Ejemplo n.º 1
0
    void CompletionSet::orderCompletions(size_t well_i, size_t well_j, EclipseGridConstPtr grid)
    {
        if (m_completions.empty()) {
            return;
        }

        // Find the first completion and swap it into the 0-position.
        const double surface_z = 0.0;
        size_t first_index = findClosestCompletion(well_i, well_j, grid, surface_z, 0);
        std::swap(m_completions[first_index], m_completions[0]);

        // Repeat for remaining completions.
        // Note that since findClosestCompletion() is O(n) if n is the number of completions,
        // this is an O(n^2) algorithm. However, it should be acceptable since the expected
        // number of completions is fairly low (< 100).
        for (size_t pos = 1; pos < m_completions.size() - 1; ++pos) {
            CompletionConstPtr prev = m_completions[pos - 1];
            const double prevz = grid->getCellDepth(prev->getI(), prev->getJ(), prev->getK());
            size_t next_index = findClosestCompletion(prev->getI(), prev->getJ(), grid, prevz, pos);
            std::swap(m_completions[next_index], m_completions[pos]);
        }
    }
Ejemplo n.º 2
0
    ecl_rft_node_type * EclipseWriteRFTHandler::createEclRFTNode(WellConstPtr well,
                                                                  const SimulatorTimerInterface& simulatorTimer,
                                                                  EclipseGridConstPtr eclipseGrid,
                                                                  const std::vector<double>& pressure,
                                                                  const std::vector<double>& swat,
                                                                  const std::vector<double>& sgas) {


        const std::string& well_name      = well->name();
        size_t             timestep       = (size_t)simulatorTimer.currentStepNum();
        time_t             recording_date = simulatorTimer.currentPosixTime();
        double             days           = Opm::unit::convert::to(simulatorTimer.simulationTimeElapsed(), Opm::unit::day);

        std::string type = "RFT";
        ecl_rft_node_type * ecl_rft_node = ecl_rft_node_alloc_new(well_name.c_str(), type.c_str(), recording_date, days);

        CompletionSetConstPtr completionsSet = well->getCompletions(timestep);
        for (size_t index = 0; index < completionsSet->size(); ++index) {
            CompletionConstPtr completion = completionsSet->get(index);
            size_t i = (size_t)completion->getI();
            size_t j = (size_t)completion->getJ();
            size_t k = (size_t)completion->getK();

            size_t global_index = eclipseGrid->getGlobalIndex(i,j,k);
            int active_index = globalToActiveIndex_[global_index];

            if (active_index > -1) {
                double depth = eclipseGrid->getCellDepth(i,j,k);
                double completion_pressure = pressure.size() > 0 ? pressure[active_index] : 0.0;
                double saturation_water    = swat.size() > 0 ? swat[active_index] : 0.0;
                double saturation_gas      = sgas.size() > 0 ? sgas[active_index] : 0.0;

                ecl_rft_cell_type * ecl_rft_cell = ecl_rft_cell_alloc_RFT( i ,j, k , depth, completion_pressure, saturation_water, saturation_gas);
                ecl_rft_node_append_cell( ecl_rft_node , ecl_rft_cell);
            }
        }

        return ecl_rft_node;
    }
Ejemplo n.º 3
0
void WellsManager::createWellsFromSpecs(std::vector<WellConstPtr>& wells, size_t timeStep,
                                        const C2F& c2f,
                                        const int* cart_dims,
                                        FC begin_face_centroids,
                                        int dimensions,
                                        std::vector<double>& dz,
                                        std::vector<std::string>& well_names,
                                        std::vector<WellData>& well_data,
                                        std::map<std::string, int>& well_names_to_index,
                                        const PhaseUsage& phaseUsage,
                                        const std::map<int,int>& cartesian_to_compressed,
                                        const double* permeability,
                                        const NTG& ntg,
                                        std::vector<int>& wells_on_proc)
{
    if (dimensions != 3) {
        OPM_THROW(std::domain_error,
                  "WellsManager::createWellsFromSpecs() only "
                  "supported in three space dimensions");
    }

    std::vector<std::vector<PerfData> > wellperf_data;
    wellperf_data.resize(wells.size());
    wells_on_proc.resize(wells.size(), 1);

    int well_index = 0;
    for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
        WellConstPtr well = (*wellIter);

        if (well->getStatus(timeStep) == WellCommon::SHUT) {
            continue;
        }

