Ejemplo n.º 1
0
void MODULE::SetOrientation( double newangle )
{
    double  angleChange = newangle - m_Orient;  // change in rotation

    NORMALIZE_ANGLE_POS( newangle );

    m_Orient = newangle;

    for( D_PAD* pad = m_Pads;  pad;  pad = pad->Next() )
    {
        pad->SetOrientation( pad->GetOrientation() + angleChange );
        pad->SetDrawCoord();
    }

    // Update of the reference and value.
    m_Reference->SetDrawCoord();
    m_Value->SetDrawCoord();

    // Displace contours and text of the footprint.
    for( BOARD_ITEM* item = m_Drawings;  item;  item = item->Next() )
    {
        if( item->Type() == PCB_MODULE_EDGE_T )
        {
            static_cast<EDGE_MODULE*>( item )->SetDrawCoord();
        }
        else if( item->Type() == PCB_MODULE_TEXT_T )
        {
            static_cast<TEXTE_MODULE*>( item )->SetDrawCoord();
        }
    }

    CalculateBoundingBox();
}
void DIALOG_PAD_PROPERTIES::PadOrientEvent( wxCommandEvent& event )
{
    switch( m_PadOrient->GetSelection() )
    {
    case 0:
        m_dummyPad->SetOrientation( 0 );
        break;

    case 1:
        m_dummyPad->SetOrientation( 900 );
        break;

    case 2:
        m_dummyPad->SetOrientation( -900 );
        break;

    case 3:
        m_dummyPad->SetOrientation( 1800 );
        break;

    default:
        break;
    }

    wxString msg;
    msg.Printf( wxT( "%g" ), m_dummyPad->GetOrientation() );
    m_PadOrientCtrl->SetValue( msg );

    transferDataToPad( m_dummyPad );
    redraw();
}
Ejemplo n.º 3
0
void D_PAD::ImportSettingsFromMaster( const D_PAD& aMasterPad )
{
    SetShape( aMasterPad.GetShape() );
    SetLayerSet( aMasterPad.GetLayerSet() );
    SetAttribute( aMasterPad.GetAttribute() );

    // The pad orientation, for historical reasons is the
    // pad rotation + parent rotation.
    // So we have to manage this parent rotation
    double pad_rot = aMasterPad.GetOrientation();

    if( aMasterPad.GetParent() )
        pad_rot -= aMasterPad.GetParent()->GetOrientation();

    if( GetParent() )
        pad_rot += GetParent()->GetOrientation();

    SetOrientation( pad_rot );

    SetSize( aMasterPad.GetSize() );
    SetDelta( wxSize( 0, 0 ) );
    SetOffset( aMasterPad.GetOffset() );
    SetDrillSize( aMasterPad.GetDrillSize() );
    SetDrillShape( aMasterPad.GetDrillShape() );
    SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() );

    switch( aMasterPad.GetShape() )
    {
    case PAD_SHAPE_TRAPEZOID:
        SetDelta( aMasterPad.GetDelta() );
        break;

    case PAD_SHAPE_CIRCLE:
        // ensure size.y == size.x
        SetSize( wxSize( GetSize().x, GetSize().x ) );
        break;

    default:
        ;
    }

    switch( aMasterPad.GetAttribute() )
    {
    case PAD_ATTRIB_SMD:
    case PAD_ATTRIB_CONN:
        // These pads do not have hole (they are expected to be only on one
        // external copper layer)
        SetDrillSize( wxSize( 0, 0 ) );
        break;

    default:
        ;
    }

    // Add or remove custom pad shapes:
    SetPrimitives( aMasterPad.GetPrimitives() );
    SetAnchorPadShape( aMasterPad.GetAnchorPadShape() );
    MergePrimitivesAsPolygon();
}
Ejemplo n.º 4
0
/* Creates the footprint shape list.
 * Since module shape is customizable after the placement we cannot share them;
 * instead we opt for the one-module-one-shape-one-component-one-device approach
 */
static void CreateShapesSection( FILE* aFile, BOARD* aPcb )
{
    MODULE*     module;
    D_PAD*      pad;
    const char* layer;
    wxString    pinname;
    const char* mirror = "0";

    fputs( "$SHAPES\n", aFile );

    const LSET all_cu = LSET::AllCuMask();

    for( module = aPcb->m_Modules; module; module = module->Next() )
    {
        FootprintWriteShape( aFile, module );

        for( pad = module->Pads(); pad; pad = pad->Next() )
        {
            /* Funny thing: GenCAD requires the pad side even if you use
             *  padstacks (which are theorically optional but gerbtools
             *requires* them). Now the trouble thing is that 'BOTTOM'
             *  is interpreted by someone as a padstack flip even
             *  if the spec explicitly says it's not... */
            layer = "ALL";

            if( ( pad->GetLayerSet() & all_cu ) == LSET( B_Cu ) )
            {
                layer = module->GetFlag() ? "TOP" : "BOTTOM";
            }
            else if( ( pad->GetLayerSet() & all_cu ) == LSET( F_Cu ) )
            {
                layer = module->GetFlag() ? "BOTTOM" : "TOP";
            }

            pad->StringPadName( pinname );

            if( pinname.IsEmpty() )
                pinname = wxT( "none" );

            double orient = pad->GetOrientation() - module->GetOrientation();
            NORMALIZE_ANGLE_POS( orient );

            // Bottom side modules use the flipped padstack
            fprintf( aFile, (module->GetFlag()) ?
                     "PIN %s PAD%dF %g %g %s %g %s\n" :
                     "PIN %s PAD%d %g %g %s %g %s\n",
                     TO_UTF8( pinname ), pad->GetSubRatsnest(),
                     pad->GetPos0().x / SCALE_FACTOR,
                     -pad->GetPos0().y / SCALE_FACTOR,
                     layer, orient / 10.0, mirror );
        }
    }

    fputs( "$ENDSHAPES\n\n", aFile );
}
Ejemplo n.º 5
0
/* Extract the D356 record from the modules (pads) */
static void build_pad_testpoints( BOARD *aPcb,
    std::vector <D356_RECORD>& aRecords )
{
    wxPoint origin = aPcb->GetAuxOrigin();

    for( MODULE *module = aPcb->m_Modules;
        module; module = module->Next() )
    {
        for( D_PAD *pad = module->Pads();  pad; pad = pad->Next() )
        {
            D356_RECORD rk;
            rk.access = compute_pad_access_code( aPcb, pad->GetLayerSet() );

            // It could be a mask only pad, we only handle pads with copper here
            if( rk.access != -1 )
            {
                rk.netname = pad->GetNetname();
                rk.refdes = module->GetReference();
                pad->StringPadName( rk.pin );
                rk.midpoint = false; // XXX MAYBE need to be computed (how?)
                const wxSize& drill = pad->GetDrillSize();
                rk.drill = std::min( drill.x, drill.y );
                rk.hole = (rk.drill != 0);
                rk.smd = pad->GetAttribute() == PAD_ATTRIB_SMD;
                rk.mechanical = (pad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED);
                rk.x_location = pad->GetPosition().x - origin.x;
                rk.y_location = origin.y - pad->GetPosition().y;
                rk.x_size = pad->GetSize().x;

                // Rule: round pads have y = 0
                if( pad->GetShape() == PAD_SHAPE_CIRCLE )
                    rk.y_size = 0;
                else
                    rk.y_size = pad->GetSize().y;

                rk.rotation = -KiROUND( pad->GetOrientation() ) / 10;
                if( rk.rotation < 0 ) rk.rotation += 360;

                // the value indicates which sides are *not* accessible
                rk.soldermask = 3;
                if( pad->GetLayerSet()[F_Mask] )
                    rk.soldermask &= ~1;
                if( pad->GetLayerSet()[B_Mask] )
                    rk.soldermask &= ~2;

                aRecords.push_back( rk );
            }
        }
    }
}
/** Rotate marked items, refer to a rotation point at position offset
 * Note: because this function is used in global transform,
 * if force_all is true, all items will be rotated
 */
void RotateMarkedItems( MODULE* module, wxPoint offset, bool force_all )
{
#define ROTATE( z ) RotatePoint( (&z), offset, 900 )

    if( module == NULL )
        return;

    if( module->Reference().IsSelected() || force_all )
        module->Reference().Rotate( offset, 900 );

    if( module->Value().IsSelected() || force_all )
        module->Value().Rotate( offset, 900 );

    for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
    {
        if( !pad->IsSelected() && !force_all )
            continue;

        wxPoint pos = pad->GetPos0();
        ROTATE( pos );
        pad->SetPos0( pos );
        pad->SetOrientation( pad->GetOrientation() + 900 );

        pad->SetDrawCoord();
    }

    for( EDA_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
    {
        if( !item->IsSelected() && !force_all )
            continue;

        switch( item->Type() )
        {
        case PCB_MODULE_EDGE_T:
            ((EDGE_MODULE*) item)->Rotate( offset, 900 );
            break;

        case PCB_MODULE_TEXT_T:
            static_cast<TEXTE_MODULE*>( item )->Rotate( offset, 900 );
            break;

        default:
            break;
        }
    }

    ClearMarkItems( module );
}
void BRDITEMS_PLOTTER::PlotDrillMarks()
{
    /* If small drills marks were requested prepare a clamp value to pass
       to the helper function */
    int small_drill = (GetDrillMarksType() == PCB_PLOT_PARAMS::SMALL_DRILL_SHAPE) ?
                        SMALL_DRILL : 0;

    /* In the filled trace mode drill marks are drawn white-on-black to scrape
       the underlying pad. This works only for drivers supporting color change,
       obviously... it means that:
       - PS, SVG and PDF output is correct (i.e. you have a 'donut' pad)
       - In HPGL you can't see them
       - In gerbers you can't see them, too. This is arguably the right thing to
         do since having drill marks and high speed drill stations is a sure
         recipe for broken tools and angry manufacturers. If you *really* want them
         you could start a layer with negative polarity to scrape the film.
       - In DXF they go into the 'WHITE' layer. This could be useful.
     */
    if( GetMode() == FILLED )
         m_plotter->SetColor( WHITE );

    for( TRACK *pts = m_board->m_Track; pts != NULL; pts = pts->Next() )
    {
        const VIA* via = dyn_cast<const VIA*>( pts );

        if( via )
            plotOneDrillMark( PAD_DRILL_CIRCLE, via->GetStart(),
                    wxSize( via->GetDrillValue(), 0 ),
                    wxSize( via->GetWidth(), 0 ), 0, small_drill );
    }

    for( MODULE *Module = m_board->m_Modules; Module != NULL; Module = Module->Next() )
    {
        for( D_PAD *pad = Module->Pads(); pad != NULL; pad = pad->Next() )
        {
            if( pad->GetDrillSize().x == 0 )
                continue;

            plotOneDrillMark( pad->GetDrillShape(),
                              pad->GetPosition(), pad->GetDrillSize(),
                              pad->GetSize(), pad->GetOrientation(),
                              small_drill );
        }
    }

    if( GetMode() == FILLED )
        m_plotter->SetColor( GetColor() );
}
Ejemplo n.º 8
0
void MODULE::SetOrientation( double newangle )
{
    double  angleChange = newangle - m_Orient;  // change in rotation
    wxPoint pt;

    NORMALIZE_ANGLE_POS( newangle );

    m_Orient = newangle;

    for( D_PAD* pad = m_Pads;  pad;  pad = pad->Next() )
    {
        pt = pad->GetPos0();

        pad->SetOrientation( pad->GetOrientation() + angleChange );

        RotatePoint( &pt, m_Orient );

        pad->SetPosition( GetPosition() + pt );
    }

    // Update of the reference and value.
    m_Reference->SetDrawCoord();
    m_Value->SetDrawCoord();

    // Displace contours and text of the footprint.
    for( BOARD_ITEM* item = m_Drawings;  item;  item = item->Next() )
    {
        if( item->Type() == PCB_MODULE_EDGE_T )
        {
            EDGE_MODULE* edge = (EDGE_MODULE*) item;
            edge->SetDrawCoord();
        }

        else if( item->Type() == PCB_MODULE_TEXT_T )
        {
            TEXTE_MODULE* text = (TEXTE_MODULE*) item;
            text->SetDrawCoord();
        }
    }

    CalculateBoundingBox();
}
void EXCELLON_WRITER::BuildHolesList( int aFirstLayer,
                                      int aLastLayer,
                                      bool aExcludeThroughHoles,
                                      bool aGenerateNPTH_list,
                                      bool aMerge_PTH_NPTH )
{
    HOLE_INFO new_hole;
    int       hole_value;

    m_holeListBuffer.clear();
    m_toolListBuffer.clear();

    if( (aFirstLayer >= 0) && (aLastLayer >= 0) )
    {
        if( aFirstLayer > aLastLayer )
            std::swap( aFirstLayer, aLastLayer );
    }

    if ( aGenerateNPTH_list && aMerge_PTH_NPTH )
    {
        return;
    }

    // build hole list for vias
    if( ! aGenerateNPTH_list )  // vias are always plated !
    {
        for( VIA* via = GetFirstVia( m_pcb->m_Track ); via; via = GetFirstVia( via->Next() ) )
        {
            hole_value = via->GetDrillValue();

            if( hole_value == 0 )   // Should not occur.
                continue;

            new_hole.m_Tool_Reference = -1;         // Flag value for Not initialized
            new_hole.m_Hole_Orient    = 0;
            new_hole.m_Hole_Diameter  = hole_value;
            new_hole.m_Hole_Size.x = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

            new_hole.m_Hole_Shape = 0;              // hole shape: round
            new_hole.m_Hole_Pos = via->GetStart();

            via->LayerPair( &new_hole.m_Hole_Top_Layer, &new_hole.m_Hole_Bottom_Layer );

            // LayerPair return params with m_Hole_Bottom_Layer > m_Hole_Top_Layer
            // Remember: top layer = 0 and bottom layer = 31 for through hole vias
            // the via should be at least from aFirstLayer to aLastLayer
            if( (new_hole.m_Hole_Top_Layer > aFirstLayer) && (aFirstLayer >= 0) )
                continue;   // via above the first layer

            if( (new_hole.m_Hole_Bottom_Layer < aLastLayer) && (aLastLayer >= 0) )
                continue;   // via below the last layer

            if( aExcludeThroughHoles && (new_hole.m_Hole_Bottom_Layer == B_Cu)
               && (new_hole.m_Hole_Top_Layer == F_Cu) )
                continue;

            m_holeListBuffer.push_back( new_hole );
        }
    }

    // build hole list for pads (assumed always through holes)
    if( !aExcludeThroughHoles || aGenerateNPTH_list )
    {
        for( MODULE* module = m_pcb->m_Modules;  module;  module = module->Next() )
        {
            // Read and analyse pads
            for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
            {
                if( ! aGenerateNPTH_list &&
                    pad->GetAttribute() == PAD_HOLE_NOT_PLATED &&
                    ! aMerge_PTH_NPTH )
                    continue;

                if( aGenerateNPTH_list && pad->GetAttribute() != PAD_HOLE_NOT_PLATED )
                    continue;

                if( pad->GetDrillSize().x == 0 )
                    continue;

                new_hole.m_Hole_NotPlated = (pad->GetAttribute() == PAD_HOLE_NOT_PLATED);
                new_hole.m_Tool_Reference = -1;         // Flag is: Not initialized
                new_hole.m_Hole_Orient    = pad->GetOrientation();
                new_hole.m_Hole_Shape     = 0;           // hole shape: round
                new_hole.m_Hole_Diameter  = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
                new_hole.m_Hole_Size.x    = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

                if( pad->GetDrillShape() != PAD_DRILL_CIRCLE )
                    new_hole.m_Hole_Shape = 1; // oval flag set

                new_hole.m_Hole_Size         = pad->GetDrillSize();
                new_hole.m_Hole_Pos          = pad->GetPosition();               // hole position
                new_hole.m_Hole_Bottom_Layer = B_Cu;
                new_hole.m_Hole_Top_Layer    = F_Cu;// pad holes are through holes
                m_holeListBuffer.push_back( new_hole );
            }
        }
    }

    // Sort holes per increasing diameter value
    sort( m_holeListBuffer.begin(), m_holeListBuffer.end(), CmpHoleDiameterValue );

