void MixedGradientPressureWeakPeriodic :: computeStress(FloatArray &sigmaDev, FloatArray &tractions, double rve_size)
{
    FloatMatrix mMatrix;
    FloatArray normal, coords, t;

    int nsd = domain->giveNumberOfSpatialDimensions();
    Set *set = this->giveDomain()->giveSet(this->set);
    const IntArray &boundaries = set->giveBoundaryList();
    // Reminder: sigma = int t * n dA, where t = sum( C_i * n t_i ).
    // This loop will construct sigma in matrix form.

    FloatMatrix sigma;

    for ( int pos = 1; pos <= boundaries.giveSize() / 2; ++pos ) {
        Element *el = this->giveDomain()->giveElement( boundaries.at(pos * 2 - 1) );
        int boundary = boundaries.at(pos * 2);

        FEInterpolation *interp = el->giveInterpolation(); // Geometry interpolation. The displacements or velocities must have the same interpolation scheme (on the boundary at least).

        int maxorder = this->order + interp->giveInterpolationOrder() * 3;
        std :: unique_ptr< IntegrationRule >ir( interp->giveBoundaryIntegrationRule(maxorder, boundary) );

        for ( GaussPoint *gp: *ir ) {
            const FloatArray &lcoords = gp->giveNaturalCoordinates();
            FEIElementGeometryWrapper cellgeo(el);

            double detJ = interp->boundaryEvalNormal(normal, boundary, lcoords, cellgeo);
            // Compute v_m = d_dev . x
            interp->boundaryLocal2Global(coords, boundary, lcoords, cellgeo);

            this->constructMMatrix(mMatrix, coords, normal);
            t.beProductOf(mMatrix, tractions);
            sigma.plusDyadUnsym(t, coords, detJ * gp->giveWeight());
        }
    }
    sigma.times(1. / rve_size);

    double pressure = 0.;
    for ( int i = 1; i <= nsd; i++ ) {
        pressure += sigma.at(i, i);
    }
    pressure /= 3; // Not 100% sure about this for 2D cases.
    if ( nsd == 3 ) {
        sigmaDev.resize(6);
        sigmaDev.at(1) = sigma.at(1, 1) - pressure;
        sigmaDev.at(2) = sigma.at(2, 2) - pressure;
        sigmaDev.at(3) = sigma.at(3, 3) - pressure;
        sigmaDev.at(4) = 0.5 * ( sigma.at(2, 3) + sigma.at(3, 2) );
        sigmaDev.at(5) = 0.5 * ( sigma.at(1, 3) + sigma.at(3, 1) );
        sigmaDev.at(6) = 0.5 * ( sigma.at(1, 2) + sigma.at(2, 1) );
    } else if ( nsd == 2 ) {
        sigmaDev.resize(3);
        sigmaDev.at(1) = sigma.at(1, 1) - pressure;
        sigmaDev.at(2) = sigma.at(2, 2) - pressure;
        sigmaDev.at(3) = 0.5 * ( sigma.at(1, 2) + sigma.at(2, 1) );
    } else {
        sigmaDev.resize(1);
        sigmaDev.at(1) = sigma.at(1, 1) - pressure;
    }
}
void MixedGradientPressureWeakPeriodic :: integrateTractionXTangent(FloatMatrix &answer, Element *el, int boundary)
{
    // Computes the integral: int dt . dx_m dA
    FloatMatrix mMatrix;
    FloatArray normal, coords, vM_vol;

    FEInterpolation *interp = el->giveInterpolation(); // Geometry interpolation. The displacements or velocities must have the same interpolation scheme (on the boundary at least).

    int maxorder = this->order + interp->giveInterpolationOrder() * 3;
    std :: unique_ptr< IntegrationRule >ir( interp->giveBoundaryIntegrationRule(maxorder, boundary) );

