Ejemplo n.º 1
0
//==============================================================================
bool DARTCollisionDetector::collide(
    CollisionGroup* group1,
    CollisionGroup* group2,
    const CollisionOption& option, CollisionResult& result)
{
  result.clear();

  if ((this != group1->getCollisionDetector().get())
      || (this != group2->getCollisionDetector().get()))
  {
    dterr << "[DARTCollisionDetector::detect] Attempting to check collision "
          << "for a collision group that is created from a different collision "
          << "detector instance.\n";

    return false;
  }

  auto casted1 = static_cast<DARTCollisionGroup*>(group1);
  auto casted2 = static_cast<DARTCollisionGroup*>(group2);

  const auto& objects1 = casted1->mCollisionObjects;
  const auto& objects2 = casted2->mCollisionObjects;

  if (objects1.empty() || objects2.empty())
    return false;

  auto done = false;
  const auto& filter = option.collisionFilter;

  for (auto i = 0u; i < objects1.size(); ++i)
  {
    auto collObj1 = objects1[i];

    for (auto j = 0u; j < objects2.size(); ++j)
    {
      auto collObj2 = objects2[j];

      if (filter && !filter->needCollision(collObj1, collObj2))
        continue;

      checkPair(collObj1, collObj2, option, result);

      if (result.getNumContacts() >= option.maxNumContacts)
      {
        done = true;
        break;
      }
    }

    if (done)
      break;
  }

  return result.isCollision();
}
Ejemplo n.º 2
0
  static std::size_t collide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, 
                             const NarrowPhaseSolver* nsolver,
                             const CollisionRequest& request, CollisionResult& result)
  {
    if(request.isSatisfied(result)) return result.numContacts();

    if(request.enable_cost && request.use_approximate_cost)
    {
      CollisionRequest no_cost_request(request);
      no_cost_request.enable_cost = false;
      
      MeshShapeCollisionTraversalNode<T_BVH, T_SH, NarrowPhaseSolver> node;
      const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
      BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
      Transform3f tf1_tmp = tf1;
      const T_SH* obj2 = static_cast<const T_SH*>(o2);

      initialize(node, *obj1_tmp, tf1_tmp, *obj2, tf2, nsolver, no_cost_request, result);
      FCL_REAL sqrDistance;
      fcl::collide(&node, sqrDistance);
      result.distance_lower_bound = sqrt (sqrDistance);

      delete obj1_tmp;

      Box box;
      Transform3f box_tf;
      constructBox(obj1->getBV(0).bv, tf1, box, box_tf);

      box.cost_density = obj1->cost_density;
      box.threshold_occupied = obj1->threshold_occupied;
      box.threshold_free = obj1->threshold_free;
      
      CollisionRequest only_cost_request(result.numContacts(), false, request.num_max_cost_sources, true, false);
      ShapeShapeCollide<Box, T_SH>(&box, box_tf, o2, tf2, nsolver, only_cost_request, result);
    }
    else
    {
      MeshShapeCollisionTraversalNode<T_BVH, T_SH, NarrowPhaseSolver> node;
      const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
      BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
      Transform3f tf1_tmp = tf1;
      const T_SH* obj2 = static_cast<const T_SH*>(o2);

      initialize(node, *obj1_tmp, tf1_tmp, *obj2, tf2, nsolver, request, result);
      FCL_REAL sqrDistance;
      fcl::collide(&node, sqrDistance);
      result.distance_lower_bound = sqrt (sqrDistance);

      delete obj1_tmp;
    }

    return result.numContacts();
  }
Ejemplo n.º 3
0
int collideSphereSphere(CollisionObject* o1, CollisionObject* o2, const double& _r0, const Eigen::Isometry3d& c0,
                        const double& _r1, const Eigen::Isometry3d& c1,
                        CollisionResult& result)
{
  double r0 = _r0;
  double r1 = _r1;
  double rsum = r0 + r1;
  Eigen::Vector3d normal = c0.translation() - c1.translation();
  double normal_sqr = normal.squaredNorm();

  if ( normal_sqr > rsum * rsum )
  {
    return 0;
  }

  r0 /= rsum;
  r1 /= rsum;

  Eigen::Vector3d point = r1 * c0.translation() + r0 * c1.translation();
  double penetration;

  if (normal_sqr < DART_COLLISION_EPS)
  {
    normal.setZero();
    penetration = rsum;