    // build the tool list
    int        LastHole = -1; /* Set to not initialized (this is a value not used
                               * for m_holeListBuffer[ii].m_Hole_Diameter) */
    DRILL_TOOL new_tool( 0 );
    unsigned   jj;

    for( unsigned ii = 0; ii < m_holeListBuffer.size(); ii++ )
    {
        if( m_holeListBuffer[ii].m_Hole_Diameter != LastHole )
        {
            new_tool.m_Diameter = ( m_holeListBuffer[ii].m_Hole_Diameter );
            m_toolListBuffer.push_back( new_tool );
            LastHole = new_tool.m_Diameter;
        }

        jj = m_toolListBuffer.size();

        if( jj == 0 )
            continue;                                        // Should not occurs

        m_holeListBuffer[ii].m_Tool_Reference = jj;          // Tool value Initialized (value >= 1)

        m_toolListBuffer.back().m_TotalCount++;

        if( m_holeListBuffer[ii].m_Hole_Shape )
            m_toolListBuffer.back().m_OvalCount++;
    }
}
/** Rotate marked items, refer to a rotation point at position offset
 * Note: because this function is used in global transform,
 * if force_all is true, all items will be rotated
 */
void RotateMarkedItems( MODULE* module, wxPoint offset, bool force_all )
{
#define ROTATE( z ) RotatePoint( (&z), offset, 900 )

    if( module == NULL )
        return;

    for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
    {
        if( !pad->IsSelected() && !force_all )
            continue;

        wxPoint pos = pad->GetPosition();
        ROTATE( pos );
        pad->SetPosition( pos );

        pad->SetPos0( pad->GetPosition() );
        pad->SetOrientation( pad->GetOrientation() + 900 );
    }

    for( EDA_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
    {
        if( !item->IsSelected() && !force_all)
            continue;

        switch( item->Type() )
        {
        case PCB_MODULE_EDGE_T:
        {
            EDGE_MODULE* em = (EDGE_MODULE*) item;

            wxPoint tmp = em->GetStart();
            ROTATE( tmp );
            em->SetStart( tmp );
            em->SetStart0( tmp );

            tmp = em->GetEnd();
            ROTATE( tmp );
            em->SetEnd( tmp );
            em->SetEnd0( tmp );
        }
        break;

        case PCB_MODULE_TEXT_T:
        {
            TEXTE_MODULE* tm = (TEXTE_MODULE*) item;
            wxPoint pos = tm->GetTextPosition();
            ROTATE( pos );
            tm->SetTextPosition( pos );
            tm->SetPos0( tm->GetTextPosition() );
            tm->SetOrientation( tm->GetOrientation() + 900 );
        }
        break;

        default:
            ;
        }

        item->ClearFlags();
    }
}
/**
 * Function AddClearanceAreasPolygonsToPolysList
 * Supports a min thickness area constraint.
 * Add non copper areas polygons (pads and tracks with clearance)
 * to the filled copper area found
 * in BuildFilledPolysListData after calculating filled areas in a zone
 * Non filled copper areas are pads and track and their clearance areas
 * The filled copper area must be computed just before.
 * BuildFilledPolysListData() call this function just after creating the
 *  filled copper area polygon (without clearance areas)
 * to do that this function:
 * 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
 *     with m_ZoneMinThickness/2 value.
 *     The result is areas with a margin of m_ZoneMinThickness/2
 *     When drawing outline with segments having a thickness of m_ZoneMinThickness, the
 *      outlines will match exactly the initial outlines
 * 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
 *     m_ZoneMinThickness/2
 *     in a buffer
 *   - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
 * 4 - calculates the polygon A - B
 * 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
 *     This zone contains pads with the same net.
 * 6 - Remove insulated copper islands
 * 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
 *     creates a buffer of polygons corresponding to stubs to remove
 *     sub them to the filled areas.
 *     Remove new insulated copper islands
 */
void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
{
    // Set the number of segments in arc approximations
    if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF  )
        s_CircleToSegmentsCount = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
    else
        s_CircleToSegmentsCount = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx.
     * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
     * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount  )
     */
    s_Correction = 1.0 / cos( M_PI / s_CircleToSegmentsCount );

    // This KI_POLYGON_SET is the area(s) to fill, with m_ZoneMinThickness/2
    KI_POLYGON_SET polyset_zone_solid_areas;
    int         margin = m_ZoneMinThickness / 2;

    /* First, creates the main polygon (i.e. the filled area using only one outline)
     * to reserve a m_ZoneMinThickness/2 margin around the outlines and holes
     * this margin is the room to redraw outlines with segments having a width set to
     * m_ZoneMinThickness
     * so m_ZoneMinThickness is the min thickness of the filled zones areas
     * the main polygon is stored in polyset_zone_solid_areas
     */

    CopyPolygonsFromFilledPolysListToKiPolygonList( polyset_zone_solid_areas );
    polyset_zone_solid_areas -= margin;

    if( polyset_zone_solid_areas.size() == 0 )
        return;

    /* Calculates the clearance value that meet DRC requirements
     * from m_ZoneClearance and clearance from the corresponding netclass
     * We have a "local" clearance in zones because most of time
     * clearance between a zone and others items is bigger than the netclass clearance
     * this is more true for small clearance values
     * Note also the "local" clearance is used for clearance between non copper items
     *    or items like texts on copper layers
     */
    int zone_clearance = std::max( m_ZoneClearance, GetClearance() );
    zone_clearance += margin;

    /* store holes (i.e. tracks and pads areas as polygons outlines)
     * in a polygon list
     */

    /* items ouside the zone bounding box are skipped
     * the bounding box is the zone bounding box + the biggest clearance found in Netclass list
     */
    EDA_RECT item_boundingbox;
    EDA_RECT zone_boundingbox  = GetBoundingBox();
    int      biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue();
    biggest_clearance = std::max( biggest_clearance, zone_clearance );
    zone_boundingbox.Inflate( biggest_clearance );

    /*
     * First : Add pads. Note: pads having the same net as zone are left in zone.
     * Thermal shapes will be created later if necessary
     */
    int item_clearance;

    // static to avoid unnecessary memory allocation when filling many zones.
    static CPOLYGONS_LIST cornerBufferPolysToSubstract;
    cornerBufferPolysToSubstract.RemoveAllContours();

    /* Use a dummy pad to calculate hole clerance when a pad is not on all copper layers
     * and this pad has a hole
     * This dummy pad has the size and shape of the hole
    * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE dummymodule( aPcb );    // Creates a dummy parent
    D_PAD dummypad( &dummymodule );

    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        D_PAD* nextpad;

        for( D_PAD* pad = module->Pads(); pad != NULL; pad = nextpad )
        {
            nextpad = pad->Next();  // pad pointer can be modified by next code, so
                                    // calculate the next pad here

            if( !pad->IsOnLayer( GetLayer() ) )
            {
                /* Test for pads that are on top or bottom only and have a hole.
                 * There are curious pads but they can be used for some components that are
                 * inside the board (in fact inside the hole. Some photo diodes and Leds are
                 * like this)
                 */
                if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
                    continue;

                // Use a dummy pad to calculate a hole shape that have the same dimension as
                // the pad hole
                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetOrientation( pad->GetOrientation() );
                dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_OBLONG ?
                                   PAD_OVAL : PAD_CIRCLE );
                dummypad.SetPosition( pad->GetPosition() );

                pad = &dummypad;
            }

            // Note: netcode <=0 means not connected item
            if( ( pad->GetNetCode() != GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
            {
                item_clearance   = pad->GetClearance() + margin;
                item_boundingbox = pad->GetBoundingBox();
                item_boundingbox.Inflate( item_clearance );

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    int clearance = std::max( zone_clearance, item_clearance );
                    pad->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract,
                                                               clearance,
                                                               s_CircleToSegmentsCount,
                                                               s_Correction );
                }

                continue;
            }

            if( ( GetPadConnection( pad ) == PAD_NOT_IN_ZONE )
                || ( pad->GetShape() == PAD_TRAPEZOID ) )

            // PAD_TRAPEZOID shapes are not in zones because they are used in microwave apps
            // and i think it is good that shapes are not changed by thermal pads or others
            {
                int gap = zone_clearance;
                int thermalGap = GetThermalReliefGap( pad );
                gap = std::max( gap, thermalGap );
                item_boundingbox = pad->GetBoundingBox();

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    pad->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract,
                                                               gap,
                                                               s_CircleToSegmentsCount,
                                                               s_Correction );
                }
            }
        }
    }

    /* Add holes (i.e. tracks and vias areas as polygons outlines)
     * in cornerBufferPolysToSubstract
     */
    for( TRACK* track = aPcb->m_Track;  track;  track = track->Next() )
    {
        if( !track->IsOnLayer( GetLayer() ) )
            continue;

        if( track->GetNetCode() == GetNetCode()  && (GetNetCode() != 0) )
            continue;

        item_clearance   = track->GetClearance() + margin;
        item_boundingbox = track->GetBoundingBox();

        if( item_boundingbox.Intersects( zone_boundingbox ) )
        {
            int clearance = std::max( zone_clearance, item_clearance );
            track->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract,
                                                         clearance,
                                                         s_CircleToSegmentsCount,
                                                         s_Correction );
        }
    }

    /* Add module edge items that are on copper layers
     * Pcbnew allows these items to be on copper layers in microwave applictions
     * This is a bad thing, but must be handled here, until a better way is found
     */
    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        for( BOARD_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
        {
            if( !item->IsOnLayer( GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
                continue;

            if( item->Type() != PCB_MODULE_EDGE_T )
                continue;

            item_boundingbox = item->GetBoundingBox();

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                ( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
                    cornerBufferPolysToSubstract, zone_clearance,
                    s_CircleToSegmentsCount, s_Correction );
            }
        }
    }

    // Add graphic items (copper texts) and board edges
    for( BOARD_ITEM* item = aPcb->m_Drawings; item; item = item->Next() )
    {
        if( item->GetLayer() != GetLayer() && item->GetLayer() != Edge_Cuts )
            continue;

        switch( item->Type() )
        {
        case PCB_LINE_T:
            ( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
                cornerBufferPolysToSubstract,
                zone_clearance, s_CircleToSegmentsCount, s_Correction );
            break;

        case PCB_TEXT_T:
            ( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
                cornerBufferPolysToSubstract, zone_clearance );
            break;

        default:
            break;
        }
    }

    // Add zones outlines having an higher priority and keepout
    for( int ii = 0; ii < GetBoard()->GetAreaCount(); ii++ )
    {
        ZONE_CONTAINER* zone = GetBoard()->GetArea( ii );
        if( zone->GetLayer() != GetLayer() )
            continue;

        if( !zone->GetIsKeepout() && zone->GetPriority() <= GetPriority() )
            continue;

        if( zone->GetIsKeepout() && ! zone->GetDoNotAllowCopperPour() )
            continue;

        // A highter priority zone or keepout area is found: remove its area
        item_boundingbox = zone->GetBoundingBox();
        if( !item_boundingbox.Intersects( zone_boundingbox ) )
            continue;

        // Add the zone outline area.
        // However if the zone has the same net as the current zone,
        // do not add clearance.
        // the zone will be connected to the current zone, but filled areas
        // will use different parameters (clearance, thermal shapes )
        bool addclearance = GetNetCode() != zone->GetNetCode();
        int clearance = zone_clearance;

        if( zone->GetIsKeepout() )
        {
            addclearance = true;
            clearance = m_ZoneMinThickness / 2;
        }

        zone->TransformOutlinesShapeWithClearanceToPolygon(
                    cornerBufferPolysToSubstract,
                    clearance, addclearance );
    }

   // Remove thermal symbols
    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        for( D_PAD* pad = module->Pads(); pad != NULL; pad = pad->Next() )
        {
            // Rejects non-standard pads with tht-only thermal reliefs
            if( GetPadConnection( pad ) == THT_THERMAL
             && pad->GetAttribute() != PAD_STANDARD )
                continue;

            if( GetPadConnection( pad ) != THERMAL_PAD
             && GetPadConnection( pad ) != THT_THERMAL )
                continue;

            if( !pad->IsOnLayer( GetLayer() ) )
                continue;

            if( pad->GetNetCode() != GetNetCode() )
                continue;
            item_boundingbox = pad->GetBoundingBox();
            int thermalGap = GetThermalReliefGap( pad );
            item_boundingbox.Inflate( thermalGap, thermalGap );

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                CreateThermalReliefPadPolygon( cornerBufferPolysToSubstract,
                                               *pad, thermalGap,
                                               GetThermalReliefCopperBridge( pad ),
                                               m_ZoneMinThickness,
                                               s_CircleToSegmentsCount,
                                               s_Correction, s_thermalRot );
            }
        }
    }

    // cornerBufferPolysToSubstract contains polygons to substract.
    // polyset_zone_solid_areas contains the main filled area
    // Calculate now actual solid areas
    if( cornerBufferPolysToSubstract.GetCornersCount() > 0 )
    {
        KI_POLYGON_SET polyset_holes;
        cornerBufferPolysToSubstract.ExportTo( polyset_holes );
        // Remove holes from initial area.:
        polyset_zone_solid_areas -= polyset_holes;
    }

    // put solid areas in m_FilledPolysList:
    m_FilledPolysList.RemoveAllContours();
    CopyPolygonsFromKiPolygonListToFilledPolysList( polyset_zone_solid_areas );

    // Remove insulated islands:
    if( GetNetCode() > 0 )
        TestForCopperIslandAndRemoveInsulatedIslands( aPcb );

    // Now we remove all unused thermal stubs.
    cornerBufferPolysToSubstract.RemoveAllContours();

    // Test thermal stubs connections and add polygons to remove unconnected stubs.
    // (this is a refinement for thermal relief shapes)
    if( GetNetCode() > 0 )
        BuildUnconnectedThermalStubsPolygonList( cornerBufferPolysToSubstract, aPcb, this,
                                                 s_Correction, s_thermalRot );

    // remove copper areas corresponding to not connected stubs
    if( cornerBufferPolysToSubstract.GetCornersCount() )
    {
        KI_POLYGON_SET polyset_holes;
        cornerBufferPolysToSubstract.ExportTo( polyset_holes );

        // Remove unconnected stubs
        polyset_zone_solid_areas -= polyset_holes;

        // put these areas in m_FilledPolysList
        m_FilledPolysList.RemoveAllContours();
        CopyPolygonsFromKiPolygonListToFilledPolysList( polyset_zone_solid_areas );

        if( GetNetCode() > 0 )
            TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
    }

    cornerBufferPolysToSubstract.RemoveAllContours();
}
Ejemplo n.º 12
0
/*
 * Function DoPushPadProperties
 * Function to change pad properties for the given footprint or all identical footprints
 * aPad is the pattern. The given footprint is the parent of this pad
 * aSameFootprints: if true, make changes on all identical footprints
 * aPadShapeFilter: if true, make changes only on pads having the same shape as aPad
 * aPadOrientFilter: if true, make changes only on pads having the same orientation as aPad
 * aPadLayerFilter: if true, make changes only on pads having the same layers as aPad
 * aSaveForUndo: if true: create an entry in the Undo/Redo list
 *        (usually: true in Schematic editor, false in Module editor)
 */
void PCB_BASE_FRAME::DoPushPadProperties( D_PAD* aPad, bool aSameFootprints,
                                          bool aPadShapeFilter,
                                          bool aPadOrientFilter,
                                          bool aPadLayerFilter,
                                          bool aSaveForUndo )
{
    MODULE* Module_Ref = aPad->GetParent();
    double pad_orient = aPad->GetOrientation() - Module_Ref->GetOrientation();

    // Prepare an undo list:
    if( aSaveForUndo )
    {
        PICKED_ITEMS_LIST itemsList;

        if( aSameFootprints )
        {
            for( MODULE* module = m_Pcb->m_Modules;  module;  module = module->Next() )
            {
                if( module->GetFPID() == Module_Ref->GetFPID() )
                {
                    ITEM_PICKER itemWrapper( module, UR_CHANGED );
                    itemsList.PushItem( itemWrapper );
                }
            }
        }
        else
        {
            ITEM_PICKER itemWrapper( Module_Ref, UR_CHANGED );
            itemsList.PushItem( itemWrapper );
        }

        SaveCopyInUndoList( itemsList, UR_CHANGED );
    }

    // Update the current module and same others modules if requested.
    for( MODULE* module = m_Pcb->m_Modules;  module;  module = module->Next() )
    {
        if( !aSameFootprints && (module != Module_Ref) )
            continue;

        if( module->GetFPID() != Module_Ref->GetFPID() )
            continue;

        // Erase module on screen
        module->SetFlags( DO_NOT_DRAW );
        m_canvas->RefreshDrawingRect( module->GetBoundingBox() );
        module->ClearFlags( DO_NOT_DRAW );

        for( D_PAD* pad = module->PadsList();  pad;  pad = pad->Next() )
        {
            if( aPadShapeFilter && ( pad->GetShape() != aPad->GetShape() ) )
                continue;

            double currpad_orient = pad->GetOrientation() - module->GetOrientation();

            if( aPadOrientFilter && ( currpad_orient != pad_orient ) )
                continue;

            if( aPadLayerFilter && ( pad->GetLayerSet() != aPad->GetLayerSet() ) )
                continue;

            // Do not copy pad to itself, it can create issues with custom pad primitives.
            if( pad == aPad )
                continue;

            pad->ImportSettingsFromMaster( *aPad );
        }

        module->CalculateBoundingBox();
        m_canvas->RefreshDrawingRect( module->GetBoundingBox() );
    }