    FloatArray tmpAnswer;
    for ( GaussPoint *gp: *ir ) {
        const FloatArray &lcoords = gp->giveNaturalCoordinates();
        FEIElementGeometryWrapper cellgeo(el);

        double detJ = interp->boundaryEvalNormal(normal, boundary, lcoords, cellgeo);
        interp->boundaryLocal2Global(coords, boundary, lcoords, cellgeo);

        vM_vol.beScaled(1.0/3.0, coords);
        this->constructMMatrix(mMatrix, coords, normal);

        tmpAnswer.plusProduct(mMatrix, vM_vol, detJ * gp->giveWeight());
    }
    answer.resize(tmpAnswer.giveSize(), 1);
    answer.setColumn(tmpAnswer, 1);
}
void MixedGradientPressureWeakPeriodic :: integrateTractionDev(FloatArray &answer, Element *el, int boundary, const FloatMatrix &ddev)
{
    // Computes the integral: int dt . dx dA
    FloatMatrix mMatrix;
    FloatArray normal, coords, vM_dev;

    FEInterpolation *interp = el->giveInterpolation(); // Geometry interpolation. The displacements or velocities must have the same interpolation scheme (on the boundary at least).

    int maxorder = this->order + interp->giveInterpolationOrder() * 3;
    std :: unique_ptr< IntegrationRule >ir( interp->giveBoundaryIntegrationRule(maxorder, boundary) );
    answer.clear();

    for ( GaussPoint *gp: *ir ) {
        const FloatArray &lcoords = gp->giveNaturalCoordinates();
        FEIElementGeometryWrapper cellgeo(el);

        double detJ = interp->boundaryEvalNormal(normal, boundary, lcoords, cellgeo);
        // Compute v_m = d_dev . x
        interp->boundaryLocal2Global(coords, boundary, lcoords, cellgeo);
        vM_dev.beProductOf(ddev, coords);

        this->constructMMatrix(mMatrix, coords, normal);

        answer.plusProduct(mMatrix, vM_dev, detJ * gp->giveWeight());
    }
}
Ejemplo n.º 4
0
int
DofManValueField :: evaluateAt(FloatArray &answer, const FloatArray &coords, ValueModeType mode, TimeStep *tStep)
{
    int result = 0; // assume ok
    FloatArray lc, n;

    // request element containing target point
    Element *elem = this->domain->giveSpatialLocalizer()->giveElementContainingPoint(coords);
    if ( elem ) { // ok element containing target point found
        FEInterpolation *interp = elem->giveInterpolation();
        if ( interp ) {
            // map target point to element local coordinates
            if ( interp->global2local( lc, coords, FEIElementGeometryWrapper(elem) ) ) {
                // evaluate interpolation functions at target point
                interp->evalN( n, lc, FEIElementGeometryWrapper(elem) );
                // loop over element nodes
                for ( int i = 1; i <= n.giveSize(); i++ ) {
                    // multiply nodal value by value of corresponding shape function and add this to answer
                    answer.add( n.at(i), this->dmanvallist[elem->giveDofManagerNumber(i)-1] );
                }
            } else { // mapping from global to local coordinates failed
                result = 1; // failed
            }
        } else {  // element without interpolation
            result = 1; // failed
        }
    } else { // no element containing given point found
        result = 1; // failed
    }
    return result;
}
Ejemplo n.º 5
0
void
AxisymElement :: computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int li, int ui)
//
// Returns the [ 6 x (nno*2) ] strain-displacement matrix {B} of the receiver,
// evaluated at gp.
// (epsilon_x,epsilon_y,...,Gamma_xy) = B . r
// r = ( u1,v1,u2,v2,u3,v3,u4,v4)
{

    FEInterpolation *interp = this->giveInterpolation();
     
    FloatArray N;
    interp->evalN( N, gp->giveNaturalCoordinates(), *this->giveCellGeometryWrapper() );
    double r = 0.0;
    for ( int i = 1; i <= this->giveNumberOfDofManagers(); i++ ) {
        double x = this->giveNode(i)->giveCoordinate(1);
        r += x * N.at(i);
    } 
    
