Ejemplo n.º 1
0
static Error ReduceGlobalInitializers(BugDriver &BD,
                                      bool (*TestFn)(const BugDriver &,
                                                     Module *)) {
  if (BD.getProgram()->global_begin() != BD.getProgram()->global_end()) {
    // Now try to reduce the number of global variable initializers in the
    // module to something small.
    Module *M = CloneModule(BD.getProgram()).release();
    bool DeletedInit = false;

    for (Module::global_iterator I = M->global_begin(), E = M->global_end();
         I != E; ++I)
      if (I->hasInitializer()) {
        DeleteGlobalInitializer(&*I);
        I->setLinkage(GlobalValue::ExternalLinkage);
        I->setComdat(nullptr);
        DeletedInit = true;
      }

    if (!DeletedInit) {
      delete M; // No change made...
    } else {
      // See if the program still causes a crash...
      outs() << "\nChecking to see if we can delete global inits: ";

      if (TestFn(BD, M)) { // Still crashes?
        BD.setNewProgram(M);
        outs() << "\n*** Able to remove all global initializers!\n";
      } else { // No longer crashes?
        outs() << "  - Removing all global inits hides problem!\n";
        delete M;

        std::vector<GlobalVariable *> GVs;

        for (Module::global_iterator I = BD.getProgram()->global_begin(),
                                     E = BD.getProgram()->global_end();
             I != E; ++I)
          if (I->hasInitializer())
            GVs.push_back(&*I);

        if (GVs.size() > 1 && !BugpointIsInterrupted) {
          outs() << "\n*** Attempting to reduce the number of global "
                 << "variables in the testcase\n";

          unsigned OldSize = GVs.size();
          Expected<bool> Result =
              ReduceCrashingGlobalVariables(BD, TestFn).reduceList(GVs);
          if (Error E = Result.takeError())
            return E;

          if (GVs.size() < OldSize)
            BD.EmitProgressBitcode(BD.getProgram(), "reduced-global-variables");
        }
      }
    }
  }
  return Error::success();
}
Ejemplo n.º 2
0
/// DebugACrash - Given a predicate that determines whether a component crashes
/// on a program, try to destructively reduce the program while still keeping
/// the predicate true.
static bool DebugACrash(BugDriver &BD,
                        bool (*TestFn)(const BugDriver &, Module *),
                        std::string &Error) {
  // See if we can get away with nuking some of the global variable initializers
  // in the program...
  if (!NoGlobalRM &&
      BD.getProgram()->global_begin() != BD.getProgram()->global_end()) {
    // Now try to reduce the number of global variable initializers in the
    // module to something small.
    Module *M = CloneModule(BD.getProgram());
    bool DeletedInit = false;

    for (Module::global_iterator I = M->global_begin(), E = M->global_end();
         I != E; ++I)
      if (I->hasInitializer()) {
        I->setInitializer(nullptr);
        I->setLinkage(GlobalValue::ExternalLinkage);
        DeletedInit = true;
      }

    if (!DeletedInit) {
      delete M;  // No change made...
    } else {
      // See if the program still causes a crash...
      outs() << "\nChecking to see if we can delete global inits: ";

      if (TestFn(BD, M)) {      // Still crashes?
        BD.setNewProgram(M);
        outs() << "\n*** Able to remove all global initializers!\n";
      } else {                  // No longer crashes?
        outs() << "  - Removing all global inits hides problem!\n";
        delete M;

        std::vector<GlobalVariable*> GVs;

        for (Module::global_iterator I = BD.getProgram()->global_begin(),
               E = BD.getProgram()->global_end(); I != E; ++I)
          if (I->hasInitializer())
            GVs.push_back(&*I);

        if (GVs.size() > 1 && !BugpointIsInterrupted) {
          outs() << "\n*** Attempting to reduce the number of global "
                    << "variables in the testcase\n";

          unsigned OldSize = GVs.size();
          ReduceCrashingGlobalVariables(BD, TestFn).reduceList(GVs, Error);
          if (!Error.empty())
            return true;

          if (GVs.size() < OldSize)
            BD.EmitProgressBitcode(BD.getProgram(), "reduced-global-variables");
        }
      }
    }
  }