    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.point = point;
    contact.normal = normal;
    contact.penetrationDepth = penetration;
    result.addContact(contact);
    return 1;
  }

  normal_sqr = sqrt(normal_sqr);
  normal *= (1.0/normal_sqr);
  penetration = rsum - normal_sqr;

  Contact contact;
  contact.collisionObject1 = o1;
  contact.collisionObject2 = o2;
  contact.point = point;
  contact.normal = normal;
  contact.penetrationDepth = penetration;
  result.addContact(contact);
  return 1;

}
Ejemplo n.º 4
0
std::size_t ShapeShapeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, 
                              const NarrowPhaseSolver* nsolver,
                              const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  if (request.enable_distance_lower_bound) {
    DistanceResult distanceResult;
    DistanceRequest distanceRequest (request.enable_contact);
    FCL_REAL distance = ShapeShapeDistance <T_SH1, T_SH2, NarrowPhaseSolver>
      (o1, tf1, o2, tf2, nsolver, distanceRequest, distanceResult);

    if (distance <= 0) {
      Contact contact (o1, o2, distanceResult.b1, distanceResult.b2);
      const Vec3f& p1 = distanceResult.nearest_points [0];
      const Vec3f& p2 = distanceResult.nearest_points [1];
      contact.pos = .5*(p1+p2);
      contact.normal = (p2-p1)/(p2-p1).length ();
      result.addContact (contact);
      return 1;
    }
    result.distance_lower_bound = distance;
    return 0;
  }

  ShapeCollisionTraversalNode<T_SH1, T_SH2, NarrowPhaseSolver> node;
  const T_SH1* obj1 = static_cast<const T_SH1*>(o1);
  const T_SH2* obj2 = static_cast<const T_SH2*>(o2);

  if(request.enable_cached_gjk_guess)
  {
    nsolver->enableCachedGuess(true);
    nsolver->setCachedGuess(request.cached_gjk_guess);
  }
  else
  {
    nsolver->enableCachedGuess(true);
  }

  initialize(node, *obj1, tf1, *obj2, tf2, nsolver, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  if(request.enable_cached_gjk_guess)
    result.cached_gjk_guess = nsolver->getCachedGuess();

  return result.numContacts();
}
Ejemplo n.º 5
0
std::size_t orientedMeshCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  OrientedMeshCollisionTraversalNode node (request.enable_distance_lower_bound);
  const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
  const BVHModel<T_BVH>* obj2 = static_cast<const BVHModel<T_BVH>* >(o2);

  initialize(node, *obj1, tf1, *obj2, tf2, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  return result.numContacts();
}
int conservativeAdvancement(const CollisionGeometry* o1,
							const MotionBase* motion1,
							const CollisionGeometry* o2,
							const MotionBase* motion2,
							const CollisionRequest& request,
							CollisionResult& result,
							FCL_REAL& toc)
{
	typedef ConservativeAdvancement<BV, ConservativeAdvancementNode, CollisionNode> 
		ConservativeAdvancementType;

	boost::shared_ptr<ConservativeAdvancementType> advancement = 
		boost::make_shared<ConservativeAdvancementType>(o1, motion1, o2, motion2);

	ContinuousCollisionRequest continuous_request;
	ContinuousCollisionResult continuous_result;

	continuous_request.assign(request);
	advancement->collide(continuous_request, continuous_result);
	result = continuous_result;

	toc = continuous_result.getTimeOfContact();

	return static_cast<int>(result.numContacts() );
}
Ejemplo n.º 7
0
std::size_t OcTreeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2,
                          const NarrowPhaseSolver* nsolver,
                          const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();

  OcTreeCollisionTraversalNode<NarrowPhaseSolver> node;
  const OcTree* obj1 = static_cast<const OcTree*>(o1);
  const OcTree* obj2 = static_cast<const OcTree*>(o2);
  OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

  initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, request, result);
  FCL_REAL sqrDistance = 0;
  collide(&node, sqrDistance);

  return result.numContacts();
}
Ejemplo n.º 8
0
std::size_t BVHOcTreeCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2,
                             const NarrowPhaseSolver* nsolver,
                             const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();
 
  if(request.enable_cost && request.use_approximate_cost)
  {
    CollisionRequest no_cost_request(request); // request remove cost to avoid the exact but expensive cost computation between mesh and octree
    no_cost_request.enable_cost = false; // disable cost computation

    MeshOcTreeCollisionTraversalNode<T_BVH, NarrowPhaseSolver> node;
    const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>*>(o1);
    const OcTree* obj2 = static_cast<const OcTree*>(o2);
    OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

    initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, no_cost_request, result);
    FCL_REAL sqrDistance = 0;
    collide(&node, sqrDistance);

