Ejemplo n.º 1
0
bool EigenLinearSolver::solve(EigenMatrix &A, EigenVector& b, EigenVector &x)
{
    INFO("------------------------------------------------------------------");
    INFO("*** Eigen solver computation");

#ifdef USE_EIGEN_UNSUPPORTED
    std::unique_ptr<Eigen::IterScaling<EigenMatrix::RawMatrixType>> scal;
    if (_option.scaling)
    {
        INFO("-> scale");
        scal.reset(new Eigen::IterScaling<EigenMatrix::RawMatrixType>());
        scal->computeRef(A.getRawMatrix());
        b.getRawVector() = scal->LeftScaling().cwiseProduct(b.getRawVector());
    }
#endif
    auto const success = _solver->solve(A.getRawMatrix(), b.getRawVector(),
                                        x.getRawVector(), _option);
#ifdef USE_EIGEN_UNSUPPORTED
    if (scal)
        x.getRawVector() = scal->RightScaling().cwiseProduct(x.getRawVector());
#endif

    INFO("------------------------------------------------------------------");

    return success;
}
Ejemplo n.º 2
0
bool EigenLisLinearSolver::solve(EigenMatrix &A_, EigenVector& b_,
                                 EigenVector &x_)
{
    static_assert(EigenMatrix::RawMatrixType::IsRowMajor,
                  "Sparse matrix is required to be in row major storage.");
    auto &A = A_.getRawMatrix();
    auto &b = b_.getRawVector();
    auto &x = x_.getRawVector();

    if (!A.isCompressed())
        A.makeCompressed();
    int nnz = A.nonZeros();
    int* ptr = A.outerIndexPtr();
    int* col = A.innerIndexPtr();
    double* data = A.valuePtr();
    LisMatrix lisA(A_.getNumberOfRows(), nnz, ptr, col, data);
    LisVector lisb(b.rows(), b.data());
    LisVector lisx(x.rows(), x.data());

    LisLinearSolver lissol; // TODO not always creat Lis solver here
    lissol.setOption(_lis_option);
    lissol.solve(lisA, lisb, lisx);

    for (std::size_t i=0; i<lisx.size(); i++)
        x[i] = lisx[i];

    return true; // TODO implement checks
}
Ejemplo n.º 3
0
EigenLinearSolver::EigenLinearSolver(EigenMatrix &A,
                            const std::string /*solver_name*/,
                            BaseLib::ConfigTree const*const option)
{
    if (option)
        setOption(*option);

    if (!A.getRawMatrix().isCompressed())
        A.getRawMatrix().makeCompressed();
    if (_option.solver_type==EigenOption::SolverType::SparseLU) {
        using SolverType = Eigen::SparseLU<EigenMatrix::RawMatrixType, Eigen::COLAMDOrdering<int>>;
        _solver = new details::EigenDirectLinearSolver<SolverType, IEigenSolver>(A.getRawMatrix());
    } else if (_option.solver_type==EigenOption::SolverType::BiCGSTAB) {
        using SolverType = Eigen::BiCGSTAB<EigenMatrix::RawMatrixType, Eigen::DiagonalPreconditioner<double>>;
        _solver = new details::EigenIterativeLinearSolver<SolverType, IEigenSolver>(A.getRawMatrix());
    } else if (_option.solver_type==EigenOption::SolverType::CG) {
        using SolverType = Eigen::ConjugateGradient<EigenMatrix::RawMatrixType, Eigen::Lower, Eigen::DiagonalPreconditioner<double>>;
        _solver = new details::EigenIterativeLinearSolver<SolverType, IEigenSolver>(A.getRawMatrix());
    }
}
Ejemplo n.º 4
0
void addToMatrix(EigenMatrix& m,
                 std::initializer_list<double> values)
{
    auto const rows = m.getNumberOfRows();
    auto const cols = m.getNumberOfColumns();

    assert(static_cast<EigenMatrix::IndexType>(values.size()) == rows*cols);
    Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> tmp(rows, cols);

    auto it = values.begin();
    for (GlobalIndexType r=0; r<rows; ++r) {
        for (GlobalIndexType c=0; c<cols; ++c) {
            tmp(r, c) = *(it++);
        }
    }

    m.getRawMatrix() += tmp.sparseView();
}
Ejemplo n.º 5
0
void setMatrix(EigenMatrix& m, Eigen::MatrixXd const& tmp)
{
    m.getRawMatrix() = tmp.sparseView();
}