  // Now try to reduce the number of functions in the module to something small.
  std::vector<Function*> Functions;
  for (Function &F : *BD.getProgram())
    if (!F.isDeclaration())
      Functions.push_back(&F);

  if (Functions.size() > 1 && !BugpointIsInterrupted) {
    outs() << "\n*** Attempting to reduce the number of functions "
      "in the testcase\n";

    unsigned OldSize = Functions.size();
    ReduceCrashingFunctions(BD, TestFn).reduceList(Functions, Error);

    if (Functions.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-function");
  }

  // Attempt to delete entire basic blocks at a time to speed up
  // convergence... this actually works by setting the terminator of the blocks
  // to a return instruction then running simplifycfg, which can potentially
  // shrinks the code dramatically quickly
  //
  if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
    std::vector<const BasicBlock*> Blocks;
    for (Function &F : *BD.getProgram())
      for (BasicBlock &BB : F)
        Blocks.push_back(&BB);
    unsigned OldSize = Blocks.size();
    ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks, Error);
    if (Blocks.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-blocks");
  }

  // Attempt to delete instructions using bisection. This should help out nasty
  // cases with large basic blocks where the problem is at one end.
  if (!BugpointIsInterrupted) {
    std::vector<const Instruction*> Insts;
    for (const Function &F : *BD.getProgram())
      for (const BasicBlock &BB : F)
        for (const Instruction &I : BB)
          if (!isa<TerminatorInst>(&I))
            Insts.push_back(&I);

    ReduceCrashingInstructions(BD, TestFn).reduceList(Insts, Error);
  }

  // FIXME: This should use the list reducer to converge faster by deleting
  // larger chunks of instructions at a time!
  unsigned Simplification = 2;
  do {
    if (BugpointIsInterrupted) break;
    --Simplification;
    outs() << "\n*** Attempting to reduce testcase by deleting instruc"
           << "tions: Simplification Level #" << Simplification << '\n';

    // Now that we have deleted the functions that are unnecessary for the
    // program, try to remove instructions that are not necessary to cause the
    // crash.  To do this, we loop through all of the instructions in the
    // remaining functions, deleting them (replacing any values produced with
    // nulls), and then running ADCE and SimplifyCFG.  If the transformed input
    // still triggers failure, keep deleting until we cannot trigger failure
    // anymore.
    //
    unsigned InstructionsToSkipBeforeDeleting = 0;
  TryAgain:

    // Loop over all of the (non-terminator) instructions remaining in the
    // function, attempting to delete them.
    unsigned CurInstructionNum = 0;
    for (Module::const_iterator FI = BD.getProgram()->begin(),
           E = BD.getProgram()->end(); FI != E; ++FI)
      if (!FI->isDeclaration())
        for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E;
             ++BI)
          for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end();
               I != E; ++I, ++CurInstructionNum) {
            if (InstructionsToSkipBeforeDeleting) {
              --InstructionsToSkipBeforeDeleting;
            } else {
              if (BugpointIsInterrupted) goto ExitLoops;

              if (isa<LandingPadInst>(I))
                continue;

              outs() << "Checking instruction: " << *I;
              std::unique_ptr<Module> M =
                  BD.deleteInstructionFromProgram(&*I, Simplification);

              // Find out if the pass still crashes on this pass...
              if (TestFn(BD, M.get())) {
                // Yup, it does, we delete the old module, and continue trying
                // to reduce the testcase...
                BD.setNewProgram(M.release());
                InstructionsToSkipBeforeDeleting = CurInstructionNum;
                goto TryAgain;  // I wish I had a multi-level break here!
              }
            }
          }

    if (InstructionsToSkipBeforeDeleting) {
      InstructionsToSkipBeforeDeleting = 0;
      goto TryAgain;
    }