    Box box;
    Transform3f box_tf;
    constructBox(obj1->getBV(0).bv, tf1, box, box_tf);

    box.cost_density = obj1->cost_density;
    box.threshold_occupied = obj1->threshold_occupied;
    box.threshold_free = obj1->threshold_free;

    CollisionRequest only_cost_request(result.numContacts(), false, request.num_max_cost_sources, true, false);
    ShapeOcTreeCollide<Box, NarrowPhaseSolver>(&box, box_tf, o2, tf2, nsolver, only_cost_request, result);
  }
  else
  {
    MeshOcTreeCollisionTraversalNode<T_BVH, NarrowPhaseSolver> node;
    const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>*>(o1);
    const OcTree* obj2 = static_cast<const OcTree*>(o2);
    OcTreeSolver<NarrowPhaseSolver> otsolver(nsolver);

    initialize(node, *obj1, tf1, *obj2, tf2, &otsolver, request, result);
    FCL_REAL sqrDistance = 0;
    collide(&node, sqrDistance);
  }
  
  return result.numContacts();
}
Ejemplo n.º 9
0
std::size_t BVHCollide(const CollisionGeometry* o1, const Transform3f& tf1, const CollisionGeometry* o2, const Transform3f& tf2, const CollisionRequest& request, CollisionResult& result)
{
  if(request.isSatisfied(result)) return result.numContacts();
  
  MeshCollisionTraversalNode<T_BVH> node (request.enable_distance_lower_bound);
  const BVHModel<T_BVH>* obj1 = static_cast<const BVHModel<T_BVH>* >(o1);
  const BVHModel<T_BVH>* obj2 = static_cast<const BVHModel<T_BVH>* >(o2);
  BVHModel<T_BVH>* obj1_tmp = new BVHModel<T_BVH>(*obj1);
  Transform3f tf1_tmp = tf1;
  BVHModel<T_BVH>* obj2_tmp = new BVHModel<T_BVH>(*obj2);
  Transform3f tf2_tmp = tf2;
  
  initialize(node, *obj1_tmp, tf1_tmp, *obj2_tmp, tf2_tmp, request, result);
  FCL_REAL sqrDistance;
  fcl::collide(&node, sqrDistance);
  result.distance_lower_bound = sqrt (sqrDistance);

  delete obj1_tmp;
  delete obj2_tmp;

  return result.numContacts();
}
Ejemplo n.º 10
0
/**
 * Perform explosion
 * @param	sqrRadius	The squared radius that affect the bomb
 */
void Bomb::performExplosion(float sqrRadius, float power)
{
	// perform an aabb query
	sm::AABB query;
	query.setSize(2.0f * sqrRadius, 2.0f * sqrRadius);

	// set the actual position
	ASSERT(mNode);
	const Ogre::Vector3 &pos = mNode->getPosition();
	query.setPosition(sm::Vector2(pos.x, pos.z));
	static CollisionResult	objects;
	mCollMngr->getCollisionObjects(query, BOMB_AFFECTABLE_MASK, objects);

	debugRED("Tenemos que poner el power real aca, estamos"
			" usando directamente una fuerza lineal, tenemos que disminuir"
			" el poder a medida que nos alejamos del centro de explosion\n");

	// iterate over all the objects affected
	const CollisionObject *co;
	Hit_t hit;
	hit.shooter = 0;
	for(int i = objects.size()-1; i >= 0; --i){
		co = objects[i];
		if(checkObjectBetween(query.pos, co)) {
			// not affect that object..
			continue;
		}

		// else we affect the object with the corresponding power
		GameObject *go = static_cast<GameObject *>(co->userDefined);
		ASSERT(go);
		hit.power = power;
		hit.hitDir = query.pos - co->getPosition();
		go->beenHit(hit);
	}