    FloatMatrix dNdx;
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), *this->giveCellGeometryWrapper() );
    answer.resize(6, dNdx.giveNumberOfRows() * 2);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, i * 2 - 1) = dNdx.at(i, 1);
        answer.at(2, i * 2 - 0) = dNdx.at(i, 2);
        answer.at(3, i * 2 - 1) = N.at(i) / r;
        answer.at(6, 2 * i - 1) = dNdx.at(i, 2);
        answer.at(6, 2 * i - 0) = dNdx.at(i, 1);
    }
  
}
void Space3dStructuralElementEvaluator :: computeBMatrixAt(FloatMatrix &answer, GaussPoint *gp)
{
    FloatMatrix d;
    Element *element = this->giveElement();
    FEInterpolation *interp = element->giveInterpolation();
    // this uses FEInterpolation::nodes2coords - quite inefficient in this case (large num of dofmans)
    interp->evaldNdx( d, gp->giveNaturalCoordinates(), FEIIGAElementGeometryWrapper( element, gp->giveIntegrationRule()->giveKnotSpan() ) );


    answer.resize(6, d.giveNumberOfRows() * 3);
    answer.zero();

    for ( int i = 1; i <= d.giveNumberOfRows(); i++ ) {
        answer.at(1, i * 3 - 2) = d.at(i, 1);
        answer.at(2, i * 3 - 1) = d.at(i, 2);
        answer.at(3, i * 3 - 0) = d.at(i, 3);

        answer.at(4, 3 * i - 1) = d.at(i, 3);
        answer.at(4, 3 * i - 0) = d.at(i, 2);

        answer.at(5, 3 * i - 2) = d.at(i, 3);
        answer.at(5, 3 * i - 0) = d.at(i, 1);

        answer.at(6, 3 * i - 2) = d.at(i, 2);
        answer.at(6, 3 * i - 1) = d.at(i, 1);
    }
}
Ejemplo n.º 7
0
bool EnrichmentItem :: tipIsTouchingEI(const TipInfo &iTipInfo)
{
    double tol = 1.0e-9;
    SpatialLocalizer *localizer = giveDomain()->giveSpatialLocalizer();

    Element *tipEl = localizer->giveElementContainingPoint(iTipInfo.mGlobalCoord);
    if ( tipEl != NULL ) {
        // Check if the candidate tip is located on the current crack
        FloatArray N;
        FloatArray locCoord;
        tipEl->computeLocalCoordinates(locCoord, iTipInfo.mGlobalCoord);
        FEInterpolation *interp = tipEl->giveInterpolation();
        interp->evalN( N, locCoord, FEIElementGeometryWrapper(tipEl) );

        double normalSignDist;
        evalLevelSetNormal( normalSignDist, iTipInfo.mGlobalCoord, N, tipEl->giveDofManArray() );

        double tangSignDist;
        evalLevelSetTangential( tangSignDist, iTipInfo.mGlobalCoord, N, tipEl->giveDofManArray() );

        if ( fabs(normalSignDist) < tol && tangSignDist > tol ) {
            return true;
        }
    }