  } while (Simplification);
ExitLoops:

  // Try to clean up the testcase by running funcresolve and globaldce...
  if (!BugpointIsInterrupted) {
    outs() << "\n*** Attempting to perform final cleanups: ";
    Module *M = CloneModule(BD.getProgram());
    M = BD.performFinalCleanups(M, true).release();

    // Find out if the pass still crashes on the cleaned up program...
    if (TestFn(BD, M)) {
      BD.setNewProgram(M);     // Yup, it does, keep the reduced version...
    } else {
      delete M;
    }
  }

  BD.EmitProgressBitcode(BD.getProgram(), "reduced-simplified");

  return false;
}
Ejemplo n.º 3
0
static Error ReduceInsts(BugDriver &BD,
                        bool (*TestFn)(const BugDriver &, Module *)) {
  // Attempt to delete instructions using bisection. This should help out nasty
  // cases with large basic blocks where the problem is at one end.
  if (!BugpointIsInterrupted) {
    std::vector<const Instruction *> Insts;
    for (const Function &F : *BD.getProgram())
      for (const BasicBlock &BB : F)
        for (const Instruction &I : BB)
          if (!isa<TerminatorInst>(&I))
            Insts.push_back(&I);

    Expected<bool> Result =
        ReduceCrashingInstructions(BD, TestFn).reduceList(Insts);
    if (Error E = Result.takeError())
      return E;
  }

  unsigned Simplification = 2;
  do {
    if (BugpointIsInterrupted)
      // TODO: Should we distinguish this with an "interrupted error"?
      return Error::success();
    --Simplification;
    outs() << "\n*** Attempting to reduce testcase by deleting instruc"
           << "tions: Simplification Level #" << Simplification << '\n';

    // Now that we have deleted the functions that are unnecessary for the
    // program, try to remove instructions that are not necessary to cause the
    // crash.  To do this, we loop through all of the instructions in the
    // remaining functions, deleting them (replacing any values produced with
    // nulls), and then running ADCE and SimplifyCFG.  If the transformed input
    // still triggers failure, keep deleting until we cannot trigger failure
    // anymore.
    //
    unsigned InstructionsToSkipBeforeDeleting = 0;
  TryAgain:

    // Loop over all of the (non-terminator) instructions remaining in the
    // function, attempting to delete them.
    unsigned CurInstructionNum = 0;
    for (Module::const_iterator FI = BD.getProgram()->begin(),
                                E = BD.getProgram()->end();
         FI != E; ++FI)
      if (!FI->isDeclaration())
        for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E;
             ++BI)
          for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end();
               I != E; ++I, ++CurInstructionNum) {
            if (InstructionsToSkipBeforeDeleting) {
              --InstructionsToSkipBeforeDeleting;
            } else {
              if (BugpointIsInterrupted)
                // TODO: Should this be some kind of interrupted error?
                return Error::success();

              if (I->isEHPad() || I->getType()->isTokenTy())
                continue;

              outs() << "Checking instruction: " << *I;
              std::unique_ptr<Module> M =
                  BD.deleteInstructionFromProgram(&*I, Simplification);

              // Find out if the pass still crashes on this pass...
              if (TestFn(BD, M.get())) {
                // Yup, it does, we delete the old module, and continue trying
                // to reduce the testcase...
                BD.setNewProgram(M.release());
                InstructionsToSkipBeforeDeleting = CurInstructionNum;
                goto TryAgain; // I wish I had a multi-level break here!
              }
            }
          }

    if (InstructionsToSkipBeforeDeleting) {
      InstructionsToSkipBeforeDeleting = 0;
      goto TryAgain;
    }