}
Ejemplo n.º 11
0
int conservativeAdvancement(const CollisionGeometry* o1,
                            const MotionBase* motion1,
                            const CollisionGeometry* o2,
                            const MotionBase* motion2,
                            const CollisionRequest& request,
                            CollisionResult& result,
                            FCL_REAL& toc)
{
  if(request.num_max_contacts == 0)
  {
    std::cerr << "Warning: should stop early as num_max_contact is " << request.num_max_contacts << " !" << std::endl;
    return 0;
  }

  const OBJECT_TYPE object_type1 = o1->getObjectType();
  const NODE_TYPE node_type1 = o1->getNodeType();

  const OBJECT_TYPE object_type2 = o2->getObjectType();
  const NODE_TYPE node_type2 = o2->getNodeType();

  if(object_type1 != OT_BVH || object_type2 != OT_BVH)
    return 0;

  if(node_type1 != BV_RSS || node_type2 != BV_RSS)
    return 0;


  const BVHModel<BV>* model1 = static_cast<const BVHModel<BV>*>(o1);
  const BVHModel<BV>* model2 = static_cast<const BVHModel<BV>*>(o2);

  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  CollisionNode cnode;
  if(!initialize(cnode, *model1, tf1, *model2, tf2, request, result))
    std::cout << "initialize error" << std::endl;

  relativeTransform(tf1.getRotation(), tf1.getTranslation(), tf2.getRotation(), tf2.getTranslation(), cnode.R, cnode.T);

  cnode.enable_statistics = false;
  cnode.request = request;

  collide(&cnode);

  int b = result.numContacts();

  if(b > 0)
  {
    toc = 0;
    // std::cout << "zero collide" << std::endl;
    return b;
  }
  
  ConservativeAdvancementNode node;

  initialize(node, *model1, tf1, *model2, tf2);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    Matrix3f R1_t, R2_t;
    Vec3f T1_t, T2_t;

    node.motion1->getCurrentTransform(R1_t, T1_t);
    node.motion2->getCurrentTransform(R2_t, T2_t);

    // compute the transformation from 1 to 2
    relativeTransform(R1_t, T1_t, R2_t, T2_t, node.R, node.T);

    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return 1;

  return 0;
}
Ejemplo n.º 12
0
int collideSphereBox(CollisionObject* o1, CollisionObject* o2,
                     const double& r0, const Eigen::Isometry3d& T0,
                     const Eigen::Vector3d& size1, const Eigen::Isometry3d& T1,
                     CollisionResult& result)
{
  Eigen::Vector3d size = 0.5 * size1;
  bool inside_box = true;

  // clipping a center of the sphere to a boundary of the box
  Eigen::Vector3d c0 = T0.translation();
  Eigen::Vector3d p = T1.inverse() * c0;

  if (p[0] < -size[0]) { p[0] = -size[0]; inside_box = false; }
  if (p[0] >  size[0]) { p[0] =  size[0]; inside_box = false; }

  if (p[1] < -size[1]) { p[1] = -size[1]; inside_box = false; }
  if (p[1] >  size[1]) { p[1] =  size[1]; inside_box = false; }

  if (p[2] < -size[2]) { p[2] = -size[2]; inside_box = false; }
  if (p[2] >  size[2]) { p[2] =  size[2]; inside_box = false; }


  Eigen::Vector3d normal(0.0, 0.0, 0.0);
  double penetration;

  if ( inside_box )
  {
    // find nearest side from the sphere center
    double min = size[0] - std::abs(p[0]);
    double tmin = size[1] - std::abs(p[1]);
    int idx = 0;

    if ( tmin < min )
    {
      min = tmin;
      idx = 1;
    }
    tmin = size[2] - std::abs(p[2]);
    if ( tmin < min )
    {
      min = tmin;
      idx = 2;
    }

    normal[idx] = (p[idx] > 0.0 ? 1.0 : -1.0);
    normal = T1.linear() * normal;
    penetration = min + r0;

    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.point = c0;
    contact.normal = normal;
    contact.penetrationDepth = penetration;
    result.addContact(contact);
    return 1;
  }


  Eigen::Vector3d contactpt = T1 * p;
  normal = c0 - contactpt;
  double mag = normal.norm();
  penetration = r0 - mag;

  if (penetration < 0.0)
  {
    return 0;
  }

  if (mag > DART_COLLISION_EPS)
  {
    normal *= (1.0/mag);

    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.point = contactpt;
    contact.normal = normal;
    contact.penetrationDepth = penetration;
    result.addContact(contact);
  }
  else
  {
    double min = size[0] - std::abs(p[0]);
    double tmin = size[1] - std::abs(p[1]);
    int idx = 0;

    if ( tmin < min )
    {
      min = tmin;
      idx = 1;
    }
    tmin = size[2] - std::abs(p[2]);
    if ( tmin < min )
    {
      min = tmin;
      idx = 2;
    }
    normal.setZero();
    normal[idx] = (p[idx] > 0.0 ? 1.0 : -1.0);
    normal = T1.linear() * normal;