        {   // COMPDAT handling
            CompletionSetConstPtr completionSet = well->getCompletions(timeStep);
            // shut completions and open ones stored in this process will have 1 others 0.
            std::vector<std::size_t> completion_on_proc(completionSet->size(), 1);
            std::size_t shut_completions_number = 0;
            for (size_t c=0; c<completionSet->size(); c++) {
                CompletionConstPtr completion = completionSet->get(c);
                if (completion->getState() == WellCompletion::OPEN) {
                    int i = completion->getI();
                    int j = completion->getJ();
                    int k = completion->getK();

                    const int* cpgdim = cart_dims;
                    int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
                    std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
                    if (cgit == cartesian_to_compressed.end()) {
                        if ( is_parallel_run_ )
                        {
                            completion_on_proc[c]=0;
                            continue;
                        }
                        else
                        {
                            OPM_MESSAGE("****Warning: Cell with i,j,k indices " << i << ' ' << j << ' '
                                      << k << " not found in grid. The completion will be igored (well = "
                                      << well->name() << ')');
                        }
                    }
                    else
                    {
                        int cell = cgit->second;
                        PerfData pd;
                        pd.cell = cell;
                        {
                            const Value<double>& transmissibilityFactor = completion->getConnectionTransmissibilityFactorAsValueObject();
                            const double wellPi = completion ->getWellPi();
                            if (transmissibilityFactor.hasValue()) {
                                pd.well_index = transmissibilityFactor.getValue();
                            } else {
                                double radius = 0.5*completion->getDiameter();
                                if (radius <= 0.0) {
                                    radius = 0.5*unit::feet;
                                    OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
                                }

                                std::array<double, 3> cubical =
                                    WellsManagerDetail::getCubeDim<3>(c2f, begin_face_centroids, cell);

                                // overwrite dz values calculated in getCubeDim.
                                if (dz.size() > 0) {
                                    cubical[2] = dz[cell];
                                }

                                const double* cell_perm = &permeability[dimensions*dimensions*cell];
                                pd.well_index =
                                    WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm,
                                                                         completion->getSkinFactor(),
                                                                         completion->getDirection(),
                                                                         ntg[cell]);
                            }
                            pd.well_index *= wellPi;
                        }
                        wellperf_data[well_index].push_back(pd);
                    }
                } else {
                    ++shut_completions_number;
                    if (completion->getState() != WellCompletion::SHUT) {
                        OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion->getState() ) << " not handled");
                    }
                }
            }
            if ( is_parallel_run_ )
            {
                // sum_completions_on_proc includes completions
                // that are shut
                std::size_t sum_completions_on_proc = std::accumulate(completion_on_proc.begin(),
                                                                      completion_on_proc.end(),0);
                // Set wells that are not on this processor to SHUT.
                // A well is not here if only shut completions are found.
                if ( sum_completions_on_proc == shut_completions_number )
                {
                    // Mark well as not existent on this process
                    wells_on_proc[wellIter-wells.begin()] = 0;
                    continue;
                }
                else
                {
                    // Check that the complete well is on this process
                    if ( sum_completions_on_proc < completionSet->size() )
                    {
                        std::cout<< "Well "<< well->name() << " semms not be in "
                                 << "completely in the disjoint partition of "
                                 << "process deactivating here." << std::endl;
                        // Mark well as not existent on this process
                        wells_on_proc[wellIter-wells.begin()] = 0;
                        continue;
                    }
                }
            }
        }
        {   // WELSPECS handling
            well_names_to_index[well->name()] = well_index;
            well_names.push_back(well->name());
            {
                WellData wd;
                wd.reference_bhp_depth = well->getRefDepth();
                wd.welspecsline = -1;
                if (well->isInjector( timeStep ))
                    wd.type = INJECTOR;
                else
                    wd.type = PRODUCER;
                well_data.push_back(wd);
            }
        }

        well_index++;
    }
    // Set up reference depths that were defaulted. Count perfs.

    const int num_wells = well_data.size();

    int num_perfs = 0;
    assert (dimensions == 3);
    for (int w = 0; w < num_wells; ++w) {
        num_perfs += wellperf_data[w].size();
    }

    // Create the well data structures.
    w_ = create_wells(phaseUsage.num_phases, num_wells, num_perfs);
    if (!w_) {
        OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
    }


    // Add wells.
    for (int w = 0; w < num_wells; ++w) {
        const int           w_num_perf = wellperf_data[w].size();
        std::vector<int>    perf_cells  (w_num_perf);
        std::vector<double> perf_prodind(w_num_perf);

        for (int perf = 0; perf < w_num_perf; ++perf) {
            perf_cells  [perf] = wellperf_data[w][perf].cell;
            perf_prodind[perf] = wellperf_data[w][perf].well_index;
        }

        const double* comp_frac = NULL;