    return false;
}
void PlaneStressStructuralElementEvaluator :: computeNMatrixAt(FloatMatrix &answer, GaussPoint *gp)
{
    FloatArray N;
    FEInterpolation *interp = gp->giveElement()->giveInterpolation();
    interp->evalN( N, gp->giveNaturalCoordinates(), FEIIGAElementGeometryWrapper( gp->giveElement(), gp->giveIntegrationRule()->giveKnotSpan() ) );
    answer.beNMatrixOf(N, 2);
}
Ejemplo n.º 9
0
void
Structural3DElement :: computeBHmatrixAt(GaussPoint *gp, FloatMatrix &answer)
// Returns the [ 9 x (nno * 3) ] displacement gradient matrix {BH} of the receiver,
// evaluated at gp.
// BH matrix  -  9 rows : du/dx, dv/dy, dw/dz, dv/dz, du/dz, du/dy, dw/dy, dw/dx, dv/dx
{
    FEInterpolation *interp = this->giveInterpolation();
    FloatMatrix dNdx; 
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    
    answer.resize(9, dNdx.giveNumberOfRows() * 3);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, 3 * i - 2) = dNdx.at(i, 1);     // du/dx
        answer.at(2, 3 * i - 1) = dNdx.at(i, 2);     // dv/dy
        answer.at(3, 3 * i - 0) = dNdx.at(i, 3);     // dw/dz
        answer.at(4, 3 * i - 1) = dNdx.at(i, 3);     // dv/dz
        answer.at(7, 3 * i - 0) = dNdx.at(i, 2);     // dw/dy
        answer.at(5, 3 * i - 2) = dNdx.at(i, 3);     // du/dz
        answer.at(8, 3 * i - 0) = dNdx.at(i, 1);     // dw/dx
        answer.at(6, 3 * i - 2) = dNdx.at(i, 2);     // du/dy
        answer.at(9, 3 * i - 1) = dNdx.at(i, 1);     // dv/dx
    }

}
Ejemplo n.º 10
0
void
MatlabExportModule :: doOutputHomogenizeDofIDs(TimeStep *tStep,    FILE *FID)
{

    std :: vector <FloatArray*> HomQuantities;
    double Vol = 0.0;

    // Initialize vector of arrays constaining homogenized quantities
    HomQuantities.resize(internalVarsToExport.giveSize());

    for (int j=0; j<internalVarsToExport.giveSize(); j++) {
        HomQuantities.at(j) = new FloatArray;
    }

    int nelem = this->elList.giveSize();
    for (int i = 1; i<=nelem; i++) {
        Element *e = this->emodel->giveDomain(1)->giveElement(elList.at(i));
        FEInterpolation *Interpolation = e->giveInterpolation();

        Vol = Vol + e->computeVolumeAreaOrLength();

        for ( GaussPoint *gp: *e->giveDefaultIntegrationRulePtr() ) {

            for (int j=0; j<internalVarsToExport.giveSize(); j++) {
                FloatArray elementValues;
                e->giveIPValue(elementValues, gp, (InternalStateType) internalVarsToExport(j), tStep);
                double detJ=fabs(Interpolation->giveTransformationJacobian( gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e)));

                elementValues.times(gp->giveWeight()*detJ);
                if (HomQuantities.at(j)->giveSize() == 0) {
                    HomQuantities.at(j)->resize(elementValues.giveSize());
                    HomQuantities.at(j)->zero();
                };
                HomQuantities.at(j)->add(elementValues);
            }
        }
    }


    if (noscaling) Vol=1.0;

    for ( std :: size_t i = 0; i < HomQuantities.size(); i ++) {
        FloatArray *thisIS;
        thisIS = HomQuantities.at(i);
        thisIS->times(1.0/Vol);
        fprintf(FID, "\tspecials.%s = [", __InternalStateTypeToString ( InternalStateType (internalVarsToExport(i)) ) );

        for (int j = 0; j<thisIS->giveSize(); j++) {
            fprintf(FID, "%e", thisIS->at(j+1));
            if (j!=(thisIS->giveSize()-1) ) {
                fprintf(FID, ", ");
            }
        }
        fprintf(FID, "];\n");
        delete HomQuantities.at(i);
    }