    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.point = contactpt;
    contact.normal = normal;
    contact.penetrationDepth = penetration;
    result.addContact(contact);
  }
  return 1;
}
Ejemplo n.º 13
0
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
// generate contact points. this returns 0 if there is no contact otherwise
// it returns the number of contacts generated.
// `normal' returns the contact normal.
// `depth' returns the maximum penetration depth along that normal.
// `return_code' returns a number indicating the type of contact that was
// detected:
//        1,2,3 = box 2 intersects with a face of box 1
//        4,5,6 = box 1 intersects with a face of box 2
//        7..15 = edge-edge contact
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
// the size of the `contact' array.
// `contact' and `skip' are the contact array information provided to the
// collision functions. this function only fills in the position and depth
// fields.
int dBoxBox(CollisionObject* o1, CollisionObject* o2,
            const dVector3 p1, const dMatrix3 R1, const dVector3 side1,
            const dVector3 p2, const dMatrix3 R2, const dVector3 side2,
            CollisionResult& result)
{
  const double fudge_factor = 1.05;
  dVector3 p,pp,normalC = {0.0, 0.0, 0.0, 0.0};
  const double *normalR = 0;
  double A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
  int i,j,invert_normal,code;

  // get vector from centers of box 1 to box 2, relative to box 1
  p[0] = p2[0] - p1[0];
  p[1] = p2[1] - p1[1];
  p[2] = p2[2] - p1[2];
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

  // get side lengths / 2
  A[0] = side1[0];
  A[1] = side1[1];
  A[2] = side1[2];
  B[0] = side2[0];
  B[1] = side2[1];
  B[2] = side2[2];

  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = Inner44(R1+0,R2+0); R12 = Inner44(R1+0,R2+1); R13 = Inner44(R1+0,R2+2);
  R21 = Inner44(R1+1,R2+0); R22 = Inner44(R1+1,R2+1); R23 = Inner44(R1+1,R2+2);
  R31 = Inner44(R1+2,R2+0); R32 = Inner44(R1+2,R2+1); R33 = Inner44(R1+2,R2+2);

  Q11 = std::abs(R11); Q12 = std::abs(R12); Q13 = std::abs(R13);
  Q21 = std::abs(R21); Q22 = std::abs(R22); Q23 = std::abs(R23);
  Q31 = std::abs(R31); Q32 = std::abs(R32); Q33 = std::abs(R33);

  // for all 15 possible separating axes:
  //   * see if the axis separates the boxes. if so, return 0.
  //   * find the depth of the penetration along the separating axis (s2)
  //   * if this is the largest depth so far, record it.
  // the normal vector will be set to the separating axis with the smallest
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
  // the normal should be flipped.

#define TST(expr1,expr2,norm,cc) \
  s2 = std::abs(expr1) - (expr2); \
  if (s2 > s) { \
  s = s2; \
  normalR = norm; \
  invert_normal = ((expr1) < 0); \
  code = (cc); \
}

  s = -1E12;
  invert_normal = 0;
  code = 0;

  // separating axis = u1,u2,u3
  TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
  TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
  TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

  // separating axis = v1,v2,v3
  TST (Inner41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
  TST (Inner41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
  TST (Inner41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

  // note: cross product axes need to be scaled when s is computed.
  // normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
  s2 = std::abs(expr1) - (expr2); \
  l = sqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
  if (l > 0) { \
  s2 /= l; \
  if (s2*fudge_factor > s) { \
  s = s2; \
  normalR = 0; \
  normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
  invert_normal = ((expr1) < 0); \
  code = (cc); \
} \
}

  // separating axis = u1 x (v1,v2,v3)
  TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
  TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
  TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

  // separating axis = u2 x (v1,v2,v3)
  TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
  TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
  TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

  // separating axis = u3 x (v1,v2,v3)
  TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
  TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
  TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);

#undef TST

  if (!code) return 0;
  if (s > 0.0) return 0;

  // if we get to this point, the boxes interpenetrate. compute the normal
  // in global coordinates.