  } while (Simplification);
  BD.EmitProgressBitcode(BD.getProgram(), "reduced-instructions");
  return Error::success();
}
Ejemplo n.º 4
0
/// DebugACrash - Given a predicate that determines whether a component crashes
/// on a program, try to destructively reduce the program while still keeping
/// the predicate true.
static Error DebugACrash(BugDriver &BD,
                         bool (*TestFn)(const BugDriver &, Module *)) {
  // See if we can get away with nuking some of the global variable initializers
  // in the program...
  if (!NoGlobalRM)
    if (Error E = ReduceGlobalInitializers(BD, TestFn))
      return E;

  // Now try to reduce the number of functions in the module to something small.
  std::vector<Function *> Functions;
  for (Function &F : *BD.getProgram())
    if (!F.isDeclaration())
      Functions.push_back(&F);

  if (Functions.size() > 1 && !BugpointIsInterrupted) {
    outs() << "\n*** Attempting to reduce the number of functions "
              "in the testcase\n";

    unsigned OldSize = Functions.size();
    Expected<bool> Result =
        ReduceCrashingFunctions(BD, TestFn).reduceList(Functions);
    if (Error E = Result.takeError())
      return E;

    if (Functions.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-function");
  }

  // Attempt to change conditional branches into unconditional branches to
  // eliminate blocks.
  if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
    std::vector<const BasicBlock *> Blocks;
    for (Function &F : *BD.getProgram())
      for (BasicBlock &BB : F)
        Blocks.push_back(&BB);
    unsigned OldSize = Blocks.size();
    Expected<bool> Result =
        ReduceCrashingConditionals(BD, TestFn, true).reduceList(Blocks);
    if (Error E = Result.takeError())
      return E;
    Result = ReduceCrashingConditionals(BD, TestFn, false).reduceList(Blocks);
    if (Error E = Result.takeError())
      return E;
    if (Blocks.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-conditionals");
  }

  // Attempt to delete entire basic blocks at a time to speed up
  // convergence... this actually works by setting the terminator of the blocks
  // to a return instruction then running simplifycfg, which can potentially
  // shrinks the code dramatically quickly
  //
  if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
    std::vector<const BasicBlock *> Blocks;
    for (Function &F : *BD.getProgram())
      for (BasicBlock &BB : F)
        Blocks.push_back(&BB);
    unsigned OldSize = Blocks.size();
    Expected<bool> Result = ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks);
    if (Error E = Result.takeError())
      return E;
    if (Blocks.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-blocks");
  }

  if (!DisableSimplifyCFG & !BugpointIsInterrupted) {
    std::vector<const BasicBlock *> Blocks;
    for (Function &F : *BD.getProgram())
      for (BasicBlock &BB : F)
        Blocks.push_back(&BB);
    unsigned OldSize = Blocks.size();
    Expected<bool> Result = ReduceSimplifyCFG(BD, TestFn).reduceList(Blocks);
    if (Error E = Result.takeError())
      return E;
    if (Blocks.size() < OldSize)
      BD.EmitProgressBitcode(BD.getProgram(), "reduced-simplifycfg");
  }

  // Attempt to delete instructions using bisection. This should help out nasty
  // cases with large basic blocks where the problem is at one end.
  if (!BugpointIsInterrupted)
    if (Error E = ReduceInsts(BD, TestFn))
      return E;

  // Attempt to strip debug info metadata.
  auto stripMetadata = [&](std::function<bool(Module &)> strip) {
    std::unique_ptr<Module> M = CloneModule(BD.getProgram());
    strip(*M);
    if (TestFn(BD, M.get()))
      BD.setNewProgram(M.release());
  };
  if (!NoStripDebugInfo && !BugpointIsInterrupted) {
    outs() << "\n*** Attempting to strip the debug info: ";
    stripMetadata(StripDebugInfo);
  }
  if (!NoStripDebugTypeInfo && !BugpointIsInterrupted) {
    outs() << "\n*** Attempting to strip the debug type info: ";
    stripMetadata(stripNonLineTableDebugInfo);
  }