}
/* 3D Space Elements */
void Space3dStructuralElementEvaluator :: computeNMatrixAt(FloatMatrix &answer, GaussPoint *gp)
{
    FloatArray N;
    Element *element = this->giveElement();
    FEInterpolation *interp = element->giveInterpolation();

    interp->evalN( N, gp->giveNaturalCoordinates(), FEIIGAElementGeometryWrapper( element, gp->giveIntegrationRule()->giveKnotSpan() ) );

    answer.beNMatrixOf(N, 3);
}
Ejemplo n.º 12
0
void
PrescribedMean :: computeDomainSize()
{
    if (domainSize > 0.0) return;


    if (elementEdges) {
        IntArray setList = ((GeneralBoundaryCondition *)this)->giveDomain()->giveSet(set)->giveBoundaryList();

        elements.resize(setList.giveSize() / 2);
        sides.resize(setList.giveSize() / 2);

        for (int i=1; i<=setList.giveSize(); i=i+2) {
            elements.at(i/2+1) = setList.at(i);
            sides.at(i/2+1) = setList.at(i+1);
        }
    } else {
        IntArray setList = ((GeneralBoundaryCondition *)this)->giveDomain()->giveSet(set)->giveElementList();
        elements = setList;
    }

    domainSize = 0.0;

    for ( int i=1; i<=elements.giveSize(); i++ ) {
        int elementID = elements.at(i);
        Element *thisElement = this->giveDomain()->giveElement(elementID);
        FEInterpolation *interpolator = thisElement->giveInterpolation(DofIDItem(dofid));

        IntegrationRule *iRule;

        if (elementEdges) {
            iRule = interpolator->giveBoundaryIntegrationRule(3, sides.at(i));
        } else {
            iRule = interpolator->giveIntegrationRule(3);
        }

        for ( GaussPoint * gp: * iRule ) {
            FloatArray lcoords = gp->giveNaturalCoordinates();

            double detJ;
            if (elementEdges) {
                detJ = fabs ( interpolator->boundaryGiveTransformationJacobian(sides.at(i), lcoords, FEIElementGeometryWrapper(thisElement)) );
            } else {
                detJ = fabs ( interpolator->giveTransformationJacobian(lcoords, FEIElementGeometryWrapper(thisElement)) );
            }
            domainSize = domainSize + detJ*gp->giveWeight();
        }

        delete iRule;
    }

    printf("%f\n", domainSize);

}
double MixedGradientPressureBC :: domainSize()
{
    int nsd = this->domain->giveNumberOfSpatialDimensions();
    double domain_size = 0.0;
    // This requires the boundary to be consistent and ordered correctly.
    Set *set = this->giveDomain()->giveSet(this->set);
    const IntArray &boundaries = set->giveBoundaryList();

    for ( int pos = 1; pos <= boundaries.giveSize() / 2; ++pos ) {
        Element *e = this->giveDomain()->giveElement( boundaries.at(pos * 2 - 1) );
        int boundary = boundaries.at(pos * 2);
        FEInterpolation *fei = e->giveInterpolation();
        domain_size += fei->evalNXIntegral( boundary, FEIElementGeometryWrapper(e) );
    }
    return domain_size / nsd;
}
Ejemplo n.º 14
0
void
IntElLine1PhF :: computeCovarBaseVectorAt(IntegrationPoint *ip, FloatArray &G)
{
    FloatMatrix dNdxi;
    FEInterpolation *interp = this->giveInterpolation();
    interp->evaldNdxi( dNdxi, ip->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    G.resize(2);
    G.zero();
    int numNodes = this->giveNumberOfNodes();
    for ( int i = 1; i <= dNdxi.giveNumberOfRows(); i++ ) {
        double X1_i = 0.5 * ( this->giveNode(i)->giveCoordinate(1) + this->giveNode(i + numNodes / 2)->giveCoordinate(1) ); // (mean) point on the fictious mid surface
        double X2_i = 0.5 * ( this->giveNode(i)->giveCoordinate(2) + this->giveNode(i + numNodes / 2)->giveCoordinate(2) );
        G.at(1) += dNdxi.at(i, 1) * X1_i;
        G.at(2) += dNdxi.at(i, 1) * X2_i;
    }
}
double TransportGradientPeriodic :: domainSize(Domain *d, int setNum)
{
    int nsd = d->giveNumberOfSpatialDimensions();
    double domain_size = 0.0;
    // This requires the boundary to be consistent and ordered correctly.
    Set *set = d->giveSet(setNum);
    const IntArray &boundaries = set->giveBoundaryList();