    OnModify();
}
/** Mirror marked items, refer to a Vertical axis at position offset
 * Note: because this function is used in global transform,
 * if force_all is true, all items will be mirrored
 */
void MirrorMarkedItems( MODULE* module, wxPoint offset, bool force_all )
{
#define SETMIRROR( z ) (z) -= offset.x; (z) = -(z); (z) += offset.x;
    wxPoint     tmp;
    wxSize      tmpz;

    if( module == NULL )
        return;

    for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
    {
        // Skip pads not selected, i.e. not inside the block to mirror:
        if( !pad->IsSelected() && !force_all )
            continue;

        tmp = pad->GetPosition();
        SETMIRROR( tmp.x );
        pad->SetPosition( tmp );

        pad->SetX0( pad->GetPosition().x );

        tmp = pad->GetOffset();
        NEGATE( tmp.x );
        pad->SetOffset( tmp );

        tmpz = pad->GetDelta();
        NEGATE( tmpz.x );
        pad->SetDelta( tmpz );

        pad->SetOrientation( 1800 - pad->GetOrientation() );
    }

    for( EDA_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
    {
        // Skip items not selected, i.e. not inside the block to mirror:
        if( !item->IsSelected() && !force_all )
            continue;

        switch( item->Type() )
        {
        case PCB_MODULE_EDGE_T:
            {
                EDGE_MODULE* em = (EDGE_MODULE*) item;

                tmp = em->GetStart0();
                SETMIRROR( tmp.x );
                em->SetStart0( tmp );
                em->SetStartX( tmp.x );

                tmp = em->GetEnd0();
                SETMIRROR( tmp.x );
                em->SetEnd0( tmp );
                em->SetEndX( tmp.x );

                em->SetAngle( -em->GetAngle() );
            }
            break;

        case PCB_MODULE_TEXT_T:
            {
                TEXTE_MODULE* tm = (TEXTE_MODULE*) item;
                tmp = tm->GetTextPosition();
                SETMIRROR( tmp.x );
                tm->SetTextPosition( tmp );
                tmp.y = tm->GetPos0().y;
                tm->SetPos0( tmp );
            }
            break;

        default:
            break;
        }

        item->ClearFlags();
    }
}
Ejemplo n.º 14
0
void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
        SHAPE_POLY_SET& aFeatures ) const
{
    int segsPerCircle;
    double correctionFactor;

    // Set the number of segments in arc approximations
    if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF  )
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
    else
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx.
     * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
     * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount  )
     */
    correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );

    aFeatures.RemoveAllContours();

    int outline_half_thickness = aZone->GetMinThickness() / 2;

    // When removing holes, the holes must be expanded by outline_half_thickness
    // to take in account the thickness of the zone outlines
    int zone_clearance = aZone->GetClearance() + outline_half_thickness;

    // When holes are created by non copper items (edge cut items), use only
    // the m_ZoneClearance parameter (zone clearance with no netclass clearance)
    int zone_to_edgecut_clearance = aZone->GetZoneClearance() + outline_half_thickness;

    /* store holes (i.e. tracks and pads areas as polygons outlines)
     * in a polygon list
     */

    /* items ouside the zone bounding box are skipped
     * the bounding box is the zone bounding box + the biggest clearance found in Netclass list
     */
    EDA_RECT    item_boundingbox;
    EDA_RECT    zone_boundingbox = aZone->GetBoundingBox();
    int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
    biggest_clearance = std::max( biggest_clearance, zone_clearance );
    zone_boundingbox.Inflate( biggest_clearance );

    /*
     * First : Add pads. Note: pads having the same net as zone are left in zone.
     * Thermal shapes will be created later if necessary
     */

    /* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
     * and this pad has a hole
     * This dummy pad has the size and shape of the hole
     * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE  dummymodule( m_board );   // Creates a dummy parent
    D_PAD   dummypad( &dummymodule );

    for( MODULE* module = m_board->m_Modules; module; module = module->Next() )
    {
        D_PAD* nextpad;

        for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad )
        {
            nextpad = pad->Next();      // pad pointer can be modified by next code, so
                                        // calculate the next pad here

            if( !pad->IsOnLayer( aZone->GetLayer() ) )
            {
                /* Test for pads that are on top or bottom only and have a hole.
                 * There are curious pads but they can be used for some components that are
                 * inside the board (in fact inside the hole. Some photo diodes and Leds are
                 * like this)
                 */
                if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
                    continue;

                // Use a dummy pad to calculate a hole shape that have the same dimension as
                // the pad hole
                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetOrientation( pad->GetOrientation() );
                dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
                        PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetPosition( pad->GetPosition() );

                pad = &dummypad;
            }

            // Note: netcode <=0 means not connected item
            if( ( pad->GetNetCode() != aZone->GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
            {
                int item_clearance = pad->GetClearance() + outline_half_thickness;
                item_boundingbox = pad->GetBoundingBox();
                item_boundingbox.Inflate( item_clearance );

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    int clearance = std::max( zone_clearance, item_clearance );

                    // PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
                    if( pad->GetShape() == PAD_SHAPE_CUSTOM
                        && pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
                    {
                        // the pad shape in zone can be its convex hull or
                        // the shape itself
                        SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
                        outline.Inflate( KiROUND( clearance * correctionFactor ), segsPerCircle );
                        pad->CustomShapeAsPolygonToBoardPosition( &outline,
                                pad->GetPosition(), pad->GetOrientation() );

                        if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
                        {
                            std::vector<wxPoint> convex_hull;
                            BuildConvexHull( convex_hull, outline );

                            aFeatures.NewOutline();

                            for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
                                aFeatures.Append( convex_hull[ii] );
                        }
                        else
                            aFeatures.Append( outline );
                    }
                    else
                        pad->TransformShapeWithClearanceToPolygon( aFeatures,
                                clearance,
                                segsPerCircle,
                                correctionFactor );
                }

                continue;
            }

            // Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
            // or if they have a custom shape, because a thermal relief will break
            // the shape
            if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE
                || pad->GetShape() == PAD_SHAPE_CUSTOM )
            {
                int gap = zone_clearance;
                int thermalGap = aZone->GetThermalReliefGap( pad );
                gap = std::max( gap, thermalGap );
                item_boundingbox = pad->GetBoundingBox();
                item_boundingbox.Inflate( gap );

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    // PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
                    // the pad shape in zone can be its convex hull or the shape itself
                    if( pad->GetShape() == PAD_SHAPE_CUSTOM
                        && pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
                    {
                        // the pad shape in zone can be its convex hull or
                        // the shape itself
                        SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
                        outline.Inflate( KiROUND( gap * correctionFactor ), segsPerCircle );
                        pad->CustomShapeAsPolygonToBoardPosition( &outline,
                                pad->GetPosition(), pad->GetOrientation() );

                        std::vector<wxPoint> convex_hull;
                        BuildConvexHull( convex_hull, outline );

                        aFeatures.NewOutline();

                        for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
                            aFeatures.Append( convex_hull[ii] );
                    }
                    else
                        pad->TransformShapeWithClearanceToPolygon( aFeatures,
                                gap, segsPerCircle, correctionFactor );
                }
            }
        }
    }

    /* Add holes (i.e. tracks and vias areas as polygons outlines)
     * in cornerBufferPolysToSubstract
     */
    for( auto track : m_board->Tracks() )
    {
        if( !track->IsOnLayer( aZone->GetLayer() ) )
            continue;

        if( track->GetNetCode() == aZone->GetNetCode()  && ( aZone->GetNetCode() != 0) )
            continue;

        int item_clearance = track->GetClearance() + outline_half_thickness;
        item_boundingbox = track->GetBoundingBox();

        if( item_boundingbox.Intersects( zone_boundingbox ) )
        {
            int clearance = std::max( zone_clearance, item_clearance );
            track->TransformShapeWithClearanceToPolygon( aFeatures,
                    clearance,
                    segsPerCircle,
                    correctionFactor );
        }
    }

    /* Add module edge items that are on copper layers
     * Pcbnew allows these items to be on copper layers in microwave applictions
     * This is a bad thing, but must be handled here, until a better way is found
     */
    for( auto module : m_board->Modules() )
    {
        for( auto item : module->GraphicalItems() )
        {
            if( !item->IsOnLayer( aZone->GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
                continue;

            if( item->Type() != PCB_MODULE_EDGE_T )
                continue;

            item_boundingbox = item->GetBoundingBox();

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                int zclearance = zone_clearance;

                if( item->IsOnLayer( Edge_Cuts ) )
                    // use only the m_ZoneClearance, not the clearance using
                    // the netclass value, because we do not have a copper item
                    zclearance = zone_to_edgecut_clearance;

                ( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
                        aFeatures, zclearance, segsPerCircle, correctionFactor );
            }
        }
    }

    // Add graphic items (copper texts) and board edges
    // Currently copper texts have no net, so only the zone_clearance
    // is used.
    for( auto item : m_board->Drawings() )
    {
        if( item->GetLayer() != aZone->GetLayer() && item->GetLayer() != Edge_Cuts )
            continue;

        int zclearance = zone_clearance;

        if( item->GetLayer() == Edge_Cuts )
            // use only the m_ZoneClearance, not the clearance using
            // the netclass value, because we do not have a copper item
            zclearance = zone_to_edgecut_clearance;

        switch( item->Type() )
        {
        case PCB_LINE_T:
            ( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
                    aFeatures,
                    zclearance, segsPerCircle, correctionFactor );
            break;

        case PCB_TEXT_T:
            ( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
                    aFeatures, zclearance );
            break;

        default:
            break;
        }
    }

    // Add zones outlines having an higher priority and keepout
    for( int ii = 0; ii < m_board->GetAreaCount(); ii++ )
    {
        ZONE_CONTAINER* zone = m_board->GetArea( ii );

        // If the zones share no common layers
        if( !aZone->CommonLayerExists( zone->GetLayerSet() ) )
            continue;

        if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() )
            continue;

        if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() )
            continue;

        // A highter priority zone or keepout area is found: remove this area
        item_boundingbox = zone->GetBoundingBox();

        if( !item_boundingbox.Intersects( zone_boundingbox ) )
            continue;

        // Add the zone outline area.
        // However if the zone has the same net as the current zone,
        // do not add any clearance.
        // the zone will be connected to the current zone, but filled areas
        // will use different parameters (clearance, thermal shapes )
        bool    same_net = aZone->GetNetCode() == zone->GetNetCode();
        bool    use_net_clearance = true;
        int     min_clearance = zone_clearance;

        // Do not forget to make room to draw the thick outlines
        // of the hole created by the area of the zone to remove
        int holeclearance = zone->GetClearance() + outline_half_thickness;

        // The final clearance is obviously the max value of each zone clearance
        min_clearance = std::max( min_clearance, holeclearance );

        if( zone->GetIsKeepout() || same_net )
        {
            // Just take in account the fact the outline has a thickness, so
            // the actual area to substract is inflated to take in account this fact
            min_clearance = outline_half_thickness;
            use_net_clearance = false;
        }

        zone->TransformOutlinesShapeWithClearanceToPolygon(
                aFeatures, min_clearance, use_net_clearance );
    }

    // Remove thermal symbols
    for( auto module : m_board->Modules() )
    {
        for( auto pad : module->Pads() )
        {
            // Rejects non-standard pads with tht-only thermal reliefs
            if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
                && pad->GetAttribute() != PAD_ATTRIB_STANDARD )
                continue;

            if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
                && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
                continue;

            if( !pad->IsOnLayer( aZone->GetLayer() ) )
                continue;

            if( pad->GetNetCode() != aZone->GetNetCode() )
                continue;

            item_boundingbox = pad->GetBoundingBox();
            int thermalGap = aZone->GetThermalReliefGap( pad );
            item_boundingbox.Inflate( thermalGap, thermalGap );

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                CreateThermalReliefPadPolygon( aFeatures,
                        *pad, thermalGap,
                        aZone->GetThermalReliefCopperBridge( pad ),
                        aZone->GetMinThickness(),
                        segsPerCircle,
                        correctionFactor, s_thermalRot );
            }
        }
    }
}
Ejemplo n.º 15
0
/**
 * Function idf_export_module
 * retrieves information from all board modules, adds drill holes to
 * the DRILLED_HOLES or BOARD_OUTLINE section as appropriate,
 * compiles data for the PLACEMENT section and compiles data for
 * the library ELECTRICAL section.
 */
static void idf_export_module( BOARD* aPcb, MODULE* aModule,
        IDF3_BOARD& aIDFBoard )
{
    // Reference Designator
    std::string crefdes = TO_UTF8( aModule->GetReference() );

    if( crefdes.empty() || !crefdes.compare( "~" ) )
    {
        std::string cvalue = TO_UTF8( aModule->GetValue() );

        // if both the RefDes and Value are empty or set to '~' the board owns the part,
        // otherwise associated parts of the module must be marked NOREFDES.
        if( cvalue.empty() || !cvalue.compare( "~" ) )
            crefdes = "BOARD";
        else
            crefdes = "NOREFDES";
    }

    // TODO: If module cutouts are supported we must add code here
    // for( EDA_ITEM* item = aModule->GraphicalItems();  item != NULL;  item = item->Next() )
    // {
    // if( ( item->Type() != PCB_MODULE_EDGE_T )
    // || (item->GetLayer() != Edge_Cuts ) ) continue;
    // code to export cutouts
    // }

    // Export pads
    double  drill, x, y;
    double  scale = aIDFBoard.GetUserScale();
    IDF3::KEY_PLATING kplate;
    std::string pintype;
    std::string tstr;

    double dx, dy;

    aIDFBoard.GetUserOffset( dx, dy );

    for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() )
    {
        drill = (double) pad->GetDrillSize().x * scale;
        x     = pad->GetPosition().x * scale + dx;
        y     = -pad->GetPosition().y * scale + dy;

        // Export the hole on the edge layer
        if( drill > 0.0 )
        {
            // plating
            if( pad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
                kplate = IDF3::NPTH;
            else
                kplate = IDF3::PTH;

            // hole type
            tstr = TO_UTF8( pad->GetPadName() );

            if( tstr.empty() || !tstr.compare( "0" ) || !tstr.compare( "~" )
                || ( kplate == IDF3::NPTH )
                ||( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ) )
                pintype = "MTG";
            else
                pintype = "PIN";

            // fields:
            // 1. hole dia. : float
            // 2. X coord : float
            // 3. Y coord : float
            // 4. plating : PTH | NPTH
            // 5. Assoc. part : BOARD | NOREFDES | PANEL | {"refdes"}
            // 6. type : PIN | VIA | MTG | TOOL | { "other" }
            // 7. owner : MCAD | ECAD | UNOWNED
            if( ( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG )
                && ( pad->GetDrillSize().x != pad->GetDrillSize().y ) )
            {
                // NOTE: IDF does not have direct support for slots;
                // slots are implemented as a board cutout and we
                // cannot represent plating or reference designators

                double dlength = pad->GetDrillSize().y * scale;

                // NOTE: The orientation of modules and pads have
                // the opposite sense due to KiCad drawing on a
                // screen with a LH coordinate system
                double angle = pad->GetOrientation() / 10.0;

                // NOTE: Since this code assumes the scenario where
                // GetDrillSize().y is the length but idf_parser.cpp
                // assumes a length along the X axis, the orientation
                // must be shifted +90 deg when GetDrillSize().y is
                // the major axis.

                if( dlength < drill )
                {
                    std::swap( drill, dlength );
                }
                else
                {
                    angle += 90.0;
                }

                // NOTE: KiCad measures a slot's length from end to end
                // rather than between the centers of the arcs
                dlength -= drill;

                aIDFBoard.AddSlot( drill, dlength, angle, x, y );
            }
            else
            {
                IDF_DRILL_DATA *dp = new IDF_DRILL_DATA( drill, x, y, kplate, crefdes,
                                                         pintype, IDF3::ECAD );

                if( !aIDFBoard.AddDrill( dp ) )
                {
                    delete dp;

                    std::ostringstream ostr;
                    ostr << __FILE__ << ":" << __LINE__ << ":" << __FUNCTION__;
                    ostr << "(): could not add drill";

                    throw std::runtime_error( ostr.str() );
                }
            }
        }
    }

    // add any valid models to the library item list
    std::string refdes;

    IDF3_COMPONENT* comp = NULL;

    for( S3D_MASTER* modfile = aModule->Models(); modfile != 0; modfile = modfile->Next() )
    {
        if( !modfile->Is3DType( S3D_MASTER::FILE3D_IDF )
            || modfile->GetShape3DFullFilename().empty() )
            continue;

        if( refdes.empty() )
        {
            refdes = TO_UTF8( aModule->GetReference() );

            // NOREFDES cannot be used or else the software gets confused
            // when writing out the placement data due to conflicting
            // placement and layer specifications; to work around this we
            // create a (hopefully) unique refdes for our exported part.
            if( refdes.empty() || !refdes.compare( "~" ) )
                refdes = aIDFBoard.GetNewRefDes();
        }