  if (!NoNamedMDRM) {
    if (!BugpointIsInterrupted) {
      // Try to reduce the amount of global metadata (particularly debug info),
      // by dropping global named metadata that anchors them
      outs() << "\n*** Attempting to remove named metadata: ";
      std::vector<std::string> NamedMDNames;
      for (auto &NamedMD : BD.getProgram()->named_metadata())
        NamedMDNames.push_back(NamedMD.getName().str());
      Expected<bool> Result =
          ReduceCrashingNamedMD(BD, TestFn).reduceList(NamedMDNames);
      if (Error E = Result.takeError())
        return E;
    }

    if (!BugpointIsInterrupted) {
      // Now that we quickly dropped all the named metadata that doesn't
      // contribute to the crash, bisect the operands of the remaining ones
      std::vector<const MDNode *> NamedMDOps;
      for (auto &NamedMD : BD.getProgram()->named_metadata())
        for (auto op : NamedMD.operands())
          NamedMDOps.push_back(op);
      Expected<bool> Result =
          ReduceCrashingNamedMDOps(BD, TestFn).reduceList(NamedMDOps);
      if (Error E = Result.takeError())
        return E;
    }
    BD.EmitProgressBitcode(BD.getProgram(), "reduced-named-md");
  }

  // Try to clean up the testcase by running funcresolve and globaldce...
  if (!BugpointIsInterrupted) {
    outs() << "\n*** Attempting to perform final cleanups: ";
    Module *M = CloneModule(BD.getProgram()).release();
    M = BD.performFinalCleanups(M, true).release();

    // Find out if the pass still crashes on the cleaned up program...
    if (TestFn(BD, M)) {
      BD.setNewProgram(M); // Yup, it does, keep the reduced version...
    } else {
      delete M;
    }
  }

  BD.EmitProgressBitcode(BD.getProgram(), "reduced-simplified");

  return Error::success();
}
Ejemplo n.º 5
0
/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
/// extract as many basic blocks from the region as possible without obscuring
/// the bug.
///
static bool ExtractBlocks(BugDriver &BD,
                          bool (*TestFn)(BugDriver &, Module *, Module *,
                                         std::string &),
                          std::vector<Function*> &MiscompiledFunctions,
                          std::string &Error) {
  if (BugpointIsInterrupted) return false;
  
  std::vector<BasicBlock*> Blocks;
  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
           E = MiscompiledFunctions[i]->end(); I != E; ++I)
      Blocks.push_back(I);

  // Use the list reducer to identify blocks that can be extracted without
  // obscuring the bug.  The Blocks list will end up containing blocks that must
  // be retained from the original program.
  unsigned OldSize = Blocks.size();

  // Check to see if all blocks are extractible first.
  bool Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
                                  .TestFuncs(std::vector<BasicBlock*>(), Error);
  if (!Error.empty())
    return false;
  if (Ret) {
    Blocks.clear();
  } else {
    ReduceMiscompiledBlocks(BD, TestFn,
                            MiscompiledFunctions).reduceList(Blocks, Error);
    if (!Error.empty())
      return false;
    if (Blocks.size() == OldSize)
      return false;
  }

  DenseMap<const Value*, Value*> ValueMap;
  Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
                                                MiscompiledFunctions,
                                                ValueMap);
  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
  if (Extracted == 0) {
    // Weird, extraction should have worked.
    errs() << "Nondeterministic problem extracting blocks??\n";
    delete ProgClone;
    delete ToExtract;
    return false;
  }

  // Otherwise, block extraction succeeded.  Link the two program fragments back
  // together.
  delete ToExtract;

  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
       I != E; ++I)
    if (!I->isDeclaration())
      MisCompFunctions.push_back(std::make_pair(I->getName(),
                                                I->getFunctionType()));

  std::string ErrorMsg;
  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
    errs() << BD.getToolName() << ": Error linking modules together:"
           << ErrorMsg << '\n';
    exit(1);
  }
  delete Extracted;

  // Set the new program and delete the old one.
  BD.setNewProgram(ProgClone);

  // Update the list of miscompiled functions.
  MiscompiledFunctions.clear();

