Ejemplo n.º 1
0
ValueObjectSP
ABISysV_i386::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_clang_type) const
{
    ValueObjectSP return_valobj_sp;

    if (!return_clang_type)
        return return_valobj_sp;

    ExecutionContext exe_ctx (thread.shared_from_this());
    return_valobj_sp = GetReturnValueObjectSimple(thread, return_clang_type);
    if (return_valobj_sp)
        return return_valobj_sp;

    RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
    if (!reg_ctx_sp)
       return return_valobj_sp;

    if (return_clang_type.IsAggregateType())
    {
        unsigned eax_id = reg_ctx_sp->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
        lldb::addr_t storage_addr = (uint32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff);
        return_valobj_sp = ValueObjectMemory::Create (&thread,
                                                      "",
                                                      Address (storage_addr, nullptr),
                                                      return_clang_type);
    }

    return return_valobj_sp;
}
Ejemplo n.º 2
0
ValueObjectSP ABISysV_s390x::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;

  if (!return_compiler_type)
    return return_valobj_sp;

  ExecutionContext exe_ctx(thread.shared_from_this());
  return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
  if (return_valobj_sp)
    return return_valobj_sp;

  RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
  if (!reg_ctx_sp)
    return return_valobj_sp;

  if (return_compiler_type.IsAggregateType()) {
    // FIXME: This is just taking a guess, r2 may very well no longer hold the
    // return storage location.
    // If we are going to do this right, when we make a new frame we should
    // check to see if it uses a memory return, and if we are at the first
    // instruction and if so stash away the return location.  Then we would
    // only return the memory return value if we know it is valid.

    unsigned r2_id =
        reg_ctx_sp->GetRegisterInfoByName("r2", 0)->kinds[eRegisterKindLLDB];
    lldb::addr_t storage_addr =
        (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r2_id, 0);
    return_valobj_sp = ValueObjectMemory::Create(
        &thread, "", Address(storage_addr, nullptr), return_compiler_type);
  }

  return return_valobj_sp;
}
Ejemplo n.º 3
0
uint32_t
GoASTContext::GetNumChildren(lldb::opaque_compiler_type_t type, bool omit_empty_base_classes)
{
    if (!type || !GetCompleteType(type))
        return 0;
    GoType *t = static_cast<GoType *>(type);
    if (t->GetGoKind() == GoType::KIND_PTR)
    {
        CompilerType elem = t->GetElementType();
        if (elem.IsAggregateType())
            return elem.GetNumChildren(omit_empty_base_classes);
        return 1;
    }
    else if (GoArray *array = t->GetArray())
    {
        return array->GetLength();
    }
    else if (t->IsTypedef())
    {
        return t->GetElementType().GetNumChildren(omit_empty_base_classes);
    }

    return GetNumFields(type);
}
Ejemplo n.º 4
0
ValueObjectSP
ABISysV_mips::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_clang_type) const
{
    ValueObjectSP return_valobj_sp;
    Value value;

    if (!return_clang_type)
        return return_valobj_sp;

    ExecutionContext exe_ctx (thread.shared_from_this());
    if (exe_ctx.GetTargetPtr() == NULL || exe_ctx.GetProcessPtr() == NULL)
        return return_valobj_sp;

    value.SetCompilerType(return_clang_type);

    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
    if (!reg_ctx)
        return return_valobj_sp;
    
    bool is_signed = false;
    bool is_complex = false;
    uint32_t count = 0;

    // In MIPS register "r2" (v0) holds the integer function return values
    const RegisterInfo *r2_reg_info = reg_ctx->GetRegisterInfoByName("r2", 0);
    size_t bit_width = return_clang_type.GetBitSize(&thread);
    