        IDF3_COMP_OUTLINE* outline;

        outline = aIDFBoard.GetComponentOutline( modfile->GetShape3DFullFilename() );

        if( !outline )
            throw( std::runtime_error( aIDFBoard.GetError() ) );

        double rotz = aModule->GetOrientation()/10.0;
        double locx = modfile->m_MatPosition.x * 25.4;  // part offsets are in inches
        double locy = modfile->m_MatPosition.y * 25.4;
        double locz = modfile->m_MatPosition.z * 25.4;
        double lrot = modfile->m_MatRotation.z;

        bool top = ( aModule->GetLayer() == B_Cu ) ? false : true;

        if( top )
        {
            locy = -locy;
            RotatePoint( &locx, &locy, aModule->GetOrientation() );
            locy = -locy;
        }

        if( !top )
        {
            lrot = -lrot;
            RotatePoint( &locx, &locy, aModule->GetOrientation() );
            locy = -locy;

            rotz = 180.0 - rotz;

            if( rotz >= 360.0 )
                while( rotz >= 360.0 ) rotz -= 360.0;

            if( rotz <= -360.0 )
                while( rotz <= -360.0 ) rotz += 360.0;
        }

        if( comp == NULL )
            comp = aIDFBoard.FindComponent( refdes );

        if( comp == NULL )
        {
            comp = new IDF3_COMPONENT( &aIDFBoard );

            if( comp == NULL )
                throw( std::runtime_error( aIDFBoard.GetError() ) );

            comp->SetRefDes( refdes );

            if( top )
                comp->SetPosition( aModule->GetPosition().x * scale + dx,
                                   -aModule->GetPosition().y * scale + dy,
                                   rotz, IDF3::LYR_TOP );
            else
                comp->SetPosition( aModule->GetPosition().x * scale + dx,
                                   -aModule->GetPosition().y * scale + dy,
                                   rotz, IDF3::LYR_BOTTOM );

            comp->SetPlacement( IDF3::PS_ECAD );

            aIDFBoard.AddComponent( comp );
        }
        else
        {
            double refX, refY, refA;
            IDF3::IDF_LAYER side;

            if( ! comp->GetPosition( refX, refY, refA, side ) )
            {
                // place the item
                if( top )
                    comp->SetPosition( aModule->GetPosition().x * scale + dx,
                                       -aModule->GetPosition().y * scale + dy,
                                       rotz, IDF3::LYR_TOP );
                else
                    comp->SetPosition( aModule->GetPosition().x * scale + dx,
                                       -aModule->GetPosition().y * scale + dy,
                                       rotz, IDF3::LYR_BOTTOM );

                comp->SetPlacement( IDF3::PS_ECAD );

            }
            else
            {
                // check that the retrieved component matches this one
                refX = refX - ( aModule->GetPosition().x * scale + dx );
                refY = refY - ( -aModule->GetPosition().y * scale + dy );
                refA = refA - rotz;
                refA *= refA;
                refX *= refX;
                refY *= refY;
                refX += refY;

                // conditions: same side, X,Y coordinates within 10 microns,
                // angle within 0.01 degree
                if( ( top && side == IDF3::LYR_BOTTOM ) || ( !top && side == IDF3::LYR_TOP )
                    || ( refA > 0.0001 ) || ( refX > 0.0001 ) )
                {
                    comp->GetPosition( refX, refY, refA, side );

                    std::ostringstream ostr;
                    ostr << "* " << __FILE__ << ":" << __LINE__ << ":" << __FUNCTION__ << "():\n";
                    ostr << "* conflicting Reference Designator '" << refdes << "'\n";
                    ostr << "* X loc: " << (aModule->GetPosition().x * scale + dx);
                    ostr << " vs. " << refX << "\n";
                    ostr << "* Y loc: " << (-aModule->GetPosition().y * scale + dy);
                    ostr << " vs. " << refY << "\n";
                    ostr << "* angle: " << rotz;
                    ostr << " vs. " << refA << "\n";

                    if( top )
                        ostr << "* TOP vs. ";
                    else
                        ostr << "* BOTTOM vs. ";

                    if( side == IDF3::LYR_TOP )
                        ostr << "TOP";
                    else
                        ostr << "BOTTOM";

                    throw( std::runtime_error( ostr.str() ) );
                }
            }
        }


        // create the local data ...
        IDF3_COMP_OUTLINE_DATA* data = new IDF3_COMP_OUTLINE_DATA( comp, outline );

        data->SetOffsets( locx, locy, locz, lrot );
        comp->AddOutlineData( data );
    }

    return;
}
void DIALOG_PAD_PROPERTIES::initValues()
{
    wxString    msg;
    double      angle;

    // Disable pad net name wxTextCtrl if the caller is the footprint editor
    // because nets are living only in the board managed by the board editor
    m_canEditNetName = m_parent->IsType( FRAME_PCB );


    // Setup layers names from board
    // Should be made first, before calling m_rbCopperLayersSel->SetSelection()
    m_rbCopperLayersSel->SetString( 0, m_board->GetLayerName( F_Cu ) );
    m_rbCopperLayersSel->SetString( 1, m_board->GetLayerName( B_Cu ) );

    m_PadLayerAdhCmp->SetLabel( m_board->GetLayerName( F_Adhes ) );
    m_PadLayerAdhCu->SetLabel( m_board->GetLayerName( B_Adhes ) );
    m_PadLayerPateCmp->SetLabel( m_board->GetLayerName( F_Paste ) );
    m_PadLayerPateCu->SetLabel( m_board->GetLayerName( B_Paste ) );
    m_PadLayerSilkCmp->SetLabel( m_board->GetLayerName( F_SilkS ) );
    m_PadLayerSilkCu->SetLabel( m_board->GetLayerName( B_SilkS ) );
    m_PadLayerMaskCmp->SetLabel( m_board->GetLayerName( F_Mask ) );
    m_PadLayerMaskCu->SetLabel( m_board->GetLayerName( B_Mask ) );
    m_PadLayerECO1->SetLabel( m_board->GetLayerName( Eco1_User ) );
    m_PadLayerECO2->SetLabel( m_board->GetLayerName( Eco2_User ) );
    m_PadLayerDraft->SetLabel( m_board->GetLayerName( Dwgs_User ) );

    m_isFlipped = false;

    if( m_currentPad )
    {
        MODULE* module = m_currentPad->GetParent();

        if( module->GetLayer() == B_Cu )
        {
            m_isFlipped = true;
            m_staticModuleSideValue->SetLabel( _( "Back side (footprint is mirrored)" ) );
        }

        msg.Printf( wxT( "%.1f" ), module->GetOrientation() / 10.0 );
        m_staticModuleRotValue->SetLabel( msg );
    }

    if( m_isFlipped )
    {
        wxPoint pt = m_dummyPad->GetOffset();
        NEGATE( pt.y );
        m_dummyPad->SetOffset( pt );

        wxSize sz = m_dummyPad->GetDelta();
        NEGATE( sz.y );
        m_dummyPad->SetDelta( sz );

        // flip pad's layers
        m_dummyPad->SetLayerSet( FlipLayerMask( m_dummyPad->GetLayerSet() ) );
    }

    m_staticTextWarningPadFlipped->Show(m_isFlipped);

    m_PadNumCtrl->SetValue( m_dummyPad->GetPadName() );
    m_PadNetNameCtrl->SetValue( m_dummyPad->GetNetname() );

    // Display current unit name in dialog:
    m_PadPosX_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadPosY_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadDrill_X_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadDrill_Y_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadShapeSizeX_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadShapeSizeY_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadShapeOffsetX_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadShapeOffsetY_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadShapeDelta_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_PadLengthDie_Unit->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );

    // Display current pad masks clearances units
    m_NetClearanceUnits->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_SolderMaskMarginUnits->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_SolderPasteMarginUnits->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_ThermalWidthUnits->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );
    m_ThermalGapUnits->SetLabel( GetAbbreviatedUnitsLabel( g_UserUnit ) );

    // Display current pad parameters units:
    PutValueInLocalUnits( *m_PadPosition_X_Ctrl, m_dummyPad->GetPosition().x );
    PutValueInLocalUnits( *m_PadPosition_Y_Ctrl, m_dummyPad->GetPosition().y );

    PutValueInLocalUnits( *m_PadDrill_X_Ctrl, m_dummyPad->GetDrillSize().x );
    PutValueInLocalUnits( *m_PadDrill_Y_Ctrl, m_dummyPad->GetDrillSize().y );

    PutValueInLocalUnits( *m_ShapeSize_X_Ctrl, m_dummyPad->GetSize().x );
    PutValueInLocalUnits( *m_ShapeSize_Y_Ctrl, m_dummyPad->GetSize().y );

    PutValueInLocalUnits( *m_ShapeOffset_X_Ctrl, m_dummyPad->GetOffset().x );
    PutValueInLocalUnits( *m_ShapeOffset_Y_Ctrl, m_dummyPad->GetOffset().y );

    if( m_dummyPad->GetDelta().x )
    {
        PutValueInLocalUnits( *m_ShapeDelta_Ctrl, m_dummyPad->GetDelta().x );
        m_trapDeltaDirChoice->SetSelection( 0 );
    }
    else
    {
        PutValueInLocalUnits( *m_ShapeDelta_Ctrl, m_dummyPad->GetDelta().y );
        m_trapDeltaDirChoice->SetSelection( 1 );
    }

    PutValueInLocalUnits( *m_LengthPadToDieCtrl, m_dummyPad->GetPadToDieLength() );

    PutValueInLocalUnits( *m_NetClearanceValueCtrl, m_dummyPad->GetLocalClearance() );
    PutValueInLocalUnits( *m_SolderMaskMarginCtrl, m_dummyPad->GetLocalSolderMaskMargin() );
    PutValueInLocalUnits( *m_ThermalWidthCtrl, m_dummyPad->GetThermalWidth() );
    PutValueInLocalUnits( *m_ThermalGapCtrl, m_dummyPad->GetThermalGap() );

    // These 2 parameters are usually < 0, so prepare entering a negative value, if current is 0
    PutValueInLocalUnits( *m_SolderPasteMarginCtrl, m_dummyPad->GetLocalSolderPasteMargin() );

    if( m_dummyPad->GetLocalSolderPasteMargin() == 0 )
        m_SolderPasteMarginCtrl->SetValue( wxT( "-" ) + m_SolderPasteMarginCtrl->GetValue() );

    msg.Printf( wxT( "%f" ), m_dummyPad->GetLocalSolderPasteMarginRatio() * 100.0 );

    if( m_dummyPad->GetLocalSolderPasteMarginRatio() == 0.0 && msg[0] == '0' )
        // Sometimes Printf adds a sign if the value is small
        m_SolderPasteMarginRatioCtrl->SetValue( wxT( "-" ) + msg );
    else
        m_SolderPasteMarginRatioCtrl->SetValue( msg );

    switch( m_dummyPad->GetZoneConnection() )
    {
    default:
    case UNDEFINED_CONNECTION:
        m_ZoneConnectionChoice->SetSelection( 0 );
        break;

    case PAD_IN_ZONE:
        m_ZoneConnectionChoice->SetSelection( 1 );
        break;

    case THERMAL_PAD:
        m_ZoneConnectionChoice->SetSelection( 2 );
        break;

    case PAD_NOT_IN_ZONE:
        m_ZoneConnectionChoice->SetSelection( 3 );
        break;
    }

    if( m_currentPad )
    {
        MODULE* module = m_currentPad->GetParent();

        angle = m_currentPad->GetOrientation() - module->GetOrientation();

        if( m_isFlipped )
            NEGATE( angle );

        m_dummyPad->SetOrientation( angle );
    }

    angle = m_dummyPad->GetOrientation();

    NORMALIZE_ANGLE_180( angle );    // ? normalizing is in D_PAD::SetOrientation()

    // Set layers used by this pad: :
    setPadLayersList( m_dummyPad->GetLayerSet() );

    // Pad Orient
    switch( int( angle ) )
    {
    case 0:
        m_PadOrient->SetSelection( 0 );
        break;

    case 900:
        m_PadOrient->SetSelection( 1 );
        break;

    case -900:
        m_PadOrient->SetSelection( 2 );
        break;

    case 1800:
    case -1800:
        m_PadOrient->SetSelection( 3 );
        break;

    default:
        m_PadOrient->SetSelection( 4 );
        break;
    }

    switch( m_dummyPad->GetShape() )
    {
    default:
    case PAD_CIRCLE:
        m_PadShape->SetSelection( 0 );
        break;

    case PAD_OVAL:
        m_PadShape->SetSelection( 1 );
        break;

    case PAD_RECT:
        m_PadShape->SetSelection( 2 );
        break;

    case PAD_TRAPEZOID:
        m_PadShape->SetSelection( 3 );
        break;
    }

    msg.Printf( wxT( "%g" ), angle );
    m_PadOrientCtrl->SetValue( msg );

    // Type of pad selection
    m_PadType->SetSelection( 0 );

    for( unsigned ii = 0; ii < DIM( code_type ); ii++ )
    {
        if( code_type[ii] == m_dummyPad->GetAttribute() )
        {
            m_PadType->SetSelection( ii );
            break;
        }
    }

    // Enable/disable Pad name,and pad length die
    // (disable for NPTH pads (mechanical pads)
    bool enable = m_dummyPad->GetAttribute() != PAD_HOLE_NOT_PLATED;

    m_PadNumCtrl->Enable( enable );
    m_PadNetNameCtrl->Enable( m_canEditNetName && enable && m_currentPad != NULL );
    m_LengthPadToDieCtrl->Enable( enable );

    if( m_dummyPad->GetDrillShape() != PAD_DRILL_OBLONG )
        m_DrillShapeCtrl->SetSelection( 0 );
    else
        m_DrillShapeCtrl->SetSelection( 1 );

    // Update some dialog widgets state (Enable/disable options):
    wxCommandEvent cmd_event;
    setPadLayersList( m_dummyPad->GetLayerSet() );
    OnDrillShapeSelected( cmd_event );
    OnPadShapeSelection( cmd_event );
}
void BuildUnconnectedThermalStubsPolygonList( CPOLYGONS_LIST& aCornerBuffer,
                                              BOARD*                aPcb,
                                              ZONE_CONTAINER*       aZone,
                                              double                aArcCorrection,
                                              double                aRoundPadThermalRotation )
{
    std::vector<wxPoint> corners_buffer;    // a local polygon buffer to store one stub
    corners_buffer.reserve( 4 );
    wxPoint  ptTest[4];

    int      zone_clearance = aZone->GetZoneClearance();

    EDA_RECT item_boundingbox;
    EDA_RECT zone_boundingbox  = aZone->GetBoundingBox();
    int      biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue();
    biggest_clearance = std::max( biggest_clearance, zone_clearance );
    zone_boundingbox.Inflate( biggest_clearance );

    // half size of the pen used to draw/plot zones outlines
    int pen_radius = aZone->GetMinThickness() / 2;

    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        for( D_PAD* pad = module->Pads(); pad != NULL; pad = pad->Next() )
        {
            // Rejects non-standard pads with tht-only thermal reliefs
            if( aZone->GetPadConnection( pad ) == THT_THERMAL
             && pad->GetAttribute() != PAD_STANDARD )
                continue;

            if( aZone->GetPadConnection( pad ) != THERMAL_PAD
             && aZone->GetPadConnection( pad ) != THT_THERMAL )
                continue;

            // check
            if( !pad->IsOnLayer( aZone->GetLayer() ) )
                continue;

            if( pad->GetNetCode() != aZone->GetNetCode() )
                continue;

            // Calculate thermal bridge half width
            int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad )
                                     - aZone->GetMinThickness();
            if( thermalBridgeWidth <= 0 )
                continue;

            // we need the thermal bridge half width
            // with a small extra size to be sure we create a stub
            // slightly larger than the actual stub
            thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2;

            int thermalReliefGap = aZone->GetThermalReliefGap( pad );

            item_boundingbox = pad->GetBoundingBox();
            item_boundingbox.Inflate( thermalReliefGap );
            if( !( item_boundingbox.Intersects( zone_boundingbox ) ) )
                continue;

            // Thermal bridges are like a segment from a starting point inside the pad
            // to an ending point outside the pad

            // calculate the ending point of the thermal pad, outside the pad
            wxPoint endpoint;
            endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap;
            endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap;

            // Calculate the starting point of the thermal stub
            // inside the pad
            wxPoint startpoint;
            int copperThickness = aZone->GetThermalReliefCopperBridge( pad )
                                  - aZone->GetMinThickness();

            if( copperThickness < 0 )
                copperThickness = 0;

            // Leave a small extra size to the copper area inside to pad
            copperThickness += KiROUND( IU_PER_MM * 0.04 );

            startpoint.x = std::min( pad->GetSize().x, copperThickness );
            startpoint.y = std::min( pad->GetSize().y, copperThickness );

            startpoint.x /= 2;
            startpoint.y /= 2;