        // We initialize all wells with a null component fraction,
        // and must (for injection wells) overwrite it later.
        const int ok =
            add_well(well_data[w].type,
                     well_data[w].reference_bhp_depth,
                     w_num_perf,
                     comp_frac,
                     perf_cells.data(),
                     perf_prodind.data(),
                     well_names[w].c_str(),
                     w_);

        if (!ok) {
            OPM_THROW(std::runtime_error,
                      "Failed adding well "
                      << well_names[w]
                      << " to Wells data structure.");
        }
    }
}
Ejemplo n.º 4
0
void WellsManager::createWellsFromSpecs(std::vector<WellConstPtr>& wells, size_t timeStep,
                                        const C2F& c2f, 
                                        const int* cart_dims,
                                        FC begin_face_centroids, 
                                        CC begin_cell_centroids,
                                        int dimensions,
                                        std::vector<std::string>& well_names,
                                        std::vector<WellData>& well_data,
                                        std::map<std::string, int>& well_names_to_index,
                                        const PhaseUsage& phaseUsage,
                                        const std::map<int,int>& cartesian_to_compressed,
                                        const double* permeability,
                                        const NTG& ntg)
{
    if (dimensions != 3) {
        OPM_THROW(std::domain_error,
                  "WellsManager::createWellsFromSpecs() only "
                  "supported in three space dimensions");
    }

    std::vector<std::vector<PerfData> > wellperf_data;
    wellperf_data.resize(wells.size());

    int well_index = 0;
    for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
        WellConstPtr well = (*wellIter);
        {   // WELSPECS handling
            well_names_to_index[well->name()] = well_index;
            well_names.push_back(well->name());
            {
                WellData wd;
                // If defaulted, set refdepth to a marker
                // value, will be changed after getting perforation
                // data to the centroid of the cell of the top well
                // perforation.
                wd.reference_bhp_depth = (well->getRefDepthDefaulted()) ? -1e100 : well->getRefDepth();
                wd.welspecsline = -1;
                if (well->isInjector( timeStep ))
                    wd.type = INJECTOR;
                else
                    wd.type = PRODUCER;
                well_data.push_back(wd);
            }
        }

        {   // COMPDAT handling
            CompletionSetConstPtr completionSet = well->getCompletions(timeStep);
            for (size_t c=0; c<completionSet->size(); c++) {
                CompletionConstPtr completion = completionSet->get(c);
                int i = completion->getI();
                int j = completion->getJ();
                int k = completion->getK();

                const int* cpgdim = cart_dims;
                int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
                std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
                if (cgit == cartesian_to_compressed.end()) {
                        OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
                                  << k << " not found in grid (well = " << well->name() << ')');
                }
                int cell = cgit->second;
                PerfData pd;
                pd.cell = cell;
                if (completion->getConnectionTransmissibilityFactor() > 0.0) {
                    pd.well_index = completion->getConnectionTransmissibilityFactor();
                } else {
                    double radius = 0.5*completion->getDiameter();
                    if (radius <= 0.0) {
                        radius = 0.5*unit::feet;
                        OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
                    }

                    const std::array<double, 3> cubical =
                        WellsManagerDetail::getCubeDim<3>(c2f, begin_face_centroids, cell);

                    const double* cell_perm = &permeability[dimensions*dimensions*cell];
                    pd.well_index =
                        WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm,
                                                             completion->getSkinFactor(),
                                                             completion->getDirection(),
                                                             ntg[cell]);
                }
                wellperf_data[well_index].push_back(pd);
            }
        }
        well_index++;
    }

    // Set up reference depths that were defaulted. Count perfs.

    const int num_wells = well_data.size();

    int num_perfs = 0;
    assert (dimensions == 3);
    for (int w = 0; w < num_wells; ++w) {
        num_perfs += wellperf_data[w].size();
        if (well_data[w].reference_bhp_depth == -1e100) {
            // It was defaulted. Set reference depth to minimum perforation depth.
            double min_depth = 1e100;
            int num_wperfs = wellperf_data[w].size();
            for (int perf = 0; perf < num_wperfs; ++perf) {
                using UgGridHelpers::increment;
                using UgGridHelpers::getCoordinate;

                const CC& cc =
                    increment(begin_cell_centroids,
                              wellperf_data[w][perf].cell,
                              dimensions);

                const double depth = getCoordinate(cc, 2);

                min_depth = std::min(min_depth, depth);
            }

            well_data[w].reference_bhp_depth = min_depth;
        }
    }

    // Create the well data structures.
    w_ = create_wells(phaseUsage.num_phases, num_wells, num_perfs);
    if (!w_) {
        OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
    }


