Ejemplo n.º 1
0
Processor::Result PeptideCapProcessor::operator() (Chain& chain)
{
TranslationProcessor    tlp;
TransformationProcessor tfp;
Matrix4x4 m;

FragmentDB fragment_db("");
ReconstructFragmentProcessor reconstruct(fragment_db);

Residue* ace_residue = NULL;
Residue* nme_residue = NULL;

// check if a ACE cap was already added
bool add_cap = (chain.getResidue(0)->getName() != "ACE");

if (add_cap)
{
    // create ACE-Cap
    ace_residue = new Residue("ACE");
    ace_residue->setProperty(Residue::PROPERTY__AMINO_ACID);
    ace_residue->apply(reconstruct);
    ace_residue->apply(fragment_db.normalize_names);
    ace_residue->apply(fragment_db.build_bonds);

    AtomIterator ace_atom = ace_residue->beginAtom();

    //get all atoms needed to compute the transformation of the cap
    Atom* cAtom   = NULL;
    Atom* ch3Atom = NULL;
    Atom* oAtom   = NULL;
    Atom* h1Atom  = NULL;
    Vector3 h2Atom(0.0,0.0,0.0);
    Vector3 h3Atom(0.0,0.0,0.0);
    Vector3 nAtom(0.0,0.0,0.0);

    while(+ace_atom)
    {
        if (ace_atom->getName() == "C")
            cAtom = &*ace_atom;
        else if (ace_atom->getName() == "CH3")
            ch3Atom = &*ace_atom;
        else if (ace_atom->getName() == "O")
            oAtom = &*ace_atom;
        ++ace_atom;
    }

    std::vector<Atom*> to_remove;

    AtomIterator n_atom = chain.getResidue(0)->beginAtom();

    while (+n_atom)
    {
        if (n_atom->getName() == "1H")
        {
            h1Atom = &*n_atom;
            n_atom->setName("H");

            if (chain.getResidue(0)->getName() == "PRO")
                to_remove.push_back(&*n_atom);
        }
        else if (n_atom->getName() == "N")
        {
            nAtom = n_atom->getPosition();
            n_atom->apply(fragment_db.add_hydrogens);
        }
        ++n_atom;
    }

    //compute position of OXT... map N of the last residue to it later
    tlp.setTranslation(ch3Atom->getPosition()*-1.0);
    ace_residue->apply(tlp);

    m.setRotation( Angle(180.0 * Constants::PI / 180.0), cAtom->getPosition());

    // map oxt and N of the last residue to the origin
    tlp.setTranslation(m*oAtom->getPosition()*-1.0);
    ace_residue->apply(tlp);

    tlp.setTranslation(nAtom*-1.0);
    chain.apply(tlp);

    n_atom = chain.getResidue(0)->beginAtom();
    while (+n_atom)
    {
        if (n_atom->getName() == "2H")
        {
            h2Atom = n_atom->getPosition();
            to_remove.push_back(&*n_atom);
        }
        else if (n_atom->getName() == "3H")
        {
            h3Atom = n_atom->getPosition();
            to_remove.push_back(&*n_atom);
        }
        ++n_atom;
    }

    //rotate CH3 atom to 2H position
    Angle   angle    = cAtom->getPosition().getAngle(h2Atom+h3Atom);
    Vector3 rot_axis = (cAtom->getPosition()%(h2Atom+h3Atom)).normalize();

    m.setRotation(angle,rot_axis);
    tfp.setTransformation(m);
    ace_residue->apply(tfp);

    //insert ACE-Cap into chain
    chain.insertBefore(*ace_residue,*chain.getResidue(0));

    //Add Bond between ACE-Cap and Helix
    n_atom = chain.getResidue(1)->beginAtom();
    while (+n_atom)
    {
        if (n_atom->getName() == "N")
        {
            Bond* new_bond = cAtom->createBond(*n_atom);
            new_bond->setOrder(Bond::ORDER__SINGLE);
            break;
        }
        ++n_atom;
    }

    //back translation
    tlp.setTranslation(nAtom);
    chain.apply(tlp);

    //remove old hydrogens
    for (Position a = 0; a < to_remove.size(); ++a)
    {
        delete to_remove[a];
    }

