Ejemplo n.º 1
0
void CNeuralLinearLayer::compute_activations(SGVector<float64_t> parameters,
		CDynamicObjectArray* layers)
{
	float64_t* biases = parameters.vector;

#ifdef HAVE_EIGEN3
	typedef Eigen::Map<Eigen::MatrixXd> EMappedMatrix;
	typedef Eigen::Map<Eigen::VectorXd> EMappedVector;

	EMappedMatrix  A(m_activations.matrix, m_num_neurons, m_batch_size);
	EMappedVector  B(biases, m_num_neurons);

	A.colwise() = B;
#else
	for (int32_t i=0; i<m_num_neurons; i++)
	{
		for (int32_t j=0; j<m_batch_size; j++)
		{
			m_activations[i+j*m_num_neurons] = biases[i];
		}
	}
#endif

	int32_t weights_index_offset = m_num_neurons;
	for (int32_t l=0; l<m_input_indices.vlen; l++)
	{
		CNeuralLayer* layer =
			(CNeuralLayer*)layers->element(m_input_indices[l]);

		float64_t* weights = parameters.vector + weights_index_offset;
		weights_index_offset += m_num_neurons*layer->get_num_neurons();

#ifdef HAVE_EIGEN3
		EMappedMatrix W(weights, m_num_neurons, layer->get_num_neurons());
		EMappedMatrix X(layer->get_activations().matrix,
				layer->get_num_neurons(), m_batch_size);

		A += W*X;
#else
		// activations = weights*previous_layer_activations
		for (int32_t i=0; i<m_num_neurons; i++)
		{
			for (int32_t j=0; j<m_batch_size; j++)
			{
				float64_t sum = 0;
				for (int32_t k=0; k<layer->get_num_neurons(); k++)
				{
					sum += weights[i+k*m_num_neurons]*
						layer->get_activations()(k,j);
				}
				m_activations[i+j*m_num_neurons] += sum;
			}
		}
#endif
		SG_UNREF(layer);
	}
}
Ejemplo n.º 2
0
void CConvolutionalFeatureMap::compute_activations(
	SGVector< float64_t > parameters, 
	CDynamicObjectArray* layers, 
	SGVector< int32_t > input_indices,
	SGMatrix<float64_t> activations)
{
	int32_t batch_size = activations.num_cols;
	
	float64_t bias = parameters[0];
	for (int32_t i=0; i<m_output_num_neurons; i++)
	{
		for (int32_t j=0; j<batch_size; j++)
		{
			activations(i+m_row_offset,j) = bias;
		}
	}
	
	int32_t weights_index_offset = 1;
	for (int32_t l=0; l<input_indices.vlen; l++)
	{
		CNeuralLayer* layer = 
			(CNeuralLayer*)layers->element(input_indices[l]);
		
		int32_t num_maps = layer->get_num_neurons()/m_input_num_neurons;
		
		for (int32_t m=0; m<num_maps; m++)
		{
			SGMatrix<float64_t> weights_matrix(parameters.vector+weights_index_offset, 
				m_filter_height, m_filter_width, false);
			weights_index_offset += m_filter_height*m_filter_width;
			
			convolve(layer->get_activations(), weights_matrix, activations, 
				false, false, m*m_input_num_neurons, m_row_offset);
		}
		
		SG_UNREF(layer);
	}
	
	if (m_activation_function==CMAF_LOGISTIC)
	{
		for (int32_t i=0; i<m_output_num_neurons; i++)
			for (int32_t j=0; j<batch_size; j++)
				activations(i+m_row_offset,j) = 
					1.0/(1.0+CMath::exp(-1.0*activations(i+m_row_offset,j)));
	}
	else if (m_activation_function==CMAF_RECTIFIED_LINEAR)
	{
		for (int32_t i=0; i<m_output_num_neurons; i++)
			for (int32_t j=0; j<batch_size; j++)
				activations(i+m_row_offset,j) = 
					CMath::max<float64_t>(0, activations(i+m_row_offset,j));
	}
}
Ejemplo n.º 3
0
void CNeuralLinearLayer::compute_gradients(
		SGVector<float64_t> parameters,
		SGMatrix<float64_t> targets,
		CDynamicObjectArray* layers,
		SGVector<float64_t> parameter_gradients)
{
	compute_local_gradients(targets);

	// compute bias gradients
	float64_t* bias_gradients = parameter_gradients.vector;
#ifdef HAVE_EIGEN3
	typedef Eigen::Map<Eigen::MatrixXd> EMappedMatrix;
	typedef Eigen::Map<Eigen::VectorXd> EMappedVector;

	EMappedVector BG(bias_gradients, m_num_neurons);
	EMappedMatrix LG(m_local_gradients.matrix, m_num_neurons, m_batch_size);

	BG = LG.rowwise().sum();
#else
	for (int32_t i=0; i<m_num_neurons; i++)
	{
		float64_t sum = 0;
		for (int32_t j=0; j<m_batch_size; j++)
		{
			sum += m_local_gradients[i+j*m_num_neurons];
		}
		bias_gradients[i] = sum;
	}
#endif