            // This is a CIRCLE pad tweak
            // for circle pads, the thermal stubs orientation is 45 deg
            double fAngle = pad->GetOrientation();
            if( pad->GetShape() == PAD_CIRCLE )
            {
                endpoint.x     = KiROUND( endpoint.x * aArcCorrection );
                endpoint.y     = endpoint.x;
                fAngle = aRoundPadThermalRotation;
            }

            // contour line width has to be taken into calculation to avoid "thermal stub bleed"
            endpoint.x += pen_radius;
            endpoint.y += pen_radius;
            // compute north, south, west and east points for zone connection.
            ptTest[0] = wxPoint( 0, endpoint.y );       // lower point
            ptTest[1] = wxPoint( 0, -endpoint.y );      // upper point
            ptTest[2] = wxPoint( endpoint.x, 0 );       // right point
            ptTest[3] = wxPoint( -endpoint.x, 0 );      // left point

            // Test all sides
            for( int i = 0; i < 4; i++ )
            {
                // rotate point
                RotatePoint( &ptTest[i], fAngle );

                // translate point
                ptTest[i] += pad->ShapePos();

                if( aZone->HitTestFilledArea( ptTest[i] ) )
                    continue;

                corners_buffer.clear();

                // polygons are rectangles with width of copper bridge value
                switch( i )
                {
                case 0:       // lower stub
                    corners_buffer.push_back( wxPoint( -thermalBridgeWidth, endpoint.y ) );
                    corners_buffer.push_back( wxPoint( +thermalBridgeWidth, endpoint.y ) );
                    corners_buffer.push_back( wxPoint( +thermalBridgeWidth, startpoint.y ) );
                    corners_buffer.push_back( wxPoint( -thermalBridgeWidth, startpoint.y ) );
                    break;

                case 1:       // upper stub
                    corners_buffer.push_back( wxPoint( -thermalBridgeWidth, -endpoint.y ) );
                    corners_buffer.push_back( wxPoint( +thermalBridgeWidth, -endpoint.y ) );
                    corners_buffer.push_back( wxPoint( +thermalBridgeWidth, -startpoint.y ) );
                    corners_buffer.push_back( wxPoint( -thermalBridgeWidth, -startpoint.y ) );
                    break;

                case 2:       // right stub
                    corners_buffer.push_back( wxPoint( endpoint.x, -thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( endpoint.x, thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( +startpoint.x, thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( +startpoint.x, -thermalBridgeWidth ) );
                    break;

                case 3:       // left stub
                    corners_buffer.push_back( wxPoint( -endpoint.x, -thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( -endpoint.x, thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( -startpoint.x, thermalBridgeWidth ) );
                    corners_buffer.push_back( wxPoint( -startpoint.x, -thermalBridgeWidth ) );
                    break;
                }


                // add computed polygon to list
                for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
                {
                    wxPoint cpos = corners_buffer[ic];
                    RotatePoint( &cpos, fAngle );                               // Rotate according to module orientation
                    cpos += pad->ShapePos();                              // Shift origin to position
                    CPolyPt corner;
                    corner.x = cpos.x;
                    corner.y = cpos.y;
                    corner.end_contour = ( ic < (corners_buffer.size() - 1) ) ? false : true;
                    aCornerBuffer.Append( corner );
                }
            }
        }
    }
}
/** Mirror marked items, refer to a Vertical axis at position offset
 * Note: because this function is used in global transform,
 * if force_all is true, all items will be mirrored
 */
void MirrorMarkedItems( MODULE* module, wxPoint offset, bool force_all )
{
#define SETMIRROR( z ) (z) -= offset.x; (z) = -(z); (z) += offset.x;
    wxPoint     tmp;
    wxSize      tmpz;

    if( module == NULL )
        return;

    if( module->Reference().IsSelected() || force_all )
        module->Reference().Mirror( offset, false );

    if( module->Value().IsSelected() || force_all )
        module->Value().Mirror( offset, false );

    for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
    {
        // Skip pads not selected, i.e. not inside the block to mirror:
        if( !pad->IsSelected() && !force_all )
            continue;

        tmp = pad->GetPosition();
        SETMIRROR( tmp.x );
        pad->SetPosition( tmp );

        pad->SetX0( pad->GetPosition().x );

        tmp = pad->GetOffset();
        tmp.x = -tmp.x;
        pad->SetOffset( tmp );

        tmpz = pad->GetDelta();
        tmpz.x = -tmpz.x;
        pad->SetDelta( tmpz );

        pad->SetOrientation( 1800 - pad->GetOrientation() );
    }

    for( EDA_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
    {
        // Skip items not selected, i.e. not inside the block to mirror:
        if( !item->IsSelected() && !force_all )
            continue;

        switch( item->Type() )
        {
        case PCB_MODULE_EDGE_T:
            ((EDGE_MODULE*) item)->Mirror( offset, false );
            break;

        case PCB_MODULE_TEXT_T:
            static_cast<TEXTE_MODULE*>( item )->Mirror( offset, false );
            break;

        default:
            break;
        }
    }

    ClearMarkItems( module );
}
/*
 * Function GlobalChange_PadSettings
 * Function to change pad caracteristics for the given footprint
 * or alls footprints which look like the given footprint
 * aPad is the pattern. The given footprint is the parent of this pad
 * aSameFootprints: if true, make changes on all identical footprints
 * aPadShapeFilter: if true, make changes only on pads having the same shape as aPad
 * aPadOrientFilter: if true, make changes only on pads having the same orientation as aPad
 * aPadLayerFilter: if true, make changes only on pads having the same layers as aPad
 * aRedraw: if true: redraws the footprint
 * aSaveForUndo: if true: create an entry in the Undo/Redo list
 *        (usually: true in Schematic editor, false in Module editor)
 */
void PCB_BASE_FRAME::GlobalChange_PadSettings( D_PAD* aPad,
                                               bool aSameFootprints,
                                               bool aPadShapeFilter,
                                               bool aPadOrientFilter,
                                               bool aPadLayerFilter,
                                               bool aRedraw, bool aSaveForUndo )
{
    if( aPad == NULL )
        aPad = &GetDesignSettings().m_Pad_Master;

    MODULE* module = aPad->GetParent();

    if( module == NULL )
    {
        DisplayError( this, wxT( "Global_Import_Pad_Settings() Error: NULL module" ) );
        return;
    }

    // Search and copy the name of library reference.
    MODULE* Module_Ref = module;
    double pad_orient = aPad->GetOrientation() - Module_Ref->GetOrientation();

    // Prepare an undo list:
    if( aSaveForUndo )
    {
        PICKED_ITEMS_LIST itemsList;

        for( module = m_Pcb->m_Modules;  module;  module = module->Next() )
        {
            if( !aSameFootprints && (module != Module_Ref) )
                continue;

            if( module->GetFPID() != Module_Ref->GetFPID() )
                continue;

            bool   saveMe = false;

            for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
            {
                // Filters changes prohibited.
                if( aPadShapeFilter && ( pad->GetShape() != aPad->GetShape() ) )
                    continue;

                double currpad_orient = pad->GetOrientation() - module->GetOrientation();

                if( aPadOrientFilter && ( currpad_orient != pad_orient ) )
                    continue;

                if( aPadLayerFilter  &&  pad->GetLayerSet() != aPad->GetLayerSet() )
                    continue;

                saveMe = true;
            }

            if( saveMe )
            {
                ITEM_PICKER itemWrapper( module, UR_CHANGED );

                itemsList.PushItem( itemWrapper );
            }
        }

        SaveCopyInUndoList( itemsList, UR_CHANGED );
    }

    // Update the current module and same others modules if requested.
    for( module = m_Pcb->m_Modules;  module;  module = module->Next() )
    {
        if( !aSameFootprints && (module != Module_Ref) )
            continue;

        if( module->GetFPID() != Module_Ref->GetFPID() )
            continue;

        // Erase module on screen
        if( aRedraw )
        {
            module->SetFlags( DO_NOT_DRAW );
            m_canvas->RefreshDrawingRect( module->GetBoundingBox() );
            module->ClearFlags( DO_NOT_DRAW );
        }

        for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
        {
            // Filters changes prohibited.
            if( aPadShapeFilter && ( pad->GetShape() != aPad->GetShape() ) )
                continue;

            if( aPadOrientFilter &&  (pad->GetOrientation() - module->GetOrientation()) != pad_orient )
                continue;

            if( aPadLayerFilter )
            {
                if( pad->GetLayerSet() != aPad->GetLayerSet() )
                    continue;
                else
                    m_Pcb->m_Status_Pcb &= ~( LISTE_RATSNEST_ITEM_OK | CONNEXION_OK);
            }

            // Change characteristics:
            pad->SetAttribute( aPad->GetAttribute() );
            pad->SetShape( aPad->GetShape() );

            pad->SetLayerSet( aPad->GetLayerSet() );

            pad->SetSize( aPad->GetSize() );
            pad->SetDelta( aPad->GetDelta() );
            pad->SetOffset( aPad->GetOffset() );

            pad->SetDrillSize( aPad->GetDrillSize() );
            pad->SetDrillShape( aPad->GetDrillShape() );

            pad->SetOrientation( pad_orient + module->GetOrientation() );

            // copy also local mask margins, because these parameters usually depend on
            // pad sizes and layers
            pad->SetLocalSolderMaskMargin( aPad->GetLocalSolderMaskMargin() );
            pad->SetLocalSolderPasteMargin( aPad->GetLocalSolderPasteMargin() );
            pad->SetLocalSolderPasteMarginRatio( aPad->GetLocalSolderPasteMarginRatio() );

            if( pad->GetShape() != PAD_TRAPEZOID )
            {
                pad->SetDelta( wxSize( 0, 0 ) );
            }

            if( pad->GetShape() == PAD_CIRCLE )
            {
                // Ensure pad size.y = pad size.x
                int size = pad->GetSize().x;
                pad->SetSize( wxSize( size, size ) );
            }

            switch( pad->GetAttribute() )
            {
            case PAD_SMD:
            case PAD_CONN:
                pad->SetDrillSize( wxSize( 0, 0 ) );
                pad->SetOffset( wxPoint( 0, 0 ) );
                break;

            default:
                break;
            }
        }

        module->CalculateBoundingBox();

        if( aRedraw )
            m_canvas->RefreshDrawingRect( module->GetBoundingBox() );
    }

    OnModify();
}
void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures )
{
    int segsPerCircle;
    double correctionFactor;

    // Set the number of segments in arc approximations
    if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF  )
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
    else
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx.
     * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
     * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount  )
     */
    correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );

    aFeatures.RemoveAllContours();

    int outline_half_thickness = m_ZoneMinThickness / 2;

    int zone_clearance = std::max( m_ZoneClearance, GetClearance() );
    zone_clearance += outline_half_thickness;

    /* store holes (i.e. tracks and pads areas as polygons outlines)
     * in a polygon list
     */

    /* items ouside the zone bounding box are skipped
     * the bounding box is the zone bounding box + the biggest clearance found in Netclass list
     */
    EDA_RECT item_boundingbox;
    EDA_RECT zone_boundingbox  = GetBoundingBox();
    int      biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue();
    biggest_clearance = std::max( biggest_clearance, zone_clearance );
    zone_boundingbox.Inflate( biggest_clearance );

    /*
     * First : Add pads. Note: pads having the same net as zone are left in zone.
     * Thermal shapes will be created later if necessary
     */
    int item_clearance;

    /* Use a dummy pad to calculate hole clerance when a pad is not on all copper layers
     * and this pad has a hole
     * This dummy pad has the size and shape of the hole
    * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE dummymodule( aPcb );    // Creates a dummy parent
    D_PAD dummypad( &dummymodule );

    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        D_PAD* nextpad;

        for( D_PAD* pad = module->Pads(); pad != NULL; pad = nextpad )
        {
            nextpad = pad->Next();  // pad pointer can be modified by next code, so
                                    // calculate the next pad here

            if( !pad->IsOnLayer( GetLayer() ) )
            {
                /* Test for pads that are on top or bottom only and have a hole.
                 * There are curious pads but they can be used for some components that are
                 * inside the board (in fact inside the hole. Some photo diodes and Leds are
                 * like this)
                 */
                if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
                    continue;

                // Use a dummy pad to calculate a hole shape that have the same dimension as
                // the pad hole
                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetOrientation( pad->GetOrientation() );
                dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
                                   PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetPosition( pad->GetPosition() );

                pad = &dummypad;
            }

            // Note: netcode <=0 means not connected item
            if( ( pad->GetNetCode() != GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
            {
                item_clearance   = pad->GetClearance() + outline_half_thickness;
                item_boundingbox = pad->GetBoundingBox();
                item_boundingbox.Inflate( item_clearance );

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    int clearance = std::max( zone_clearance, item_clearance );
                    pad->TransformShapeWithClearanceToPolygon( aFeatures,
                                                               clearance,
                                                               segsPerCircle,
                                                               correctionFactor );
                }

                continue;
            }

            // Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
            if( GetPadConnection( pad ) == PAD_ZONE_CONN_NONE )
            {
                int gap = zone_clearance;
                int thermalGap = GetThermalReliefGap( pad );
                gap = std::max( gap, thermalGap );
                item_boundingbox = pad->GetBoundingBox();
                item_boundingbox.Inflate( gap );

                if( item_boundingbox.Intersects( zone_boundingbox ) )
                {
                    pad->TransformShapeWithClearanceToPolygon( aFeatures,
                                                               gap,
                                                               segsPerCircle,
                                                               correctionFactor );
                }
            }
        }
    }

    /* Add holes (i.e. tracks and vias areas as polygons outlines)
     * in cornerBufferPolysToSubstract
     */
    for( TRACK* track = aPcb->m_Track;  track;  track = track->Next() )
    {
        if( !track->IsOnLayer( GetLayer() ) )
            continue;

        if( track->GetNetCode() == GetNetCode()  && (GetNetCode() != 0) )
            continue;

        item_clearance   = track->GetClearance() + outline_half_thickness;
        item_boundingbox = track->GetBoundingBox();

        if( item_boundingbox.Intersects( zone_boundingbox ) )
        {
            int clearance = std::max( zone_clearance, item_clearance );
            track->TransformShapeWithClearanceToPolygon( aFeatures,
                                                         clearance,
                                                         segsPerCircle,
                                                         correctionFactor );
        }
    }

    /* Add module edge items that are on copper layers
     * Pcbnew allows these items to be on copper layers in microwave applictions
     * This is a bad thing, but must be handled here, until a better way is found
     */
    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        for( BOARD_ITEM* item = module->GraphicalItems();  item;  item = item->Next() )
        {
            if( !item->IsOnLayer( GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
                continue;

            if( item->Type() != PCB_MODULE_EDGE_T )
                continue;

            item_boundingbox = item->GetBoundingBox();

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                ( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
                    aFeatures, zone_clearance,
                    segsPerCircle, correctionFactor );
            }
        }
    }

    // Add graphic items (copper texts) and board edges
    for( BOARD_ITEM* item = aPcb->m_Drawings; item; item = item->Next() )
    {
        if( item->GetLayer() != GetLayer() && item->GetLayer() != Edge_Cuts )
            continue;

        switch( item->Type() )
        {
        case PCB_LINE_T:
            ( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
                aFeatures,
                zone_clearance, segsPerCircle, correctionFactor );
            break;

        case PCB_TEXT_T:
            ( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
                aFeatures, zone_clearance );
            break;

        default:
            break;
        }
    }

    // Add zones outlines having an higher priority and keepout
    for( int ii = 0; ii < GetBoard()->GetAreaCount(); ii++ )
    {
        ZONE_CONTAINER* zone = GetBoard()->GetArea( ii );
        if( zone->GetLayer() != GetLayer() )
            continue;

        if( !zone->GetIsKeepout() && zone->GetPriority() <= GetPriority() )
            continue;

        if( zone->GetIsKeepout() && ! zone->GetDoNotAllowCopperPour() )
            continue;

        // A highter priority zone or keepout area is found: remove this area
        item_boundingbox = zone->GetBoundingBox();
        if( !item_boundingbox.Intersects( zone_boundingbox ) )
            continue;

        // Add the zone outline area.
        // However if the zone has the same net as the current zone,
        // do not add any clearance.
        // the zone will be connected to the current zone, but filled areas
        // will use different parameters (clearance, thermal shapes )
        bool same_net = GetNetCode() == zone->GetNetCode();
        bool use_net_clearance = true;
        int min_clearance = zone_clearance;

        // Do not forget to make room to draw the thick outlines
        // of the hole created by the area of the zone to remove
        int holeclearance = zone->GetClearance() + outline_half_thickness;