    //torsional optimzation of ACE
    optimizeCapPosition(chain, true);
}

//##################################################################

add_cap = (chain.getResidue(chain.countResidues()-1)->getName() != "NME");

if (add_cap)
{
    //create NME-Cap
    nme_residue = new Residue("NME");
    nme_residue->setProperty(Residue::PROPERTY__AMINO_ACID);
    nme_residue->apply(reconstruct);
    nme_residue->apply(fragment_db.normalize_names);
    nme_residue->apply(fragment_db.build_bonds);

    Residue* last_residue = chain.getResidue(chain.countResidues()-1);

    //####################################################

    Atom* nAtom = NULL;
    Atom* ch3Atom = NULL;
    Atom* hAtom = NULL;

    AtomIterator nme_atom = nme_residue->beginAtom();
    while (+nme_atom)
    {
        if (nme_atom->getName() == "N")
            nAtom = &*nme_atom;
        else if (nme_atom->getName() == "CH3")
            ch3Atom = &*nme_atom;
        else if (nme_atom->getName() == "H")
            hAtom = &*nme_atom;
        ++nme_atom;
    }

    Vector3 anchor((  (hAtom->getPosition()-nAtom->getPosition()).normalize()
                      + (ch3Atom->getPosition()-nAtom->getPosition()).normalize()).normalize()*-1.335);
    tlp.setTranslation((anchor + nAtom->getPosition())*-1.0);
    nme_residue->apply(tlp);

    Atom* oxt = NULL;
    Atom* cAtom = NULL;

    AtomIterator c_atom = last_residue->beginAtom();

    while (+c_atom)
    {
        if (c_atom->getName() == "OXT")
            oxt = &*c_atom;
        else if (c_atom->getName() == "C")
        {
            anchor = c_atom->getPosition();
            cAtom  = &*c_atom;
        }
        ++c_atom;
    }

    tlp.setTranslation(anchor*-1.0);
    chain.apply(tlp);

    //transform cap to the old OXT position
    Angle angle = nAtom->getPosition().getAngle(oxt->getPosition());
    Vector3 rot_axis = (nAtom->getPosition()%(oxt->getPosition())).normalize();
    m.setRotation(angle,rot_axis);
    tfp.setTransformation(m);
    nme_residue->apply(tfp);

    //insert NME-Cap into chain
    chain.insertAfter(*nme_residue, *last_residue);

    //Add Bond between NME-Cap and Helix
    Bond* new_bond = cAtom->createBond(*nAtom);
    new_bond->setOrder(Bond::ORDER__SINGLE);

    tlp.setTranslation(anchor);
    chain.apply(tlp);

    delete oxt;

    //torsional optimzation of NME
    optimizeCapPosition(chain, false);
}
return Processor::CONTINUE;
}
Ejemplo n.º 2
0
void PeptideCapProcessor::optimizeCapPosition(Chain& chain, bool start)
{
    Vector3 translation;
    Atom* axis   = NULL;
    Residue* cap = NULL;
    std::vector<Atom*> a;
    std::vector<Atom*> b;

    Size nr = chain.countResidues();

    // cap at the beginning of a peptide
    if (start)
    {
        // put ACE-C to the center
        for (AtomIterator it = chain.getResidue(1)->beginAtom(); +it; ++it)
        {
            if (it->getName() == "N")
            {
                translation = it->getPosition();
            }

            b.push_back(&*it);
        }

        cap = chain.getResidue(0);
        for (AtomIterator it = cap->beginAtom(); +it; ++it)
        {
            a.push_back(&*it);
            if (it->getName() == "C")
            {
            axis = &*it;
        }
    }
}
//cap at the end of a peptide
else
{
    for (AtomIterator it = chain.getResidue(nr-2)->beginAtom(); +it; ++it)
    {
        if (it->getName() == "C")
        {
            translation = it->getPosition();
        }

        b.push_back(&*it);
    }

    cap = chain.getResidue(nr-1);
    for (AtomIterator it = cap->beginAtom(); +it; ++it)
    {
        a.push_back(&*it);
        if (it->getName() == "N")
        {
            axis = &*it;
        }
    }
}

//translate the anchor to origin
TranslationProcessor tlp;
tlp.setTranslation(translation*-1.0);
chain.apply(tlp);

//try all torsions
float largest_distance = 0.0;
float tmp_distance = 0.0;
float torsion      = 0.0;
float step         = 2.0;

TransformationProcessor tfp;
Matrix4x4 m;
m.setRotation( Angle(step, false), axis->getPosition());
tfp.setTransformation(m);

for (Position r = step; r <= 360; r+=step)
{
    cap->apply(tfp);

    tmp_distance = computeDistance(a,b);

    if (largest_distance < tmp_distance)
    {
        largest_distance = tmp_distance;
        torsion = r;
    }
}