    if (return_clang_type.IsIntegerType (is_signed))
    {
        switch (bit_width)
        {
            default:
                return return_valobj_sp;
            case 64:
            {
                const RegisterInfo *r3_reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
                uint64_t raw_value;
                raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX;
                raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r3_reg_info, 0) & UINT32_MAX)) << 32;
                if (is_signed)
                    value.GetScalar() = (int64_t)raw_value;
                else
                    value.GetScalar() = (uint64_t)raw_value;
            }
                break;
            case 32:
                if (is_signed)
                    value.GetScalar() = (int32_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
                else
                    value.GetScalar() = (uint32_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
                break;
            case 16:
                if (is_signed)
                    value.GetScalar() = (int16_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
                else
                    value.GetScalar() = (uint16_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
                break;
            case 8:
                if (is_signed)
                    value.GetScalar() = (int8_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
                else
                    value.GetScalar() = (uint8_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
                break;
        }
    }
    else if (return_clang_type.IsPointerType ())
    {
        uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX;
        value.GetScalar() = ptr;
    }
    else if (return_clang_type.IsAggregateType ())
    {
        // Structure/Vector is always passed in memory and pointer to that memory is passed in r2. 
        uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r2", 0), 0);
        // We have got the address. Create a memory object out of it
        return_valobj_sp = ValueObjectMemory::Create (&thread,
                                                      "",
                                                      Address (mem_address, NULL),
                                                      return_clang_type);
        return return_valobj_sp;
    }
    else if (return_clang_type.IsFloatingPointType (count, is_complex))
    {
        const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
        const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);

        if (count == 1 && !is_complex)
        {
            switch (bit_width)
            {
                default:
                    return return_valobj_sp;
                case 64:
                {
                    static_assert(sizeof(double) == sizeof(uint64_t), "");
                    uint64_t raw_value;
                    raw_value = reg_ctx->ReadRegisterAsUnsigned(f0_info, 0) & UINT32_MAX;
                    raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(f1_info, 0) & UINT32_MAX)) << 32;
                    value.GetScalar() = *reinterpret_cast<double*>(&raw_value);
                    break;
                }
                case 32:
                {
                    static_assert(sizeof(float) == sizeof(uint32_t), "");
                    uint32_t raw_value = reg_ctx->ReadRegisterAsUnsigned(f0_info, 0) & UINT32_MAX;
                    value.GetScalar() = *reinterpret_cast<float*>(&raw_value);
                    break;
                }
            }
        }
        else
        {
            // not handled yet
            return return_valobj_sp;
        }
    }
    else
    {
        // not handled yet
        return return_valobj_sp;
    }
    
    // If we get here, we have a valid Value, so make our ValueObject out of it:

    return_valobj_sp = ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(),
                                                      value,
                                                      ConstString(""));
    return return_valobj_sp;
}
Ejemplo n.º 5
0
ValueObjectSP ABISysV_ppc64::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;

  if (!return_compiler_type)
    return return_valobj_sp;

  ExecutionContext exe_ctx(thread.shared_from_this());
  return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
  if (return_valobj_sp)
    return return_valobj_sp;

  RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
  if (!reg_ctx_sp)
    return return_valobj_sp;

  const size_t bit_width = return_compiler_type.GetBitSize(&thread);
  if (return_compiler_type.IsAggregateType()) {
    Target *target = exe_ctx.GetTargetPtr();
    bool is_memory = true;
    if (bit_width <= 128) {
      ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
      DataBufferSP data_sp(new DataBufferHeap(16, 0));
      DataExtractor return_ext(data_sp, target_byte_order,
                               target->GetArchitecture().GetAddressByteSize());

      const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
      const RegisterInfo *rdx_info =
          reg_ctx_sp->GetRegisterInfoByName("rdx", 0);

      RegisterValue r3_value, rdx_value;
      reg_ctx_sp->ReadRegister(r3_info, r3_value);
      reg_ctx_sp->ReadRegister(rdx_info, rdx_value);

      DataExtractor r3_data, rdx_data;

      r3_value.GetData(r3_data);
      rdx_value.GetData(rdx_data);

      uint32_t fp_bytes =
          0; // Tracks how much of the xmm registers we've consumed so far
      uint32_t integer_bytes =
          0; // Tracks how much of the r3/rds registers we've consumed so far

      const uint32_t num_children = return_compiler_type.GetNumFields();

      // Since we are in the small struct regime, assume we are not in memory.
      is_memory = false;

      for (uint32_t idx = 0; idx < num_children; idx++) {
        std::string name;
        uint64_t field_bit_offset = 0;
        bool is_signed;
        bool is_complex;
        uint32_t count;

        CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
            idx, name, &field_bit_offset, nullptr, nullptr);
        const size_t field_bit_width = field_compiler_type.GetBitSize(&thread);

        // If there are any unaligned fields, this is stored in memory.
        if (field_bit_offset % field_bit_width != 0) {
          is_memory = true;
          break;
        }

        uint32_t field_byte_width = field_bit_width / 8;
        uint32_t field_byte_offset = field_bit_offset / 8;

        DataExtractor *copy_from_extractor = nullptr;
        uint32_t copy_from_offset = 0;

        if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
            field_compiler_type.IsPointerType()) {
          if (integer_bytes < 8) {
            if (integer_bytes + field_byte_width <= 8) {
              // This is in RAX, copy from register to our result structure:
              copy_from_extractor = &r3_data;
              copy_from_offset = integer_bytes;
              integer_bytes += field_byte_width;
            } else {
              // The next field wouldn't fit in the remaining space, so we
              // pushed it to rdx.
              copy_from_extractor = &rdx_data;
              copy_from_offset = 0;
              integer_bytes = 8 + field_byte_width;
            }
          } else if (integer_bytes + field_byte_width <= 16) {
            copy_from_extractor = &rdx_data;
            copy_from_offset = integer_bytes - 8;
            integer_bytes += field_byte_width;
          } else {
            // The last field didn't fit.  I can't see how that would happen w/o
            // the overall size being
            // greater than 16 bytes.  For now, return a nullptr return value
            // object.
            return return_valobj_sp;
          }
        } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
          // Structs with long doubles are always passed in memory.
          if (field_bit_width == 128) {
            is_memory = true;
            break;
          } else if (field_bit_width == 64) {
            copy_from_offset = 0;
            fp_bytes += field_byte_width;
          } else if (field_bit_width == 32) {
            // This one is kind of complicated.  If we are in an "eightbyte"
            // with another float, we'll
            // be stuffed into an xmm register with it.  If we are in an
            // "eightbyte" with one or more ints,
            // then we will be stuffed into the appropriate GPR with them.
            bool in_gpr;
            if (field_byte_offset % 8 == 0) {
              // We are at the beginning of one of the eightbytes, so check the
              // next element (if any)
              if (idx == num_children - 1)
                in_gpr = false;
              else {
                uint64_t next_field_bit_offset = 0;
                CompilerType next_field_compiler_type =
                    return_compiler_type.GetFieldAtIndex(idx + 1, name,
                                                         &next_field_bit_offset,
                                                         nullptr, nullptr);
                if (next_field_compiler_type.IsIntegerOrEnumerationType(
                        is_signed))
                  in_gpr = true;
                else {
                  copy_from_offset = 0;
                  in_gpr = false;
                }
              }
            } else if (field_byte_offset % 4 == 0) {
              // We are inside of an eightbyte, so see if the field before us is
              // floating point:
              // This could happen if somebody put padding in the structure.
              if (idx == 0)
                in_gpr = false;
              else {
                uint64_t prev_field_bit_offset = 0;
                CompilerType prev_field_compiler_type =
                    return_compiler_type.GetFieldAtIndex(idx - 1, name,
                                                         &prev_field_bit_offset,
                                                         nullptr, nullptr);
                if (prev_field_compiler_type.IsIntegerOrEnumerationType(
                        is_signed))
                  in_gpr = true;
                else {
                  copy_from_offset = 4;
                  in_gpr = false;
                }
              }
            } else {
              is_memory = true;
              continue;
            }

            // Okay, we've figured out whether we are in GPR or XMM, now figure
            // out which one.
            if (in_gpr) {
              if (integer_bytes < 8) {
                // This is in RAX, copy from register to our result structure:
                copy_from_extractor = &r3_data;
                copy_from_offset = integer_bytes;
                integer_bytes += field_byte_width;
              } else {
                copy_from_extractor = &rdx_data;
                copy_from_offset = integer_bytes - 8;
                integer_bytes += field_byte_width;
              }
            } else {
              fp_bytes += field_byte_width;
            }
          }
        }