        // The final clearance is obviously the max value of each zone clearance
        min_clearance = std::max( min_clearance, holeclearance );

        if( zone->GetIsKeepout() || same_net )
        {
            // Just take in account the fact the outline has a thickness, so
            // the actual area to substract is inflated to take in account this fact
            min_clearance = outline_half_thickness;
            use_net_clearance = false;
        }

        zone->TransformOutlinesShapeWithClearanceToPolygon(
                    aFeatures,
                    min_clearance, use_net_clearance );
    }

   // Remove thermal symbols
    for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
    {
        for( D_PAD* pad = module->Pads(); pad != NULL; pad = pad->Next() )
        {
            // Rejects non-standard pads with tht-only thermal reliefs
            if( GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
             && pad->GetAttribute() != PAD_ATTRIB_STANDARD )
                continue;

            if( GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
             && GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
                continue;

            if( !pad->IsOnLayer( GetLayer() ) )
                continue;

            if( pad->GetNetCode() != GetNetCode() )
                continue;
            item_boundingbox = pad->GetBoundingBox();
            int thermalGap = GetThermalReliefGap( pad );
            item_boundingbox.Inflate( thermalGap, thermalGap );

            if( item_boundingbox.Intersects( zone_boundingbox ) )
            {
                CreateThermalReliefPadPolygon( aFeatures,
                                               *pad, thermalGap,
                                               GetThermalReliefCopperBridge( pad ),
                                               m_ZoneMinThickness,
                                               segsPerCircle,
                                               correctionFactor, s_thermalRot );
            }
        }
    }

}
bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
{
    TRACK*    track;
    wxPoint   delta;           // length on X and Y axis of segments
    LSET layerMask;
    int       net_code_ref;
    wxPoint   shape_pos;

    NETCLASSPTR netclass = aRefSeg->GetNetClass();
    BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();

    /* In order to make some calculations more easier or faster,
     * pads and tracks coordinates will be made relative to the reference segment origin
     */
    wxPoint origin = aRefSeg->GetStart();  // origin will be the origin of other coordinates

    m_segmEnd   = delta = aRefSeg->GetEnd() - origin;
    m_segmAngle = 0;

    layerMask    = aRefSeg->GetLayerSet();
    net_code_ref = aRefSeg->GetNetCode();

    // Phase 0 : Test vias
    if( aRefSeg->Type() == PCB_VIA_T )
    {
        const VIA *refvia = static_cast<const VIA*>( aRefSeg );
        // test if the via size is smaller than minimum
        if( refvia->GetViaType() == VIA_MICROVIA )
        {
            if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_MICROVIA, m_currentMarker );
                return false;
            }
            if( refvia->GetDrillValue() < dsnSettings.m_MicroViasMinDrill )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_MICROVIA_DRILL, m_currentMarker );
                return false;
            }
        }
        else
        {
            if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_VIA, m_currentMarker );
                return false;
            }
            if( refvia->GetDrillValue() < dsnSettings.m_ViasMinDrill )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_TOO_SMALL_VIA_DRILL, m_currentMarker );
                return false;
            }
        }

        // test if via's hole is bigger than its diameter
        // This test is necessary since the via hole size and width can be modified
        // and a default via hole can be bigger than some vias sizes
        if( refvia->GetDrillValue() > refvia->GetWidth() )
        {
            m_currentMarker = fillMarker( refvia, NULL,
                                          DRCE_VIA_HOLE_BIGGER, m_currentMarker );
            return false;
        }

        // For microvias: test if they are blind vias and only between 2 layers
        // because they are used for very small drill size and are drill by laser
        // and **only one layer** can be drilled
        if( refvia->GetViaType() == VIA_MICROVIA )
        {
            LAYER_ID    layer1, layer2;
            bool        err = true;

            refvia->LayerPair( &layer1, &layer2 );

            if( layer1 > layer2 )
                std::swap( layer1, layer2 );

            if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
                err = false;
            else if( layer1 == F_Cu  &&  layer2 == In1_Cu  )
                err = false;

            if( err )
            {
                m_currentMarker = fillMarker( refvia, NULL,
                                              DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker );
                return false;
            }
        }
    }
    else    // This is a track segment
    {
        if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
        {
            m_currentMarker = fillMarker( aRefSeg, NULL,
                                          DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker );
            return false;
        }
    }

    // for a non horizontal or vertical segment Compute the segment angle
    // in tenths of degrees and its length
    if( delta.x || delta.y )
    {
        // Compute the segment angle in 0,1 degrees
        m_segmAngle = ArcTangente( delta.y, delta.x );

        // Compute the segment length: we build an equivalent rotated segment,
        // this segment is horizontal, therefore dx = length
        RotatePoint( &delta, m_segmAngle );    // delta.x = length, delta.y = 0
    }

    m_segmLength = delta.x;

    /******************************************/
    /* Phase 1 : test DRC track to pads :     */
    /******************************************/

    /* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
     * but having a hole
     * This dummy pad has the size and shape of the hole
     * to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
     * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE  dummymodule( m_pcb );    // Creates a dummy parent
    D_PAD   dummypad( &dummymodule );

    dummypad.SetLayerSet( LSET::AllCuMask() );     // Ensure the hole is on all layers

    // Compute the min distance to pads
    if( testPads )
    {
        unsigned pad_count = m_pcb->GetPadCount();

        for( unsigned ii = 0;  ii<pad_count;  ++ii )
        {
            D_PAD* pad = m_pcb->GetPad( ii );

            /* No problem if pads are on an other layer,
             * But if a drill hole exists	(a pad on a single layer can have a hole!)
             * we must test the hole
             */
            if( !( pad->GetLayerSet() & layerMask ).any() )
            {
                /* We must test the pad hole. In order to use the function
                 * checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
                 * size like the hole
                 */
                if( pad->GetDrillSize().x == 0 )
                    continue;

                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetPosition( pad->GetPosition() );
                dummypad.SetShape( pad->GetDrillShape()  == PAD_DRILL_SHAPE_OBLONG ?
                                   PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetOrientation( pad->GetOrientation() );

                m_padToTestPos = dummypad.GetPosition() - origin;

                if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
                                              netclass->GetClearance() ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, pad,
                                                  DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker );
                    return false;
                }

                continue;
            }

            // The pad must be in a net (i.e pt_pad->GetNet() != 0 )
            // but no problem if the pad netcode is the current netcode (same net)
            if( pad->GetNetCode()                       // the pad must be connected
               && net_code_ref == pad->GetNetCode() )   // the pad net is the same as current net -> Ok
                continue;

            // DRC for the pad
            shape_pos = pad->ShapePos();
            m_padToTestPos = shape_pos - origin;

            if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) )
            {
                m_currentMarker = fillMarker( aRefSeg, pad,
                                              DRCE_TRACK_NEAR_PAD, m_currentMarker );
                return false;
            }
        }
    }

    /***********************************************/
    /* Phase 2: test DRC with other track segments */
    /***********************************************/

    // At this point the reference segment is the X axis

    // Test the reference segment with other track segments
    wxPoint segStartPoint;
    wxPoint segEndPoint;
    for( track = aStart; track; track = track->Next() )
    {
        // No problem if segments have the same net code:
        if( net_code_ref == track->GetNetCode() )
            continue;

        // No problem if segment are on different layers :
        if( !( layerMask & track->GetLayerSet() ).any() )
            continue;

        // the minimum distance = clearance plus half the reference track
        // width plus half the other track's width
        int w_dist = aRefSeg->GetClearance( track );
        w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2;

        // Due to many double to int conversions during calculations, which
        // create rounding issues,
        // the exact clearance margin cannot be really known.
        // To avoid false bad DRC detection due to these rounding issues,
        // slightly decrease the w_dist (remove one nanometer is enough !)
        w_dist -= 1;

        // If the reference segment is a via, we test it here
        if( aRefSeg->Type() == PCB_VIA_T )
        {
            delta = track->GetEnd() - track->GetStart();
            segStartPoint = aRefSeg->GetStart() - track->GetStart();

            if( track->Type() == PCB_VIA_T )
            {
                // Test distance between two vias, i.e. two circles, trivial case
                if( EuclideanNorm( segStartPoint ) < w_dist )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_VIA_NEAR_VIA, m_currentMarker );
                    return false;
                }
            }
            else    // test via to segment
            {
                // Compute l'angle du segment a tester;
                double angle = ArcTangente( delta.y, delta.x );

                // Compute new coordinates ( the segment become horizontal)
                RotatePoint( &delta, angle );
                RotatePoint( &segStartPoint, angle );

                if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
                {
                    m_currentMarker = fillMarker( track, aRefSeg,
                                                  DRCE_VIA_NEAR_TRACK, m_currentMarker );
                    return false;
                }
            }

            continue;
        }

        /* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
         * the segment to test in the new axis : the new X axis is the
         * reference segment.  We must translate and rotate the segment to test
         */
        segStartPoint = track->GetStart() - origin;
        segEndPoint   = track->GetEnd() - origin;
        RotatePoint( &segStartPoint, m_segmAngle );
        RotatePoint( &segEndPoint, m_segmAngle );
        if( track->Type() == PCB_VIA_T )
        {
            if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
                continue;

            m_currentMarker = fillMarker( aRefSeg, track,
                                          DRCE_TRACK_NEAR_VIA, m_currentMarker );
            return false;
        }

        /*	We have changed axis:
         *  the reference segment is Horizontal.
         *  3 cases : the segment to test can be parallel, perpendicular or have an other direction
         */
        if( segStartPoint.y == segEndPoint.y ) // parallel segments
        {
            if( abs( segStartPoint.y ) >= w_dist )
                continue;

            // Ensure segStartPoint.x <= segEndPoint.x
            if( segStartPoint.x > segEndPoint.x )
                std::swap( segStartPoint.x, segEndPoint.x );

            if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) )    /* possible error drc */
            {
                // the start point is inside the reference range
                //      X........
                //    O--REF--+

                // Fine test : we consider the rounded shape of each end of the track segment:
                if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS1, m_currentMarker );
                    return false;
                }

                if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS2, m_currentMarker );
                    return false;
                }
            }

            if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) )
            {
                // the end point is inside the reference range
                //  .....X
                //    O--REF--+
                // Fine test : we consider the rounded shape of the ends
                if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS3, m_currentMarker );
                    return false;
                }

                if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_TRACK_ENDS4, m_currentMarker );
                    return false;
                }
            }

            if( segStartPoint.x <=0 && segEndPoint.x >= 0 )
            {
            // the segment straddles the reference range (this actually only
            // checks if it straddles the origin, because the other cases where already
            // handled)
            //  X.............X
            //    O--REF--+
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker );
                return false;
            }
        }
        else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
        {
            if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) )
                continue;

            // Test if segments are crossing
            if( segStartPoint.y > segEndPoint.y )
                std::swap( segStartPoint.y, segEndPoint.y );

            if( (segStartPoint.y < 0) && (segEndPoint.y > 0) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_TRACKS_CROSSING, m_currentMarker );
                return false;
            }

            // At this point the drc error is due to an end near a reference segm end
            if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_ENDS_PROBLEM1, m_currentMarker );
                return false;
            }
            if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
            {
                m_currentMarker = fillMarker( aRefSeg, track,
                                              DRCE_ENDS_PROBLEM2, m_currentMarker );
                return false;
            }
        }
        else    // segments quelconques entre eux
        {
            // calcul de la "surface de securite du segment de reference
            // First rought 'and fast) test : the track segment is like a rectangle

            m_xcliplo = m_ycliplo = -w_dist;
            m_xcliphi = m_segmLength + w_dist;
            m_ycliphi = w_dist;

            // A fine test is needed because a serment is not exactly a
            // rectangle, it has rounded ends
            if( !checkLine( segStartPoint, segEndPoint ) )
            {
                /* 2eme passe : the track has rounded ends.
                 * we must a fine test for each rounded end and the
                 * rectangular zone
                 */

                m_xcliplo = 0;
                m_xcliphi = m_segmLength;

                if( !checkLine( segStartPoint, segEndPoint ) )
                {
                    m_currentMarker = fillMarker( aRefSeg, track,
                                                  DRCE_ENDS_PROBLEM3, m_currentMarker );
                    return false;
                }
                else    // The drc error is due to the starting or the ending point of the reference segment
                {
                    // Test the starting and the ending point
                    segStartPoint = track->GetStart();
                    segEndPoint   = track->GetEnd();
                    delta = segEndPoint - segStartPoint;

                    // Compute the segment orientation (angle) en 0,1 degre
                    double angle = ArcTangente( delta.y, delta.x );

                    // Compute the segment length: delta.x = length after rotation
                    RotatePoint( &delta, angle );

                    /* Comute the reference segment coordinates relatives to a
                     *  X axis = current tested segment
                     */
                    wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
                    wxPoint relEndPos   = aRefSeg->GetEnd() - segStartPoint;

                    RotatePoint( &relStartPos, angle );
                    RotatePoint( &relEndPos, angle );

                    if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
                    {
                        m_currentMarker = fillMarker( aRefSeg, track,
                                                      DRCE_ENDS_PROBLEM4, m_currentMarker );
                        return false;
                    }

                    if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
                    {
                        m_currentMarker = fillMarker( aRefSeg, track,
                                                      DRCE_ENDS_PROBLEM5, m_currentMarker );
                        return false;
                    }
                }
            }
        }
    }

    return true;
}
/*
 * Note 1: polygons are drawm using outlines witk a thickness = aMinThicknessValue
 * so shapes must take in account this outline thickness
 *
 * Note 2:
 *      Trapezoidal pads are not considered here because they are very special case
 *      and are used in microwave applications and they *DO NOT* have a thermal relief that
 *      change the shape by creating stubs and destroy their properties.
 */
void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
                                    const D_PAD&    aPad,
                                    int             aThermalGap,
                                    int             aCopperThickness,
                                    int             aMinThicknessValue,
                                    int             aError,
                                    double          aThermalRot )
{
    wxPoint corner, corner_end;
    wxSize  copper_thickness;
    wxPoint padShapePos = aPad.ShapePos();      // Note: for pad having a shape offset,
                                                // the pad position is NOT the shape position

    /* Keep in account the polygon outline thickness
     * aThermalGap must be increased by aMinThicknessValue/2 because drawing external outline
     * with a thickness of aMinThicknessValue will reduce gap by aMinThicknessValue/2
     */
    aThermalGap += aMinThicknessValue / 2;

    /* Keep in account the polygon outline thickness
     * copper_thickness must be decreased by aMinThicknessValue because drawing outlines
     * with a thickness of aMinThicknessValue will increase real thickness by aMinThicknessValue
     */
    int     dx = aPad.GetSize().x / 2;
    int     dy = aPad.GetSize().y / 2;

    copper_thickness.x = std::min( aPad.GetSize().x, aCopperThickness ) - aMinThicknessValue;
    copper_thickness.y = std::min( aPad.GetSize().y, aCopperThickness ) - aMinThicknessValue;

    if( copper_thickness.x < 0 )
        copper_thickness.x = 0;

    if( copper_thickness.y < 0 )
        copper_thickness.y = 0;

    switch( aPad.GetShape() )
    {
    case PAD_SHAPE_CIRCLE:    // Add 4 similar holes
        {
            /* we create 4 copper holes and put them in position 1, 2, 3 and 4
             * here is the area of the rectangular pad + its thermal gap
             * the 4 copper holes remove the copper in order to create the thermal gap
             * 4 ------ 1
             * |        |
             * |        |
             * |        |
             * |        |
             * 3 ------ 2
             * holes 2, 3, 4 are the same as hole 1, rotated 90, 180, 270 deg
             */

            // Build the hole pattern, for the hole in the X >0, Y > 0 plane:
            // The pattern roughtly is a 90 deg arc pie
            std::vector <wxPoint> corners_buffer;

            int    numSegs = std::max( GetArcToSegmentCount( dx + aThermalGap, aError, 360.0 ), 6 );
            double correction = GetCircletoPolyCorrectionFactor( numSegs );
            double delta = 3600.0 / numSegs;

            // Radius of outer arcs of the shape corrected for arc approximation by lines
            int outer_radius = KiROUND( ( dx + aThermalGap ) * correction );

            // Crosspoint of thermal spoke sides, the first point of polygon buffer
            corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) );

            // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side
            // and first seg of arc approx
            corner.x = copper_thickness.x / 2;
            int y = outer_radius - (aThermalGap / 4);
            corner.y = KiROUND( sqrt( ( (double) y * y  - (double) corner.x * corner.x ) ) );

            if( aThermalRot != 0 )
                corners_buffer.push_back( corner );

            // calculate the starting point of the outter arc
            corner.x = copper_thickness.x / 2;

            corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) -
                                      ( (double) corner.x * corner.x ) ) );
            RotatePoint( &corner, 90 ); // 9 degrees is the spoke fillet size

            // calculate the ending point of the outer arc
            corner_end.x = corner.y;
            corner_end.y = corner.x;