//apply best rotation angle
m.setRotation( Angle(torsion, false), axis->getPosition());
tfp.setTransformation(m);
cap->apply(tfp);

//now translate the protein back
tlp.setTranslation(translation);
chain.apply(tlp);
}
Ejemplo n.º 3
0
	/**********************************************
	 *   determine the new Secondary Structure and
	 *   replace the old one with the new one
	 **********************************************/
	Processor::Result SecondaryStructureProcessor::operator() (Composite &composite)
	{
		if (!RTTI::isKindOf<Chain>(composite))
		{
			return Processor::CONTINUE;
		}

		Chain* p = RTTI::castTo<Chain>(composite);
		HBondProcessor hbp;

		p->apply(hbp);       // find all posible HBonds
		
		HBonds_ = hbp.getBackboneHBondPattern();
		ResidueIterator ri = p->beginResidue();
		 
		if (!(+ri))
		{
			return Processor::CONTINUE;
		}
		
		// locate the Secondary Structures
		compute_();

		//----------associate new Secondary Structures (SS) for each residue -----
	  // - summarize equal residues in one new SS (new_ss)
		// - push for each residue the new SS into new_parent  
		// - push all residues into residues
		
		SecondaryStructure* ss = 0;
		char     last_struct   = 'X';
		Position resnum        = 0;
 
		vector<SecondaryStructure*> new_ss;
		vector<SecondaryStructure*> new_parent;
		vector<Residue*> 						residues;

		if (summary_.size() == 0)
			return Processor::CONTINUE;
		
		for (; +ri; ++ri)
		{
			if (resnum >= summary_.size())
			{
				Log.error() << "A problem occured in " << __FILE__ << " " << __LINE__ << std::endl;
				return Processor::CONTINUE;
			}

			// depending on the last type of secondary structure we have seen,
			// we need to react differently to merge them sensibly
			if (last_struct != summary_[resnum])
			{
				switch (last_struct)
				{
					case 'L': // we are in a loop
						// note that we identify 'real' loops, isolated bridges and turns (-,B,T)
						// and map them all to loops. Thus we need to determine here if the current
						// residue also maps to a loop (we already know that the last residue was one)
						switch (summary_[resnum])
						{
							case '-':
							case 'B':
							case 'T': break; // nothing to see here... please walk on...

							default:
								// the current residue is no loop => build a new SecondaryStructure
								ss = new SecondaryStructure;
								last_struct = setSecondaryStructureType_(ss, summary_[resnum]);
								new_ss.push_back(ss);
						}
						break;
				
					default: // in all other cases, setSecondaryStructure does the hard work
						ss = new SecondaryStructure;
						last_struct = setSecondaryStructureType_(ss, summary_[resnum]);
						new_ss.push_back(ss);
				}
			}

			// in all cases, ss is now the new parent of this residue
			new_parent.push_back(ss);
			residues.push_back(&*ri);
			
			resnum++;
		}
		
		// ------ insert Residues to new SS ---------------
		for (Position i = 0; i < residues.size(); i++)
		{
			new_parent[i]->insert(*residues[i]);
		}
	
		// ------ remove old SecondaryStructures ----------
		// we have to be sure not to delete a SS which has an SS as parent!
		// because it would be deleted twice
		vector<SecondaryStructure*> to_remove;
		SecondaryStructureIterator ssit = p->beginSecondaryStructure();
		for (; +ssit; ++ssit)
		{
			if ((*ssit).getParent() == 0 ||
					!RTTI::isKindOf<SecondaryStructure>(*(*ssit).getParent()))
			{
				to_remove.push_back(&*ssit);
			}
		}


		for (Position i = 0; i < to_remove.size(); i++)
		{
			delete to_remove[i];
		}

		BALL_POSTCONDITION_EXCEPTION(p->countSecondaryStructures() == 0, 
		 "SecondaryStructureProcessor did not remove all old secondary structures!")
		
		// ------ insert new SecondaryStructures ----------
		for (Position i = 0; i < new_ss.size(); i++)
		{
			p->insert(*new_ss[i]);
		}
	
		BALL_POSTCONDITION_EXCEPTION(p->countSecondaryStructures() == new_ss.size(),
		 "SecondaryStructureProcessor did not add all new secondary structures!")

		return Processor::CONTINUE;
	}