void test_cst_parent_operation(const Cst& cst, typename Cst::size_type times=100000, uint64_t x=17) { typedef typename Cst::size_type size_type; typedef typename Cst::node_type node_type; srand(x); size_type n = cst.csa.size(); // take \f$ time \f$ random leaves std::vector<node_type> rand_leaf(times); for (size_type i=0; i<rand_leaf.size(); ++i) { rand_leaf[i] = cst.select_leaf(1+ (rand() % n)); } node_type p; size_type cnt=0; write_R_output("cst","parent","begin",times,cnt); for (size_type i=0; i<times; ++i, ++cnt) { p = cst.parent(rand_leaf[i]); while (p != cst.root()) { p = cst.parent(p); ++cnt; } } write_R_output("cst","parent","end",times,cnt); }
inline node_type parent() { --m_stack_size; // decrease stack size if (m_stack_cache != nullptr and m_stack_size < cache_size) { return m_stack_cache[m_stack_size]; } else return m_cst->parent(m_v); }
void test_cst_matching_statistics(const Cst& cst, unsigned char* S2, typename Cst::size_type n2) { typedef typename Cst::size_type size_type; typedef typename Cst::node_type node_type; size_type cnt = 0; write_R_output("cst","mstats","begin",n2,cnt); size_type q = 0; // current match length size_type p2 = n2-1; // position in S2 size_type i = 0, j = cst.csa.size()-1; // \f$ \epsilon \f$ matches all suffixes of S1 while (p2+1 > 0) { size_type lb, rb; // perform backward search on interval \f$ [i,j] \f$ size_type size = algorithm::backward_search(cst.csa, i, j, S2[p2], lb, rb); if (size > 0) { q = q + 1; i = lb; j = rb; p2 = p2 - 1; } else if (i==0 and j == cst.csa.size()) { p2 = p2 -1; } else { // map interval to a node of the cst and calculate parent node_type p = cst.parent(cst.node(i, j)); q = cst.depth(p); // update match length i = cst.lb(p); // update left bound j = cst.rb(p); // update right bound } cnt += q; } write_R_output("cst","mstats","end",n2,cnt); }
//! Prefix increment of the iterator. iterator& operator++() { if (!m_valid) return *this; if (m_v == m_cst->root()) { m_valid = false; return *this; } value_type w = m_cst->sibling(m_v); if (w == m_cst->root()) { // if no next right sibling exist m_v = m_cst->parent(m_v); // go to parent } else { // if next right sibling exist m_v = m_cst->leftmost_leaf(w); // go to leaftmost leaf in the subtree of w } return *this; }
void generate_nodes_from_random_leaves(const Cst& cst, typename Cst::size_type times, std::vector<typename Cst::node_type>& nodes, uint64_t x=17) { typedef typename Cst::size_type size_type; typedef typename Cst::node_type node_type; srand(x); size_type n = cst.csa.size(); // generate nodes for (size_type i=0; i<times; ++i) { node_type p = cst.select_leaf(1+ (rand() % n)); nodes.push_back(p); while (p != cst.root()) { p = cst.parent(p); nodes.push_back(p); } } }
void test_cst_sl_operation(const Cst& cst, typename Cst::size_type times=500, uint64_t x=17) { typedef typename Cst::size_type size_type; typedef typename Cst::node_type node_type; size_type n = cst.csa.size(); if (times > n) times = n; std::vector<node_type> nodes(times); srand(x); // take \f$ times \f$ random leaves and calculate each parent for (size_type i=0; i<times; ++i) { nodes[i] = cst.parent(cst.select_leaf(rand()%n + 1)); } size_type cnt=0; times = 0; write_R_output("cst","sl","begin",0,cnt); for (size_type i=0; i<nodes.size(); ++i) { node_type v = nodes[i]; // std::cout<<"v="<<cst.lb(v)<<" "<<cst.rb(v)<<std::endl; // size_type d = cst.depth(v); while (v != cst.root()) { // while v is not the root ++cnt; v = cst.sl(v); // follow suffix link // if( cnt < 30 ){ // std::cout<< cnt << " " << cst.lb(v) << " " << cst.rb(v) << " " << cst.depth(v) << std::endl; // } // size_type d2 = cst.depth(v); // if( d != d2+1 ){ // std::cout<<"error at cnt "<<cnt<<" d="<<d<<" d2="<<d2<<std::endl; // } // d = d2; } } write_R_output("cst","sl","end",cnt,cnt); }