  Eigen::Vector3d normal;
  Eigen::Vector3d point_vec;
  double penetration;

  if (normalR) {
    normal << normalR[0],normalR[4],normalR[8];
  }
  else {
    normal << Inner((R1),(normalC)), Inner((R1+4),(normalC)), Inner((R1+8),(normalC));
    //dMULTIPLY0_331 (normal,R1,normalC);
  }
  if (invert_normal) {
    normal *= -1.0;
  }



  // compute contact point(s)

  // single point
  if (code > 6) {
    // an edge from box 1 touches an edge from box 2.
    // find a point pa on the intersecting edge of box 1
    dVector3 pa;
    double sign;
    for (i=0; i<3; i++) pa[i] = p1[i];
    for (j=0; j<3; j++)
    {
#define TEMP_INNER14(a,b) (a[0]*(b)[0] + a[1]*(b)[4] + a[2]*(b)[8])
      sign = (TEMP_INNER14(normal,R1+j) > 0) ? 1.0 : -1.0;

      //sign = (Inner14(normal,R1+j) > 0) ? 1.0 : -1.0;

      for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
    }

    // find a point pb on the intersecting edge of box 2
    dVector3 pb;
    for (i=0; i<3; i++) pb[i] = p2[i];
    for (j=0; j<3; j++) {
      sign = (TEMP_INNER14(normal,R2+j) > 0) ? -1.0 : 1.0;
#undef TEMP_INNER14
      for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
    }

    double alpha,beta;
    dVector3 ua,ub;
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];

    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
    for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
    for (i=0; i<3; i++) pb[i] += ub[i]*beta;


    {
      point_vec << 0.5*(pa[0]+pb[0]), 0.5*(pa[1]+pb[1]), 0.5*(pa[2]+pb[2]);
      penetration = -s;

      Contact contact;
      contact.collisionObject1 = o1;
      contact.collisionObject2 = o2;
      contact.point = point_vec;
      contact.normal = normal;
      contact.penetrationDepth = penetration;
      result.addContact(contact);
    }
    return 1;
  }

  // okay, we have a face-something intersection (because the separating
  // axis is perpendicular to a face). define face 'a' to be the reference
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
  // the incident face (the closest face of the other box).

  const double *Ra,*Rb,*pa,*pb,*Sa,*Sb;
  if (code <= 3) {
    Ra = R1;
    Rb = R2;
    pa = p1;
    pb = p2;
    Sa = A;
    Sb = B;
  }
  else {
    Ra = R2;
    Rb = R1;
    pa = p2;
    pb = p1;
    Sa = B;
    Sb = A;
  }

  // nr = normal vector of reference face dotted with axes of incident box.
  // anr = absolute values of nr.
  dVector3 normal2,nr,anr;
  if (code <= 3) {
    normal2[0] = normal[0];
    normal2[1] = normal[1];
    normal2[2] = normal[2];
  }
  else {
    normal2[0] = -normal[0];
    normal2[1] = -normal[1];
    normal2[2] = -normal[2];
  }
  dMULTIPLY1_331 (nr,Rb,normal2);
  anr[0] = fabs (nr[0]);
  anr[1] = fabs (nr[1]);
  anr[2] = fabs (nr[2]);

  // find the largest compontent of anr: this corresponds to the normal
  // for the indident face. the other axis numbers of the indicent face
  // are stored in a1,a2.
  int lanr,a1,a2;
  if (anr[1] > anr[0]) {
    if (anr[1] > anr[2]) {
      a1 = 0;
      lanr = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }
  else {
    if (anr[0] > anr[2]) {
      lanr = 0;
      a1 = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }

  // compute center point of incident face, in reference-face coordinates
  dVector3 center;
  if (nr[lanr] < 0) {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
  }
  else {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
  }

  // find the normal and non-normal axis numbers of the reference box
  int codeN,code1,code2;
  if (code <= 3) codeN = code-1; else codeN = code-4;
  if (codeN==0) {
    code1 = 1;
    code2 = 2;
  }
  else if (codeN==1) {
    code1 = 0;
    code2 = 2;
  }
  else {
    code1 = 0;
    code2 = 1;
  }

  // find the four corners of the incident face, in reference-face coordinates
  double quad[8];	// 2D coordinate of incident face (x,y pairs)
  double c1,c2,m11,m12,m21,m22;
  c1 = Inner14 (center,Ra+code1);
  c2 = Inner14 (center,Ra+code2);
  // optimize this? - we have already computed this data above, but it is not
  // stored in an easy-to-index format. for now it's quicker just to recompute
  // the four dot products.
  m11 = Inner44 (Ra+code1,Rb+a1);
  m12 = Inner44 (Ra+code1,Rb+a2);
  m21 = Inner44 (Ra+code2,Rb+a1);
  m22 = Inner44 (Ra+code2,Rb+a2);
  {
    double k1 = m11*Sb[a1];
    double k2 = m21*Sb[a1];
    double k3 = m12*Sb[a2];
    double k4 = m22*Sb[a2];
    quad[0] = c1 - k1 - k3;
    quad[1] = c2 - k2 - k4;
    quad[2] = c1 - k1 + k3;
    quad[3] = c2 - k2 + k4;
    quad[4] = c1 + k1 + k3;
    quad[5] = c2 + k2 + k4;
    quad[6] = c1 + k1 - k3;
    quad[7] = c2 + k2 - k4;
  }