        // These two tests are just sanity checks.  If I somehow get the
        // type calculation wrong above it is better to just return nothing
        // than to assert or crash.
        if (!copy_from_extractor)
          return return_valobj_sp;
        if (copy_from_offset + field_byte_width >
            copy_from_extractor->GetByteSize())
          return return_valobj_sp;

        copy_from_extractor->CopyByteOrderedData(
            copy_from_offset, field_byte_width,
            data_sp->GetBytes() + field_byte_offset, field_byte_width,
            target_byte_order);
      }

      if (!is_memory) {
        // The result is in our data buffer.  Let's make a variable object out
        // of it:
        return_valobj_sp = ValueObjectConstResult::Create(
            &thread, return_compiler_type, ConstString(""), return_ext);
      }
    }

    // FIXME: This is just taking a guess, r3 may very well no longer hold the
    // return storage location.
    // If we are going to do this right, when we make a new frame we should
    // check to see if it uses a memory
    // return, and if we are at the first instruction and if so stash away the
    // return location.  Then we would
    // only return the memory return value if we know it is valid.

    if (is_memory) {
      unsigned r3_id =
          reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
      lldb::addr_t storage_addr =
          (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
                                                                        0);
      return_valobj_sp = ValueObjectMemory::Create(
          &thread, "", Address(storage_addr, nullptr), return_compiler_type);
    }
  }

  return return_valobj_sp;
}
Ejemplo n.º 6
0
CompilerType
GoASTContext::GetChildCompilerTypeAtIndex(lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers,
                                          bool omit_empty_base_classes, bool ignore_array_bounds, std::string &child_name,
                                          uint32_t &child_byte_size, int32_t &child_byte_offset,
                                          uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset,
                                          bool &child_is_base_class, bool &child_is_deref_of_parent, ValueObject *valobj, uint64_t &language_flags)
{
    child_name.clear();
    child_byte_size = 0;
    child_byte_offset = 0;
    child_bitfield_bit_size = 0;
    child_bitfield_bit_offset = 0;
    child_is_base_class = false;
    child_is_deref_of_parent = false;
    language_flags = 0;

    if (!type || !GetCompleteType(type))
        return CompilerType();

    GoType *t = static_cast<GoType *>(type);
    if (t->GetStruct())
    {
        uint64_t bit_offset;
        CompilerType ret = GetFieldAtIndex(type, idx, child_name, &bit_offset, nullptr, nullptr);
        child_byte_size = ret.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr);
        child_byte_offset = bit_offset / 8;
        return ret;
    }
    else if (t->GetGoKind() == GoType::KIND_PTR)
    {
        CompilerType pointee = t->GetElementType();
        if (!pointee.IsValid() || pointee.IsVoidType())
            return CompilerType();
        if (transparent_pointers && pointee.IsAggregateType())
        {
            bool tmp_child_is_deref_of_parent = false;
            return pointee.GetChildCompilerTypeAtIndex(exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
                                                    ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
                                                    child_bitfield_bit_size, child_bitfield_bit_offset,
                                                       child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags);
        }
        else
        {
            child_is_deref_of_parent = true;
            const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
            if (parent_name)
            {
                child_name.assign(1, '*');
                child_name += parent_name;
            }

            // We have a pointer to an simple type
            if (idx == 0 && pointee.GetCompleteType())
            {
                child_byte_size = pointee.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
                child_byte_offset = 0;
                return pointee;
            }
        }
    }
    else if (GoArray *a = t->GetArray())
    {
        if (ignore_array_bounds || idx < a->GetLength())
        {
            CompilerType element_type = a->GetElementType();
            if (element_type.GetCompleteType())
            {
                char element_name[64];
                ::snprintf(element_name, sizeof(element_name), "[%zu]", idx);
                child_name.assign(element_name);
                child_byte_size = element_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
                child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
                return element_type;
            }
        }
    }
    else if (t->IsTypedef())
    {
        return t->GetElementType().GetChildCompilerTypeAtIndex(
            exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name,
            child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
            child_is_deref_of_parent, valobj, language_flags);
    }
    return CompilerType();
}