            // calculate intermediate points (y coordinate from corner.y to corner_end.y
            while( (corner.y > corner_end.y)  && (corner.x < corner_end.x) )
            {
                corners_buffer.push_back( corner );
                RotatePoint( &corner, delta );
            }

            corners_buffer.push_back( corner_end );

            /* add an intermediate point, to avoid angles < 90 deg between last arc approx line
             * and radius line
             */
            corner.x = corners_buffer[1].y;
            corner.y = corners_buffer[1].x;
            corners_buffer.push_back( corner );

            // Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270  deg
            // aThermalRot = 450 (45.0 degrees orientation) work fine.
            double angle_pad = aPad.GetOrientation();              // Pad orientation
            double th_angle  = aThermalRot;

            for( unsigned ihole = 0; ihole < 4; ihole++ )
            {
                aCornerBuffer.NewOutline();

                for( unsigned ii = 0; ii < corners_buffer.size(); ii++ )
                {
                    corner = corners_buffer[ii];
                    RotatePoint( &corner, th_angle + angle_pad );          // Rotate by segment angle and pad orientation
                    corner += padShapePos;
                    aCornerBuffer.Append( corner.x, corner.y );
                }

                th_angle += 900;       // Note: th_angle in in 0.1 deg.
            }
        }
        break;

    case PAD_SHAPE_OVAL:
        {
            // Oval pad support along the lines of round and rectangular pads
            std::vector <wxPoint> corners_buffer;               // Polygon buffer as vector

            dx = (aPad.GetSize().x / 2) + aThermalGap;     // Cutout radius x
            dy = (aPad.GetSize().y / 2) + aThermalGap;     // Cutout radius y

            wxPoint shape_offset;

            // We want to calculate an oval shape with dx > dy.
            // if this is not the case, exchange dx and dy, and rotate the shape 90 deg.
            int supp_angle = 0;

            if( dx < dy )
            {
                std::swap( dx, dy );
                supp_angle = 900;
                std::swap( copper_thickness.x, copper_thickness.y );
            }

            int deltasize = dx - dy;        // = distance between shape position and the 2 demi-circle ends centre
            // here we have dx > dy
            // Radius of outer arcs of the shape:
            int outer_radius = dy;     // The radius of the outer arc is radius end + aThermalGap


            int    numSegs = std::max( GetArcToSegmentCount( outer_radius, aError, 360.0 ), 6 );
            double delta = 3600.0 / numSegs;

            // Some coordinate fiddling, depending on the shape offset direction
            shape_offset = wxPoint( deltasize, 0 );

            // Crosspoint of thermal spoke sides, the first point of polygon buffer
            corner.x = copper_thickness.x / 2;
            corner.y = copper_thickness.y / 2;
            corners_buffer.push_back( corner );

            // Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge
            // If copper thickness is more than shape offset, we need to calculate arc intercept point.
            if( copper_thickness.x > deltasize )
            {
                corner.x = copper_thickness.x / 2;
                corner.y = KiROUND( sqrt( ( (double) outer_radius * outer_radius ) -
                                        ( (double) ( corner.x - delta ) * ( corner.x - deltasize ) ) ) );
                corner.x -= deltasize;

                /* creates an intermediate point, to have a > 90 deg angle
                 * between the side and the first segment of arc approximation
                 */
                wxPoint intpoint = corner;
                intpoint.y -= aThermalGap / 4;
                corners_buffer.push_back( intpoint + shape_offset );
                RotatePoint( &corner, 90 ); // 9 degrees of thermal fillet
            }
            else
            {
                corner.x = copper_thickness.x / 2;
                corner.y = outer_radius;
                corners_buffer.push_back( corner );
            }

            // Add an intermediate point on spoke sides, to allow a > 90 deg angle between side
            // and first seg of arc approx
            wxPoint last_corner;
            last_corner.y = copper_thickness.y / 2;
            int     px = outer_radius - (aThermalGap / 4);
            last_corner.x =
                KiROUND( sqrt( ( ( (double) px * px ) - (double) last_corner.y * last_corner.y ) ) );

            // Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge
            corner_end.y = copper_thickness.y / 2;
            corner_end.x =
                KiROUND( sqrt( ( (double) outer_radius *
                             outer_radius ) - ( (double) corner_end.y * corner_end.y ) ) );
            RotatePoint( &corner_end, -90 ); // 9 degrees of thermal fillet

            // calculate intermediate arc points till limit is reached
            while( (corner.y > corner_end.y)  && (corner.x < corner_end.x) )
            {
                corners_buffer.push_back( corner + shape_offset );
                RotatePoint( &corner, delta );
            }

            //corners_buffer.push_back(corner + shape_offset);      // TODO: about one mil geometry error forms somewhere.
            corners_buffer.push_back( corner_end + shape_offset );
            corners_buffer.push_back( last_corner + shape_offset );         // Enabling the line above shows intersection point.

            /* Create 2 holes, rotated by pad rotation.
             */
            double angle = aPad.GetOrientation() + supp_angle;

            for( int irect = 0; irect < 2; irect++ )
            {
                aCornerBuffer.NewOutline();
                for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
                {
                    wxPoint cpos = corners_buffer[ic];
                    RotatePoint( &cpos, angle );
                    cpos += padShapePos;
                    aCornerBuffer.Append( cpos.x, cpos.y );
                }

                angle = AddAngles( angle, 1800 ); // this is calculate hole 3
            }

            // Create holes, that are the mirrored from the previous holes
            for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
            {
                wxPoint swap = corners_buffer[ic];
                swap.x = -swap.x;
                corners_buffer[ic] = swap;
            }

            // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
            angle = aPad.GetOrientation() + supp_angle;

            for( int irect = 0; irect < 2; irect++ )
            {
                aCornerBuffer.NewOutline();

                for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
                {
                    wxPoint cpos = corners_buffer[ic];
                    RotatePoint( &cpos, angle );
                    cpos += padShapePos;
                    aCornerBuffer.Append( cpos.x, cpos.y );
                }

                angle = AddAngles( angle, 1800 );
            }
        }
        break;

    case PAD_SHAPE_CHAMFERED_RECT:
    case PAD_SHAPE_ROUNDRECT:   // thermal shape is the same for rectangular shapes.
    case PAD_SHAPE_RECT:
        {
            /* we create 4 copper holes and put them in position 1, 2, 3 and 4
             * here is the area of the rectangular pad + its thermal gap
             * the 4 copper holes remove the copper in order to create the thermal gap
             * 1 ------ 4
             * |        |
             * |        |
             * |        |
             * |        |
             * 2 ------ 3
             * hole 3 is the same as hole 1, rotated 180 deg
             * hole 4 is the same as hole 2, rotated 180 deg and is the same as hole 1, mirrored
             */

            // First, create a rectangular hole for position 1 :
            // 2 ------- 3
            //  |        |
            //  |        |
            //  |        |
            // 1  -------4

            // Modified rectangles with one corner rounded. TODO: merging with oval thermals
            // and possibly round too.

            std::vector <wxPoint> corners_buffer;               // Polygon buffer as vector

            dx = (aPad.GetSize().x / 2) + aThermalGap;         // Cutout radius x
            dy = (aPad.GetSize().y / 2) + aThermalGap;         // Cutout radius y

            // calculation is optimized for pad shape with dy >= dx (vertical rectangle).
            // if it is not the case, just rotate this shape 90 degrees:
            double angle = aPad.GetOrientation();
            wxPoint corner_origin_pos( -aPad.GetSize().x / 2, -aPad.GetSize().y / 2 );

            if( dy < dx )
            {
                std::swap( dx, dy );
                std::swap( copper_thickness.x, copper_thickness.y );
                std::swap( corner_origin_pos.x, corner_origin_pos.y );
                angle += 900.0;
            }
            // Now calculate the hole pattern in position 1 ( top left pad corner )

            // The first point of polygon buffer is left lower corner, second the crosspoint of
            // thermal spoke sides, the third is upper right corner and the rest are rounding
            // vertices going anticlockwise. Note the inverted Y-axis in corners_buffer y coordinates.
            wxPoint arc_end_point( -dx, -(aThermalGap / 4 + copper_thickness.y / 2) );
            corners_buffer.push_back( arc_end_point );          // Adds small miters to zone
            corners_buffer.push_back( wxPoint( -(dx - aThermalGap / 4), -copper_thickness.y / 2 ) );    // fill and spoke corner
            corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -copper_thickness.y / 2 ) );
            corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -(dy - aThermalGap / 4) ) );
            // The first point to build the rounded corner:
            wxPoint arc_start_point( -(aThermalGap / 4 + copper_thickness.x / 2) , -dy );
            corners_buffer.push_back( arc_start_point );

            int    numSegs = std::max( GetArcToSegmentCount( aThermalGap, aError, 360.0 ), 6 );
            double correction = GetCircletoPolyCorrectionFactor( numSegs );
            int    rounding_radius = KiROUND( aThermalGap * correction ); // Corner rounding radius

            // Calculate arc angle parameters.
            // the start angle id near 900 decidegrees, the final angle is near 1800.0 decidegrees.
            double arc_increment = 3600.0 / numSegs;

            // the arc_angle_start is 900.0 or slighly more, depending on the actual arc starting point
            double arc_angle_start = atan2( -arc_start_point.y -corner_origin_pos.y, arc_start_point.x - corner_origin_pos.x ) * 1800/M_PI;
            if( arc_angle_start < 900.0 )
                arc_angle_start = 900.0;

            bool first_point = true;
            for( double curr_angle = arc_angle_start; ; curr_angle += arc_increment )
            {
                wxPoint corner_position = wxPoint( rounding_radius, 0 );
                RotatePoint( &corner_position, curr_angle );        // Rounding vector rotation
                corner_position += corner_origin_pos;               // Rounding vector + Pad corner offset

                // The arc angle is <= 90 degrees, therefore the arc is finished if the x coordinate
                // decrease or the y coordinate is smaller than the y end point
                if( !first_point &&
                    ( corner_position.x >= corners_buffer.back().x || corner_position.y > arc_end_point.y ) )
                    break;

                first_point = false;

                // Note: for hole in position 1, arc x coordinate is always < x starting point
                // and arc y coordinate is always <= y ending point
                if( corner_position != corners_buffer.back()    // avoid duplicate corners.
                    && corner_position.x <= arc_start_point.x )   // skip current point at the right of the starting point
                    corners_buffer.push_back( corner_position );
            }

            for( int irect = 0; irect < 2; irect++ )
            {
                aCornerBuffer.NewOutline();

                for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
                {
                    wxPoint cpos = corners_buffer[ic];
                    RotatePoint( &cpos, angle );            // Rotate according to module orientation
                    cpos += padShapePos;                    // Shift origin to position
                    aCornerBuffer.Append( cpos.x, cpos.y );
                }

                angle = AddAngles( angle, 1800 );       // this is calculate hole 3
            }

            // Create holes, that are the mirrored from the previous holes
            for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
            {
                wxPoint swap = corners_buffer[ic];
                swap.x = -swap.x;
                corners_buffer[ic] = swap;
            }

            // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
            for( int irect = 0; irect < 2; irect++ )
            {
                aCornerBuffer.NewOutline();

                for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
                {
                    wxPoint cpos = corners_buffer[ic];
                    RotatePoint( &cpos, angle );
                    cpos += padShapePos;
                    aCornerBuffer.Append( cpos.x, cpos.y );
                }

                angle = AddAngles( angle, 1800 );
            }
        }
        break;

    case PAD_SHAPE_TRAPEZOID:
        {
        SHAPE_POLY_SET antipad;       // The full antipad area

        // We need a length to build the stubs of the thermal reliefs
        // the value is not very important. The pad bounding box gives a reasonable value
        EDA_RECT bbox = aPad.GetBoundingBox();
        int stub_len = std::max( bbox.GetWidth(), bbox.GetHeight() );

        aPad.TransformShapeWithClearanceToPolygon( antipad, aThermalGap );

        SHAPE_POLY_SET stub;          // A basic stub ( a rectangle)
        SHAPE_POLY_SET stubs;        // the full stubs shape


        // We now substract the stubs (connections to the copper zone)
        //ClipperLib::Clipper clip_engine;
        // Prepare a clipping transform
        //clip_engine.AddPath( antipad, ClipperLib::ptSubject, true );

        // Create stubs and add them to clipper engine
        wxPoint stubBuffer[4];
        stubBuffer[0].x = stub_len;
        stubBuffer[0].y = copper_thickness.y/2;
        stubBuffer[1] = stubBuffer[0];
        stubBuffer[1].y = -copper_thickness.y/2;
        stubBuffer[2] = stubBuffer[1];
        stubBuffer[2].x = -stub_len;
        stubBuffer[3] = stubBuffer[2];
        stubBuffer[3].y = copper_thickness.y/2;

        stub.NewOutline();

        for( unsigned ii = 0; ii < arrayDim( stubBuffer ); ii++ )
        {
            wxPoint cpos = stubBuffer[ii];
            RotatePoint( &cpos, aPad.GetOrientation() );
            cpos += padShapePos;
            stub.Append( cpos.x, cpos.y );
        }

        stubs.Append( stub );

        stubBuffer[0].y = stub_len;
        stubBuffer[0].x = copper_thickness.x/2;
        stubBuffer[1] = stubBuffer[0];
        stubBuffer[1].x = -copper_thickness.x/2;
        stubBuffer[2] = stubBuffer[1];
        stubBuffer[2].y = -stub_len;
        stubBuffer[3] = stubBuffer[2];
        stubBuffer[3].x = copper_thickness.x/2;

        stub.RemoveAllContours();
        stub.NewOutline();

        for( unsigned ii = 0; ii < arrayDim( stubBuffer ); ii++ )
        {
            wxPoint cpos = stubBuffer[ii];
            RotatePoint( &cpos, aPad.GetOrientation() );
            cpos += padShapePos;
            stub.Append( cpos.x, cpos.y );
        }

        stubs.Append( stub );
        stubs.Simplify( SHAPE_POLY_SET::PM_FAST );

        antipad.BooleanSubtract( stubs, SHAPE_POLY_SET::PM_FAST );
        aCornerBuffer.Append( antipad );

        break;
        }

    default:
        ;
    }
}
void EXCELLON_WRITER::BuildHolesList( LAYER_PAIR aLayerPair,
                                      bool aGenerateNPTH_list )
{
    HOLE_INFO new_hole;

    m_holeListBuffer.clear();
    m_toolListBuffer.clear();

    wxASSERT(  aLayerPair.first < aLayerPair.second );  // fix the caller

    // build hole list for vias
    if( ! aGenerateNPTH_list )  // vias are always plated !
    {
        for( VIA* via = GetFirstVia( m_pcb->m_Track ); via; via = GetFirstVia( via->Next() ) )
        {
            int hole_sz = via->GetDrillValue();

            if( hole_sz == 0 )   // Should not occur.
                continue;

            new_hole.m_Tool_Reference = -1;         // Flag value for Not initialized
            new_hole.m_Hole_Orient    = 0;
            new_hole.m_Hole_Diameter  = hole_sz;
            new_hole.m_Hole_NotPlated = false;
            new_hole.m_Hole_Size.x = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

            new_hole.m_Hole_Shape = 0;              // hole shape: round
            new_hole.m_Hole_Pos = via->GetStart();

            via->LayerPair( &new_hole.m_Hole_Top_Layer, &new_hole.m_Hole_Bottom_Layer );

            // LayerPair() returns params with m_Hole_Bottom_Layer > m_Hole_Top_Layer
            // Remember: top layer = 0 and bottom layer = 31 for through hole vias
            // Any captured via should be from aLayerPair.first to aLayerPair.second exactly.
            if( new_hole.m_Hole_Top_Layer    != aLayerPair.first ||
                new_hole.m_Hole_Bottom_Layer != aLayerPair.second )
                continue;

            m_holeListBuffer.push_back( new_hole );
        }
    }

    if( aLayerPair == LAYER_PAIR( F_Cu, B_Cu ) )
    {
        // add holes for thru hole pads
        for( MODULE* module = m_pcb->m_Modules;  module;  module = module->Next() )
        {
            for( D_PAD* pad = module->Pads();  pad;  pad = pad->Next() )
            {
                if( !m_merge_PTH_NPTH )
                {
                    if( !aGenerateNPTH_list && pad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
                        continue;

                    if( aGenerateNPTH_list && pad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
                        continue;
                }

                if( pad->GetDrillSize().x == 0 )
                    continue;

                new_hole.m_Hole_NotPlated = (pad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED);
                new_hole.m_Tool_Reference = -1;         // Flag is: Not initialized
                new_hole.m_Hole_Orient    = pad->GetOrientation();
                new_hole.m_Hole_Shape     = 0;           // hole shape: round
                new_hole.m_Hole_Diameter  = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
                new_hole.m_Hole_Size.x    = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

                if( pad->GetDrillShape() != PAD_DRILL_SHAPE_CIRCLE )
                    new_hole.m_Hole_Shape = 1; // oval flag set

                new_hole.m_Hole_Size         = pad->GetDrillSize();
                new_hole.m_Hole_Pos          = pad->GetPosition();  // hole position
                new_hole.m_Hole_Bottom_Layer = B_Cu;
                new_hole.m_Hole_Top_Layer    = F_Cu;    // pad holes are through holes
                m_holeListBuffer.push_back( new_hole );
            }
        }
    }

