type typedef float sample_t; // floating-point //typedef unsigned short sample_t; // unsigned 16-bit //typedef unsigned char sample_t; // unsigned 8-bit // Read and display samples const int max_samples = 30; sample_t samples [max_samples]; int count = read_samples( buf, samples, max_samples ); for ( int i = buf.output_latency() + 1; i < count; i++ ) printf( "%.2f,", (double) samples [i] ); printf( "\n" ); return 0; }
int main() { long sample_rate = 44100; // Sample rate sets how many samples are generated per second if ( buf.set_sample_rate( sample_rate ) ) return 1; // out of memory buf.bass_freq( 0 ); // keep waveforms perfectly flat // Setup synth synth.output( &buf ); synth.volume( 0.50 ); while ( !button_pressed() ) { // Mouse sets clock rate, higher to the right. The higher the clock // rate, the more packed the waveform becomes. long rate = sample_rate * (mouse_x() * 10 + 1); // Clock rate sets how many time units there are per second buf.clock_rate( rate ); // Generate random waveform, with each transition spaced 50 clocks apart. srand( 1 ); buf.clear(); for ( int time = 0; time < 500; time += 50 ) synth.update( time, rand() % 20 - 10 ); buf.end_frame( 600 ); show_buffer_unscaled( buf ); } return 0; }
int main() { // Setup left buffer and wave int left_time = 0; int left_amp = 0; setup_demo( left, left_synth ); left.clock_rate( left.sample_rate() * 100 ); // Setup right buffer and wave int right_time = 0; int right_amp = 0; setup_demo( right, right_synth ); right.clock_rate( right.sample_rate() * 100 ); while ( !button_pressed() ) { blip_time_t length = 100000; // mouse sets frequency of left wave int period = 1000 + 6 * mouse_x(); // Add saw wave to left buffer do { left_synth.update( left_time, left_amp = (left_amp + 1) % 10 ); } while ( (left_time += period) < length ); left.end_frame( length ); left_time -= length; // Add saw wave of slightly lower pitch to right buffer do { right_synth.update( right_time, right_amp = (right_amp + 1) % 10 ); } while ( (right_time += 1000) < length ); right.end_frame( length ); right_time -= length; // buffer to read samples into int const buf_size = 2048; static blip_sample_t samples [buf_size]; // Read left channel into even samples, right channel into odd samples: // LRLRLRLRLR... long count = left.read_samples( samples, buf_size / 2, 1 ); right.read_samples( samples + 1, count, 1 ); play_stereo_samples( samples, count * 2 ); } return 0; }
int main() { setup_demo( buf, synth ); // generate 1000 clocks of square wave int length = 1000; int amplitude = 1; for ( int time = 0; time < length; time += 10 ) { synth.update( time, amplitude ); amplitude = -amplitude; } // find out how many samples of sine wave to generate int count = buf.count_samples( length ); blip_sample_t temp [4096]; for ( int i = 0; i < count; i++ ) { double y = sin( i * (3.14159 / 100) ); temp [i] = y * 0.30 * blip_sample_max; // convert to blip_sample_t's range } // mix sine wave's samples into Blip_Buffer buf.mix_samples( temp, count ); // end frame and show samples buf.end_frame( length ); show_buffer( buf ); wait_button(); return 0; }
int main() { while ( !button_pressed() ) { setup_demo( buf, synth ); // base frequency and amplitude on mouse position int period = mouse_x() * 100 + 10; int amplitude = mouse_y() * 9 + 1; // generate alternating signs of square wave, spaced by period int time = 0; while ( time < 1000 ) { amplitude = -amplitude; synth.update( time, amplitude ); time += period; } buf.end_frame( 1000 ); show_buffer( buf ); } return 0; }
static void RedoVolume(void) { apu.output(zebuf.center(), zebuf.left(), zebuf.right()); //apu.volume(0.15); apu.volume(0.25); FMSynth.volume(1.00); }
static void gba_pcm_apply_control( int pcm_idx, int idx ) { int ch = 0; pcm[pcm_idx].pcm.shift = ~ioMem [SGCNT0_H] >> (2 + idx) & 1; if ( (ioMem [NR52] & 0x80) ) ch = ioMem [SGCNT0_H+1] >> (idx << 2) & 3; Blip_Buffer* out = 0; switch ( ch ) { case 1: out = &stereo_buffer->bufs_buffer[1]; break; case 2: out = &stereo_buffer->bufs_buffer[0]; break; case 3: out = &stereo_buffer->bufs_buffer[2]; break; } if ( pcm[pcm_idx].pcm.output != out ) { if ( pcm[pcm_idx].pcm.output ) pcm_synth.offset( SOUND_CLOCK_TICKS - soundTicks, -pcm[pcm_idx].pcm.last_amp, pcm[pcm_idx].pcm.output ); pcm[pcm_idx].pcm.last_amp = 0; pcm[pcm_idx].pcm.output = out; } }
// Callback called when Alure needs more data to ffed a buffer ALuint StreamCB (void* userdata, ALubyte *data, ALuint bytes) { double period = SR / (2* freq); // How many samples need to do a half cycle. size_t lenght = bytes / 2; // Lenght in "samples" unsigned const amplitude = 9; while (offset < lenght) { sign = -sign; synth.update(offset, amplitude * sign); offset += period; } blipbuf.end_frame(lenght); offset -= lenght; // adjust time to new frame return 2* blipbuf.read_samples ((blip_sample_t*) data, lenght ); // return bytes! }
int main () { if (!alureInitDevice(NULL, NULL)) { std::fprintf(stderr, "Failed to open OpenAL device: %s\n", alureGetErrorString()); return 1; } alGenSources(1, &src); if (alGetError() != AL_NO_ERROR) { std::fprintf(stderr, "Failed to create OpenAL source!\n"); alureShutdownDevice(); return 1; } // Seeting Blip Buffer synth.treble_eq( -18.0f ); synth.volume (0.80); synth.output (&blipbuf); // Init Blip Buffer with a buffer of 250ms (second paramter is time in ms) if ( blipbuf.set_sample_rate( SR, 1000 / 4 ) ) { std::fprintf(stderr, "Failed to create Blip Buffer! Our of Memory\n"); alureShutdownDevice(); return 1; } blipbuf.clock_rate( blipbuf.sample_rate() ); blipbuf.bass_freq(300); // Equalization like a TV speaker stream = alureCreateStreamFromCallback (StreamCB, nullptr, AL_FORMAT_MONO16, SR, SR/2, 0, nullptr); if(!stream) { std::fprintf(stderr, "Error creating stream! %s\n", alureGetErrorString()); alDeleteSources(1, &src); alureShutdownDevice(); return 1; } if (!alurePlaySourceStream(src, stream, 4, 0, eos_callback, NULL)) { std::fprintf(stderr, "Failed to play stream: %s\n", alureGetErrorString()); isdone = 1; } alureUpdateInterval(0.005f); // Should be a independint thread playing the stream while(!isdone) { freq -= 1; if (freq < 1) { freq = 600; } alureSleep(0.02f); } alureStopSource(src, AL_FALSE); alDeleteSources(1, &src); alureDestroyStream(stream, 0, NULL); alureShutdownDevice(); return 0; }