  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
    assert(NewF && "Function not found??");
    assert(NewF->getFunctionType() == MisCompFunctions[i].second && 
           "Function has wrong type??");
    MiscompiledFunctions.push_back(NewF);
  }

  return true;
}
Ejemplo n.º 6
0
/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
/// check to see if we can extract the loops in the region without obscuring the
/// bug.  If so, it reduces the amount of code identified.
///
static bool ExtractLoops(BugDriver &BD,
                         bool (*TestFn)(BugDriver &, Module *, Module *,
                                        std::string &),
                         std::vector<Function*> &MiscompiledFunctions,
                         std::string &Error) {
  bool MadeChange = false;
  while (1) {
    if (BugpointIsInterrupted) return MadeChange;
    
    DenseMap<const Value*, Value*> ValueMap;
    Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
                                                   MiscompiledFunctions,
                                                   ValueMap);
    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
    if (!ToOptimizeLoopExtracted) {
      // If the loop extractor crashed or if there were no extractible loops,
      // then this chapter of our odyssey is over with.
      delete ToNotOptimize;
      delete ToOptimize;
      return MadeChange;
    }

    errs() << "Extracted a loop from the breaking portion of the program.\n";

    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
    // particular, we're not going to assume that the loop extractor works, so
    // we're going to test the newly loop extracted program to make sure nothing
    // has broken.  If something broke, then we'll inform the user and stop
    // extraction.
    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
    bool Failure = TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize,
                                     false, Error);
    if (!Error.empty())
      return false;
    if (Failure) {
      BD.switchToInterpreter(AI);

      // Merged program doesn't work anymore!
      errs() << "  *** ERROR: Loop extraction broke the program. :("
             << " Please report a bug!\n";
      errs() << "      Continuing on with un-loop-extracted version.\n";

      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
                            ToNotOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
                            ToOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
                            ToOptimizeLoopExtracted);

      errs() << "Please submit the " 
             << OutputPrefix << "-loop-extract-fail-*.bc files.\n";
      delete ToOptimize;
      delete ToNotOptimize;
      delete ToOptimizeLoopExtracted;
      return MadeChange;
    }
    delete ToOptimize;
    BD.switchToInterpreter(AI);

    outs() << "  Testing after loop extraction:\n";
    // Clone modules, the tester function will free them.
    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
    Module *TNOBackup  = CloneModule(ToNotOptimize);
    Failure = TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize, Error);
    if (!Error.empty())
      return false;
    if (!Failure) {
      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
      // If the program is not still broken, then loop extraction did something
      // that masked the error.  Stop loop extraction now.
      delete TOLEBackup;
      delete TNOBackup;
      return MadeChange;
    }
    ToOptimizeLoopExtracted = TOLEBackup;
    ToNotOptimize = TNOBackup;

    outs() << "*** Loop extraction successful!\n";

    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
      if (!I->isDeclaration())
        MisCompFunctions.push_back(std::make_pair(I->getName(),
                                                  I->getFunctionType()));

    // Okay, great!  Now we know that we extracted a loop and that loop
    // extraction both didn't break the program, and didn't mask the problem.
    // Replace the current program with the loop extracted version, and try to
    // extract another loop.
    std::string ErrorMsg;
    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
      errs() << BD.getToolName() << ": Error linking modules together:"
             << ErrorMsg << '\n';
      exit(1);
    }
    delete ToOptimizeLoopExtracted;

    // All of the Function*'s in the MiscompiledFunctions list are in the old
    // module.  Update this list to include all of the functions in the
    // optimized and loop extracted module.
    MiscompiledFunctions.clear();
    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
                                                  
      assert(NewF && "Function not found??");
      assert(NewF->getFunctionType() == MisCompFunctions[i].second && 
             "found wrong function type?");
      MiscompiledFunctions.push_back(NewF);
    }

    BD.setNewProgram(ToNotOptimize);
    MadeChange = true;
  }
}