  // find the size of the reference face
  double rect[2];
  rect[0] = Sa[code1];
  rect[1] = Sa[code2];

  // intersect the incident and reference faces
  double ret[16];
  int n = intersectRectQuad (rect,quad,ret);
  if (n < 1) return 0;		// this should never happen

  // convert the intersection points into reference-face coordinates,
  // and compute the contact position and depth for each point. only keep
  // those points that have a positive (penetrating) depth. delete points in
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
  //real point[3*8];		// penetrating contact points
  double point[24];		// penetrating contact points
  double dep[8];			// depths for those points
  double det1 = dRecip(m11*m22 - m12*m21);
  m11 *= det1;
  m12 *= det1;
  m21 *= det1;
  m22 *= det1;
  int cnum = 0;			// number of penetrating contact points found
  for (j=0; j < n; j++) {
    double k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
    double k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
    for (i=0; i<3; i++)
    {
      point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
    }
    dep[cnum] = Sa[codeN] - Inner(normal2,point+cnum*3);
    if (dep[cnum] >= 0) {
      ret[cnum*2] = ret[j*2];
      ret[cnum*2+1] = ret[j*2+1];
      cnum++;
    }
  }
  if (cnum < 1) return 0;	// this should never happen

  // we can't generate more contacts than we actually have
  int maxc = 4;
  if (maxc > cnum) maxc = cnum;
  //if (maxc < 1) maxc = 1;

  if (cnum <= maxc) {
    // we have less contacts than we need, so we use them all
    for (j=0; j < cnum; j++)
    {
      point_vec << point[j*3+0] + pa[0], point[j*3+1] + pa[1], point[j*3+2] + pa[2];

      Contact contact;
      contact.collisionObject1 = o1;
      contact.collisionObject2 = o2;
      contact.point = point_vec;
      contact.normal = normal;
      contact.penetrationDepth = dep[j];
      result.addContact(contact);
    }
  }
  else {
    // we have more contacts than are wanted, some of them must be culled.
    // find the deepest point, it is always the first contact.
    int i1 = 0;
    double maxdepth = dep[0];
    for (i=1; i<cnum; i++) {
      if (dep[i] > maxdepth) {
        maxdepth = dep[i];
        i1 = i;
      }
    }

    int iret[8];
    cullPoints (cnum,ret,maxc,i1,iret);

    cnum = maxc;
    for (j=0; j < cnum; j++)
    {
      point_vec << point[iret[j]*3+0] + pa[0], point[iret[j]*3+1] + pa[1], point[iret[j]*3+2] + pa[2];

      Contact contact;
      contact.collisionObject1 = o1;
      contact.collisionObject2 = o2;
      contact.point = point_vec;
      contact.normal = normal;
      contact.penetrationDepth = dep[iret[j]];
      result.addContact(contact);
    }
  }
  return cnum;
}
Ejemplo n.º 14
0
int collideCylinderPlane(CollisionObject* o1, CollisionObject* o2, const double& cyl_rad, const double& half_height, const Eigen::Isometry3d& T0,
                         const Eigen::Vector3d& plane_normal, const Eigen::Isometry3d& T1,
                         CollisionResult& result)
{
  Eigen::Vector3d normal = T1.linear() * plane_normal;
  Eigen::Vector3d Rx = T0.linear().rightCols(1);
  Eigen::Vector3d Ry = normal - normal.dot(Rx) * Rx;
  double mag = Ry.norm();
  Ry.normalize();
  if (mag < DART_COLLISION_EPS)
  {
    if (std::abs(Rx[2]) > 1.0 - DART_COLLISION_EPS)
      Ry = Eigen::Vector3d::UnitX();
    else
      Ry = (Eigen::Vector3d(Rx[1], -Rx[0], 0.0)).normalized();
  }

  Eigen::Vector3d Rz = Rx.cross(Ry);
  Eigen::Isometry3d T;
  T.linear().col(0) = Rx;
  T.linear().col(1) = Ry;
  T.linear().col(2) = Rz;
  T.translation() = T0.translation();