	// apply dropout to the local gradients
	if (dropout_prop>0.0)
	{
		int32_t len = m_num_neurons*m_batch_size;
		for (int32_t i=0; i<len; i++)
			m_local_gradients[i] *= m_dropout_mask[i];
	}

	int32_t weights_index_offset = m_num_neurons;
	for (int32_t l=0; l<m_input_indices.vlen; l++)
	{
		CNeuralLayer* layer =
			(CNeuralLayer*)layers->element(m_input_indices[l]);

		float64_t* weights = parameters.vector + weights_index_offset;
		float64_t* weight_gradients = parameter_gradients.vector +
			weights_index_offset;

		weights_index_offset += m_num_neurons*layer->get_num_neurons();

#ifdef HAVE_EIGEN3
		EMappedMatrix X(layer->get_activations().matrix,
				layer->get_num_neurons(), m_batch_size);
		EMappedMatrix  W(weights, m_num_neurons, layer->get_num_neurons());
		EMappedMatrix WG(weight_gradients,
				m_num_neurons, layer->get_num_neurons());
		EMappedMatrix  IG(layer->get_activation_gradients().matrix,
				layer->get_num_neurons(), m_batch_size);

		// compute weight gradients
		WG = LG*X.transpose();

		// compute input gradients
		if (!layer->is_input())
			IG += W.transpose()*LG;
#else
		// weight_gradients=local_gradients*previous_layer_activations.T
		for (int32_t i=0; i<m_num_neurons; i++)
		{
			for (int32_t j=0; j<layer->get_num_neurons(); j++)
			{
				float64_t sum = 0;
				for (int32_t k=0; k<m_batch_size; k++)
				{
					sum += m_local_gradients(i,k)*layer->get_activations()(j,k);
				}
				weight_gradients[i+j*m_num_neurons] = sum;
			}
		}

		if (!layer->is_input())
		{
			// input_gradients = weights.T*local_gradients
			for (int32_t i=0; i<layer->get_num_neurons(); i++)
			{
				for (int32_t j=0; j<m_batch_size; j++)
				{
					float64_t sum = 0;
					for (int32_t k=0; k<m_num_neurons; k++)
					{
						sum += weights[k+i*m_num_neurons]*
							m_local_gradients[k+j*m_num_neurons];
					}
					layer->get_activation_gradients()(i,j) += sum;
				}
			}
		}
#endif
		SG_UNREF(layer);
	}

	if (contraction_coefficient != 0)
	{
		compute_contraction_term_gradients(parameters, parameter_gradients);
	}
}
Ejemplo n.º 4
0
void CConvolutionalFeatureMap::compute_gradients(
	SGVector< float64_t > parameters,
	SGMatrix<float64_t> activations,
	SGMatrix< float64_t > activation_gradients, 
	CDynamicObjectArray* layers, 
	SGVector< int32_t > input_indices,
	SGVector< float64_t > parameter_gradients)
{
	int32_t batch_size = activation_gradients.num_cols;
	
	if (m_activation_function==CMAF_LOGISTIC)
	{
		for (int32_t i=0; i<m_output_num_neurons; i++)
		{
			for (int32_t j=0; j<batch_size; j++)
			{
				activation_gradients(i+m_row_offset,j) *= 
					activation_gradients(i+m_row_offset,j) * 
					(1.0-activation_gradients(i+m_row_offset,j));
			}
		}
	}
	else if (m_activation_function==CMAF_RECTIFIED_LINEAR)
	{
		for (int32_t i=0; i<m_output_num_neurons; i++)
			for (int32_t j=0; j<batch_size; j++)
				if (activations(i+m_row_offset,j)==0)
					activation_gradients(i+m_row_offset,j) = 0;
	}
	
	float64_t bias_gradient = 0;
	for (int32_t i=0; i<m_output_num_neurons; i++)
		for (int32_t j=0; j<batch_size; j++)
			bias_gradient += activation_gradients(i+m_row_offset,j);
	
	parameter_gradients[0] = bias_gradient;
	
	int32_t weights_index_offset = 1;
	for (int32_t l=0; l<input_indices.vlen; l++)
	{
		CNeuralLayer* layer = 
			(CNeuralLayer*)layers->element(input_indices[l]);
		
		int32_t num_maps = layer->get_num_neurons()/m_input_num_neurons;
		
		for (int32_t m=0; m<num_maps; m++)
		{
			SGMatrix<float64_t> W(parameters.vector+weights_index_offset, 
				m_filter_height, m_filter_width, false);
			SGMatrix<float64_t> WG(parameter_gradients.vector+weights_index_offset, 
				m_filter_height, m_filter_width, false);
			weights_index_offset += m_filter_height*m_filter_width;
			
			compute_weight_gradients(layer->get_activations(), 
				activation_gradients, WG, m*m_input_num_neurons, m_row_offset);
			
			if (!layer->is_input())
				convolve(activation_gradients, W, 
					layer->get_activation_gradients(), true, false, 
					m_row_offset, m*m_input_num_neurons);
		}	
		
		SG_UNREF(layer);
	}
}