    // Sort holes per increasing diameter value
    sort( m_holeListBuffer.begin(), m_holeListBuffer.end(), CmpHoleSettings );

    // build the tool list
    int last_hole = -1;     // Set to not initialized (this is a value not used
                            // for m_holeListBuffer[ii].m_Hole_Diameter)
    bool last_notplated_opt = false;

    DRILL_TOOL new_tool( 0, false );
    unsigned   jj;

    for( unsigned ii = 0; ii < m_holeListBuffer.size(); ii++ )
    {
        if( m_holeListBuffer[ii].m_Hole_Diameter != last_hole ||
            m_holeListBuffer[ii].m_Hole_NotPlated != last_notplated_opt )
        {
            new_tool.m_Diameter = m_holeListBuffer[ii].m_Hole_Diameter;
            new_tool.m_Hole_NotPlated = m_holeListBuffer[ii].m_Hole_NotPlated;
            m_toolListBuffer.push_back( new_tool );
            last_hole = new_tool.m_Diameter;
            last_notplated_opt = new_tool.m_Hole_NotPlated;
        }

        jj = m_toolListBuffer.size();

        if( jj == 0 )
            continue;                                        // Should not occurs

        m_holeListBuffer[ii].m_Tool_Reference = jj;          // Tool value Initialized (value >= 1)

        m_toolListBuffer.back().m_TotalCount++;

        if( m_holeListBuffer[ii].m_Hole_Shape )
            m_toolListBuffer.back().m_OvalCount++;
    }
}
void DIALOG_PAD_PROPERTIES::PadPropertiesAccept( wxCommandEvent& event )
{
    if( !padValuesOK() )
        return;

    bool rastnestIsChanged = false;
    int  isign = m_isFlipped ? -1 : 1;

    transferDataToPad( m_padMaster );
    // m_padMaster is a pattern: ensure there is no net for this pad:
    m_padMaster->SetNetCode( NETINFO_LIST::UNCONNECTED );

    if( m_currentPad )   // Set current Pad parameters
    {
        wxSize  size;
        MODULE* module = m_currentPad->GetParent();

        m_parent->SaveCopyInUndoList( module, UR_CHANGED );
        module->SetLastEditTime();

        // redraw the area where the pad was, without pad (delete pad on screen)
        m_currentPad->SetFlags( DO_NOT_DRAW );
        m_parent->GetCanvas()->RefreshDrawingRect( m_currentPad->GetBoundingBox() );
        m_currentPad->ClearFlags( DO_NOT_DRAW );

        // Update values
        m_currentPad->SetShape( m_padMaster->GetShape() );
        m_currentPad->SetAttribute( m_padMaster->GetAttribute() );

        if( m_currentPad->GetPosition() != m_padMaster->GetPosition() )
        {
            m_currentPad->SetPosition( m_padMaster->GetPosition() );
            rastnestIsChanged = true;
        }

        // compute the pos 0 value, i.e. pad position for module with orientation = 0
        // i.e. relative to module origin (module position)
        wxPoint pt = m_currentPad->GetPosition() - module->GetPosition();

        RotatePoint( &pt, -module->GetOrientation() );

        m_currentPad->SetPos0( pt );

        m_currentPad->SetOrientation( m_padMaster->GetOrientation() * isign + module->GetOrientation() );

        m_currentPad->SetSize( m_padMaster->GetSize() );

        size = m_padMaster->GetDelta();
        size.y *= isign;
        m_currentPad->SetDelta( size );

        m_currentPad->SetDrillSize( m_padMaster->GetDrillSize() );
        m_currentPad->SetDrillShape( m_padMaster->GetDrillShape() );

        wxPoint offset = m_padMaster->GetOffset();
        offset.y *= isign;
        m_currentPad->SetOffset( offset );

        m_currentPad->SetPadToDieLength( m_padMaster->GetPadToDieLength() );

        if( m_currentPad->GetLayerSet() != m_padMaster->GetLayerSet() )
        {
            rastnestIsChanged = true;
            m_currentPad->SetLayerSet( m_padMaster->GetLayerSet() );
        }

        if( m_isFlipped )
            m_currentPad->SetLayerSet( FlipLayerMask( m_currentPad->GetLayerSet() ) );

        m_currentPad->SetPadName( m_padMaster->GetPadName() );

        wxString padNetname;

        // For PAD_HOLE_NOT_PLATED, ensure there is no net name selected
        if( m_padMaster->GetAttribute() != PAD_HOLE_NOT_PLATED  )
            padNetname = m_PadNetNameCtrl->GetValue();

        if( m_currentPad->GetNetname() != padNetname )
        {
            const NETINFO_ITEM* netinfo = m_board->FindNet( padNetname );

            if( !padNetname.IsEmpty() &&  netinfo == NULL )
            {
                DisplayError( NULL, _( "Unknown netname, netname not changed" ) );
            }
            else
            {
                rastnestIsChanged = true;
                m_currentPad->SetNetCode( netinfo->GetNet() );
            }
        }

        m_currentPad->SetLocalClearance( m_padMaster->GetLocalClearance() );
        m_currentPad->SetLocalSolderMaskMargin( m_padMaster->GetLocalSolderMaskMargin() );
        m_currentPad->SetLocalSolderPasteMargin( m_padMaster->GetLocalSolderPasteMargin() );
        m_currentPad->SetLocalSolderPasteMarginRatio( m_padMaster->GetLocalSolderPasteMarginRatio() );
        m_currentPad->SetZoneConnection( m_padMaster->GetZoneConnection() );
        m_currentPad->SetThermalWidth( m_padMaster->GetThermalWidth() );
        m_currentPad->SetThermalGap( m_padMaster->GetThermalGap() );

        module->CalculateBoundingBox();
        m_parent->SetMsgPanel( m_currentPad );

        // redraw the area where the pad was
        m_parent->GetCanvas()->RefreshDrawingRect( m_currentPad->GetBoundingBox() );
        m_parent->OnModify();
    }

    EndModal( wxID_OK );

    if( rastnestIsChanged )  // The net ratsnest must be recalculated
        m_board->m_Status_Pcb = 0;
}
Ejemplo n.º 25
0
bool DRC::doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_limit )
{
    const static LSET all_cu = LSET::AllCuMask();

    LSET layerMask = aRefPad->GetLayerSet() & all_cu;

    /* used to test DRC pad to holes: this dummy pad has the size and shape of the hole
     * to test pad to pad hole DRC, using the pad to pad DRC test function.
     * Therefore, this dummy pad is a circle or an oval.
     * A pad must have a parent because some functions expect a non null parent
     * to find the parent board, and some other data
     */
    MODULE  dummymodule( m_pcb );    // Creates a dummy parent
    D_PAD   dummypad( &dummymodule );

    // Ensure the hole is on all copper layers
    dummypad.SetLayerSet( all_cu | dummypad.GetLayerSet() );

    // Use the minimal local clearance value for the dummy pad.
    // The clearance of the active pad will be used as minimum distance to a hole
    // (a value = 0 means use netclass value)
    dummypad.SetLocalClearance( 1 );

    for( D_PAD** pad_list = aStart;  pad_list<aEnd;  ++pad_list )
    {
        D_PAD* pad = *pad_list;

        if( pad == aRefPad )
            continue;

        // We can stop the test when pad->GetPosition().x > x_limit
        // because the list is sorted by X values
        if( pad->GetPosition().x > x_limit )
            break;

        // No problem if pads which are on copper layers are on different copper layers,
        // (pads can be only on a technical layer, to build complex pads)
        // but their hole (if any ) can create DRC error because they are on all
        // copper layers, so we test them
        if( ( pad->GetLayerSet() & layerMask ) == 0 &&
            ( pad->GetLayerSet() & all_cu ) != 0 &&
            ( aRefPad->GetLayerSet() & all_cu ) != 0 )
        {
            // if holes are in the same location and have the same size and shape,
            // this can be accepted
            if( pad->GetPosition() == aRefPad->GetPosition()
                && pad->GetDrillSize() == aRefPad->GetDrillSize()
                && pad->GetDrillShape() == aRefPad->GetDrillShape() )
            {
                if( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
                    continue;

                // for oval holes: must also have the same orientation
                if( pad->GetOrientation() == aRefPad->GetOrientation() )
                    continue;
            }

            /* Here, we must test clearance between holes and pads
             * dummy pad size and shape is adjusted to pad drill size and shape
             */
            if( pad->GetDrillSize().x )
            {
                // pad under testing has a hole, test this hole against pad reference
                dummypad.SetPosition( pad->GetPosition() );
                dummypad.SetSize( pad->GetDrillSize() );
                dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
                                                           PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetOrientation( pad->GetOrientation() );

                if( !checkClearancePadToPad( aRefPad, &dummypad ) )
                {
                    // here we have a drc error on pad!
                    m_currentMarker = fillMarker( pad, aRefPad,
                                                  DRCE_HOLE_NEAR_PAD, m_currentMarker );
                    return false;
                }
            }

            if( aRefPad->GetDrillSize().x ) // pad reference has a hole
            {
                dummypad.SetPosition( aRefPad->GetPosition() );
                dummypad.SetSize( aRefPad->GetDrillSize() );
                dummypad.SetShape( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
                                                               PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
                dummypad.SetOrientation( aRefPad->GetOrientation() );

                if( !checkClearancePadToPad( pad, &dummypad ) )
                {
                    // here we have a drc error on aRefPad!
                    m_currentMarker = fillMarker( aRefPad, pad,
                                                  DRCE_HOLE_NEAR_PAD, m_currentMarker );
                    return false;
                }
            }

            continue;
        }

        // The pad must be in a net (i.e pt_pad->GetNet() != 0 ),
        // But no problem if pads have the same netcode (same net)
        if( pad->GetNetCode() && ( aRefPad->GetNetCode() == pad->GetNetCode() ) )
            continue;

        // if pads are from the same footprint
        if( pad->GetParent() == aRefPad->GetParent() )
        {
            // and have the same pad number ( equivalent pads  )

            // one can argue that this 2nd test is not necessary, that any
            // two pads from a single module are acceptable.  This 2nd test
            // should eventually be a configuration option.
            if( pad->PadNameEqual( aRefPad ) )
                continue;
        }

        // if either pad has no drill and is only on technical layers, not a clearance violation
        if( ( ( pad->GetLayerSet() & layerMask ) == 0 && !pad->GetDrillSize().x ) ||
            ( ( aRefPad->GetLayerSet() & layerMask ) == 0 && !aRefPad->GetDrillSize().x ) )
        {
            continue;
        }

        if( !checkClearancePadToPad( aRefPad, pad ) )
        {
            // here we have a drc error!
            m_currentMarker = fillMarker( aRefPad, pad, DRCE_PAD_NEAR_PAD1, m_currentMarker );
            return false;
        }
    }

    return true;
}
/*
 * Function BuildHolesList
 * Create the list of holes and tools for a given board
 * The list is sorted by increasing drill values
 * Only holes from aFirstLayer to aLastLayer copper layers  are listed (for vias, because pad holes are always through holes)
 * param aPcb : the given board
 * param aHoleListBuffer : the std::vector<HOLE_INFO> to fill with pcb holes info
 * param aToolListBuffer : the std::vector<DRILL_TOOL> to fill with tools to use
 * param aFirstLayer = first layer to consider. if < 0 aFirstLayer is ignored   (used to creates report file)
 * param aLastLayer = last layer to consider. if < 0 aLastLayer is ignored
 * param aExcludeThroughHoles : if true, exclude through holes ( pads and vias through )
 * param aGenerateNPTH_list :
 *       true to create NPTH only list (with no plated holes)
 *       false to created plated holes list (with no NPTH )
 */
void Build_Holes_List( BOARD* aPcb,
                       std::vector<HOLE_INFO>& aHoleListBuffer,
                       std::vector<DRILL_TOOL>& aToolListBuffer,
                       int aFirstLayer, int aLastLayer, bool aExcludeThroughHoles,
                       bool aGenerateNPTH_list )
{
    HOLE_INFO new_hole;
    int       hole_value;

    aHoleListBuffer.clear();
    aToolListBuffer.clear();

    if( (aFirstLayer >= 0) && (aLastLayer >= 0) )
    {
        if( aFirstLayer > aLastLayer )
            EXCHG( aFirstLayer, aLastLayer );
    }

    /* build hole list for vias
    */
    if( ! aGenerateNPTH_list )  // vias are always plated !
    {
        for( TRACK* track = aPcb->m_Track;  track;  track = track->Next() )
        {
            if( track->Type() != PCB_VIA_T )
                continue;

            SEGVIA* via = (SEGVIA*) track;
            hole_value = via->GetDrillValue();

            if( hole_value == 0 )
                continue;

            new_hole.m_Tool_Reference = -1;         // Flag value for Not initialized
            new_hole.m_Hole_Orient    = 0;
            new_hole.m_Hole_Diameter  = hole_value;
            new_hole.m_Hole_Size.x = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

            new_hole.m_Hole_Shape = 0;              // hole shape: round
            new_hole.m_Hole_Pos = via->m_Start;
            via->ReturnLayerPair( &new_hole.m_Hole_Top_Layer, &new_hole.m_Hole_Bottom_Layer );

            // ReturnLayerPair return params with m_Hole_Bottom_Layer < m_Hole_Top_Layer
            if( (new_hole.m_Hole_Bottom_Layer > aFirstLayer) && (aFirstLayer >= 0) )
                continue;

            if( (new_hole.m_Hole_Top_Layer < aLastLayer) && (aLastLayer >= 0) )
                continue;

            if( aExcludeThroughHoles  && (new_hole.m_Hole_Bottom_Layer == LAYER_N_BACK)
               && (new_hole.m_Hole_Top_Layer == LAYER_N_FRONT) )
                continue;

            aHoleListBuffer.push_back( new_hole );
        }
    }

    // build hole list for pads (assumed always through holes)
    if( !aExcludeThroughHoles || aGenerateNPTH_list )
    {
        for( MODULE* module = aPcb->m_Modules;  module;  module = module->Next() )
        {
            // Read and analyse pads
            for( D_PAD* pad = module->m_Pads;  pad;  pad = pad->Next() )
            {
                if( ! aGenerateNPTH_list && pad->GetAttribute() == PAD_HOLE_NOT_PLATED )
                    continue;

                if( aGenerateNPTH_list && pad->GetAttribute() != PAD_HOLE_NOT_PLATED )
                    continue;

                if( pad->GetDrillSize().x == 0 )
                    continue;

                new_hole.m_Hole_NotPlated = (pad->GetAttribute() == PAD_HOLE_NOT_PLATED);
                new_hole.m_Tool_Reference = -1;         // Flag is: Not initialized
                new_hole.m_Hole_Orient    = pad->GetOrientation();
                new_hole.m_Hole_Shape    = 0;           // hole shape: round
                new_hole.m_Hole_Diameter = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
                new_hole.m_Hole_Size.x    = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;

                if( pad->GetDrillShape() != PAD_CIRCLE )
                    new_hole.m_Hole_Shape = 1; // oval flag set

                new_hole.m_Hole_Size = pad->GetDrillSize();
                new_hole.m_Hole_Pos = pad->GetPosition();               // hole position
                new_hole.m_Hole_Bottom_Layer = LAYER_N_BACK;
                new_hole.m_Hole_Top_Layer    = LAYER_N_FRONT;// pad holes are through holes
                aHoleListBuffer.push_back( new_hole );
            }
        }
    }

    // Sort holes per increasing diameter value
    sort( aHoleListBuffer.begin(), aHoleListBuffer.end(), CmpHoleDiameterValue );

    // build the tool list
    int        LastHole = -1; /* Set to not initialised (this is a value not used
                               * for aHoleListBuffer[ii].m_Hole_Diameter) */
    DRILL_TOOL new_tool( 0 );
    unsigned   jj;

    for( unsigned ii = 0; ii < aHoleListBuffer.size(); ii++ )
    {
        if( aHoleListBuffer[ii].m_Hole_Diameter != LastHole )
        {
            new_tool.m_Diameter = ( aHoleListBuffer[ii].m_Hole_Diameter );
            aToolListBuffer.push_back( new_tool );
            LastHole = new_tool.m_Diameter;
        }

        jj = aToolListBuffer.size();

        if( jj == 0 )
            continue;                                       // Should not occurs

        aHoleListBuffer[ii].m_Tool_Reference = jj;          // Tool value Initialized (value >= 1)

        aToolListBuffer.back().m_TotalCount++;

        if( aHoleListBuffer[ii].m_Hole_Shape )
            aToolListBuffer.back().m_OvalCount++;
    }
}