  Eigen::Vector3d nn = T.linear().transpose() * normal;
  Eigen::Vector3d pn = T.inverse() * T1.translation();

  // four corners c0 = ( -h/2, -r ), c1 = ( +h/2, -r ), c2 = ( +h/2, +r ), c3 = ( -h/2, +r )
  Eigen::Vector3d c[4] = {
    Eigen::Vector3d(-half_height, -cyl_rad, 0.0),
    Eigen::Vector3d(+half_height, -cyl_rad, 0.0),
    Eigen::Vector3d(+half_height, +cyl_rad, 0.0),
    Eigen::Vector3d(-half_height, +cyl_rad, 0.0) };

  double depth[4] = { (pn - c[0]).dot(nn), (pn - c[1]).dot(nn), (pn - c[2]).dot(nn), (pn - c[3]).dot(nn) };

  double penetration = -1.0;
  int found = -1;
  for (int i = 0; i < 4; i++)
  {
    if (depth[i] > penetration)
    {
      penetration = depth[i];
      found = i;
    }
  }

  Eigen::Vector3d point;

  if (std::abs(depth[found] - depth[(found+1)%4]) < DART_COLLISION_EPS)
    point = T * (0.5 * (c[found] + c[(found+1)%4]));
  else if (std::abs(depth[found] - depth[(found+3)%4]) < DART_COLLISION_EPS)
    point = T * (0.5 * (c[found] + c[(found+3)%4]));
  else
    point = T * c[found];

  if (penetration > 0.0)
  {
    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.point = point;
    contact.normal = normal;
    contact.penetrationDepth = penetration;
    result.addContact(contact);
    return 1;
  }

  return 0;
}
Ejemplo n.º 15
0
int collideCylinderSphere(CollisionObject* o1, CollisionObject* o2, const double& cyl_rad, const double& half_height, const Eigen::Isometry3d& T0,
                          const double& sphere_rad, const Eigen::Isometry3d& T1,
                          CollisionResult& result)
{
  Eigen::Vector3d center = T0.inverse() * T1.translation();

  double dist = sqrt(center[0] * center[0] + center[1] * center[1]);

  if ( dist < cyl_rad && std::abs(center[2]) < half_height + sphere_rad )
  {
    Contact contact;
    contact.collisionObject1 = o1;
    contact.collisionObject2 = o2;
    contact.penetrationDepth = 0.5 * (half_height + sphere_rad - math::sign(center[2]) * center[2]);
    contact.point = T0 * Eigen::Vector3d(center[0], center[1], half_height - contact.penetrationDepth);
    contact.normal = T0.linear() * Eigen::Vector3d(0.0, 0.0, math::sign(center[2]));
    result.addContact(contact);
    return 1;
  }
  else
  {
    double penetration = 0.5 * (cyl_rad + sphere_rad - dist);
    if ( penetration > 0.0 )
    {
      if ( std::abs(center[2]) > half_height )
      {
        Eigen::Vector3d point = (Eigen::Vector3d(center[0], center[1], 0.0).normalized());
        point *= cyl_rad;
        point[2] = math::sign(center[2]) * half_height;
        Eigen::Vector3d normal = point - center;
        penetration = sphere_rad - normal.norm();
        normal = (T0.linear() * normal).normalized();
        point = T0 * point;

        if (penetration > 0.0)
        {
          Contact contact;
          contact.collisionObject1 = o1;
          contact.collisionObject2 = o2;
          contact.point = point;
          contact.normal = normal;
          contact.penetrationDepth = penetration;
          result.addContact(contact);
          return 1;
        }
      }
      else // if( center[2] >= -half_height && center[2] <= half_height )
      {
        Eigen::Vector3d point = (Eigen::Vector3d(center[0], center[1], 0.0)).normalized();
        Eigen::Vector3d normal = -(T0.linear() * point);
        point *= (cyl_rad - penetration);
        point[2] = center[2];
        point = T0 * point;

        Contact contact;
        contact.collisionObject1 = o1;
        contact.collisionObject2 = o2;
        contact.point = point;
        contact.normal = normal;
        contact.penetrationDepth = penetration;
        result.addContact(contact);
        return 1;
      }
    }
  }
  return 0;
}
Ejemplo n.º 16
0
bool CollisionRequest::isSatisfied(const CollisionResult& result) const
{
  return (!enable_cost) && result.isCollision() && (num_max_contacts <= result.numContacts());
}