    // Add wells.
    for (int w = 0; w < num_wells; ++w) {
        const int           w_num_perf = wellperf_data[w].size();
        std::vector<int>    perf_cells  (w_num_perf);
        std::vector<double> perf_prodind(w_num_perf);

        for (int perf = 0; perf < w_num_perf; ++perf) {
            perf_cells  [perf] = wellperf_data[w][perf].cell;
            perf_prodind[perf] = wellperf_data[w][perf].well_index;
        }

        const double* comp_frac = NULL;

        // We initialize all wells with a null component fraction,
        // and must (for injection wells) overwrite it later.
        const int ok =
            add_well(well_data[w].type,
                     well_data[w].reference_bhp_depth,
                     w_num_perf,
                     comp_frac,
                     & perf_cells  [0],
                     & perf_prodind[0],
                     well_names[w].c_str(),
                     w_);

        if (!ok) {
            OPM_THROW(std::runtime_error,
                      "Failed adding well "
                      << well_names[w]
                      << " to Wells data structure.");
        }
    }
}
    void SimulatorFullyImplicitBlackoilPolymer<GridT>::
    computeRepRadiusPerfLength(const Opm::EclipseStateConstPtr eclipseState,
                               const size_t                    timeStep,
                               const GridT&                    grid,
                               std::vector<double>&            wells_rep_radius,
                               std::vector<double>&            wells_perf_length,
                               std::vector<double>&            wells_bore_diameter)
    {

        // TODO, the function does not work for parallel running
        // to be fixed later.
        int number_of_cells = Opm::UgGridHelpers::numCells(grid);
        const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
        const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
        auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
        auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);

        if (eclipseState->getSchedule()->numWells() == 0) {
            OPM_MESSAGE("No wells specified in Schedule section, "
                        "initializing no wells");
            return;
        }

        const size_t n_perf = wells_rep_radius.size();

        wells_rep_radius.clear();
        wells_perf_length.clear();
        wells_bore_diameter.clear();

        wells_rep_radius.reserve(n_perf);
        wells_perf_length.reserve(n_perf);
        wells_bore_diameter.reserve(n_perf);

        std::map<int,int> cartesian_to_compressed;

        setupCompressedToCartesian(global_cell, number_of_cells,
                                   cartesian_to_compressed);

        ScheduleConstPtr          schedule = eclipseState->getSchedule();
        std::vector<WellConstPtr> wells    = schedule->getWells(timeStep);

        int well_index = 0;

        for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
             WellConstPtr well = (*wellIter);

             if (well->getStatus(timeStep) == WellCommon::SHUT) {
                 continue;
             }
             {   // COMPDAT handling
                 CompletionSetConstPtr completionSet = well->getCompletions(timeStep);
                 for (size_t c=0; c<completionSet->size(); c++) {
                     CompletionConstPtr completion = completionSet->get(c);
                     if (completion->getState() == WellCompletion::OPEN) {
                         int i = completion->getI();
                         int j = completion->getJ();
                         int k = completion->getK();

                         const int* cpgdim = cart_dims;
                         int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
                         std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
                         if (cgit == cartesian_to_compressed.end()) {
                             OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
                                       << k << " not found in grid (well = " << well->name() << ')');
                         }
                         int cell = cgit->second;

                         {
                             double radius = 0.5*completion->getDiameter();
                             if (radius <= 0.0) {
                                 radius = 0.5*unit::feet;
                                 OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
                             }

                             const std::array<double, 3> cubical =
                             WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);

                             WellCompletion::DirectionEnum direction = completion->getDirection();

                             double re; // area equivalent radius of the grid block
                             double perf_length; // the length of the well perforation

                             switch (direction) {
                                 case Opm::WellCompletion::DirectionEnum::X:
                                     re = std::sqrt(cubical[1] * cubical[2] / M_PI);
                                     perf_length = cubical[0];
                                     break;
                                 case Opm::WellCompletion::DirectionEnum::Y:
                                     re = std::sqrt(cubical[0] * cubical[2] / M_PI);
                                     perf_length = cubical[1];
                                     break;
                                 case Opm::WellCompletion::DirectionEnum::Z:
                                     re = std::sqrt(cubical[0] * cubical[1] / M_PI);
                                     perf_length = cubical[2];
                                     break;
                                 default:
                                     OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
                             }

                             double repR = std::sqrt(re * radius);
                             wells_rep_radius.push_back(repR);
                             wells_perf_length.push_back(perf_length);
                             wells_bore_diameter.push_back(2. * radius);
                         }
                     } else {
                         if (completion->getState() != WellCompletion::SHUT) {
                             OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion->getState() ) << " not handled");
                         }
                     }

                 }
            }
            well_index++;
        }
    }