    for ( int pos = 1; pos <= boundaries.giveSize() / 2; ++pos ) {
        Element *e = d->giveElement( boundaries.at(pos * 2 - 1) );
        int boundary = boundaries.at(pos * 2);
        FEInterpolation *fei = e->giveInterpolation();
        domain_size += fei->evalNXIntegral( boundary, FEIElementGeometryWrapper(e) );
    }
    return fabs(domain_size / nsd);
}
Ejemplo n.º 16
0
void
IntElLine1PhF :: computeNmatrixAt(GaussPoint *ip, FloatMatrix &answer)
{
    // Returns the modified N-matrix which multiplied with u give the spatial jump.

    FloatArray N;
    FEInterpolation *interp = this->giveInterpolation();
    interp->evalN( N, ip->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );

    answer.resize(2, 8);
    answer.zero();
    answer.at(1, 1) = answer.at(2, 2) = -N.at(1);
    answer.at(1, 3) = answer.at(2, 4) = -N.at(2);

    answer.at(1, 5) = answer.at(2, 6) = N.at(1);
    answer.at(1, 7) = answer.at(2, 8) = N.at(2);
}
Ejemplo n.º 17
0
void
PlaneStressElement :: computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int lowerIndx, int upperIndx)
{
    FEInterpolation *interp = this->giveInterpolation();
    FloatMatrix dNdx;
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), * this->giveCellGeometryWrapper() );

    answer.resize(3, dNdx.giveNumberOfRows() * 2);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, i * 2 - 1) = dNdx.at(i, 1);
        answer.at(2, i * 2 - 0) = dNdx.at(i, 2);

        answer.at(3, 2 * i - 1) = dNdx.at(i, 2);
        answer.at(3, 2 * i - 0) = dNdx.at(i, 1);
    }
}
Ejemplo n.º 18
0
void
L4Axisymm :: computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int li, int ui)
{
    // Returns the [ 6 x (nno*2) ] strain-displacement matrix {B} of the receiver,
    // evaluated at gp. Uses reduced integration.
    // (epsilon_x,epsilon_y,...,Gamma_xy) = B . r
    // r = ( u1,v1,u2,v2,u3,v3,u4,v4)

    FloatArray N, NRed, redCoord;
    if ( numberOfFiAndShGaussPoints == 1 ) { // Reduced integration
        redCoord  = {0.0, 0.0}; // eval in centroid
    } else {
        redCoord = gp->giveNaturalCoordinates();
    }


    FEInterpolation *interp = this->giveInterpolation();
        

    interp->evalN( N, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    interp->evalN( NRed, redCoord, FEIElementGeometryWrapper(this) );
    
    // Evaluate radius at center
    double r = 0.0;
    for ( int i = 1; i <= this->giveNumberOfDofManagers(); i++ ) {
        double x = this->giveNode(i)->giveCoordinate(1);
        r += x * NRed.at(i);
    } 
    
    FloatMatrix dNdx, dNdxRed;
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    interp->evaldNdx( dNdxRed, redCoord, FEIElementGeometryWrapper(this) );
    answer.resize(6, dNdx.giveNumberOfRows() * 2);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, i * 2 - 1) = dNdx.at(i, 1);
        answer.at(2, i * 2 - 0) = dNdx.at(i, 2);
        answer.at(3, i * 2 - 1) = NRed.at(i) / r;
        answer.at(6, 2 * i - 1) = dNdxRed.at(i, 2);
        answer.at(6, 2 * i - 0) = dNdxRed.at(i, 1);
    }
}
Ejemplo n.º 19
0
const IntArray &Set :: giveNodeList()
{
    // Lazy evaluation, we compute the unique set of nodes if needed (and store it).
    if ( this->totalNodes.giveSize() == 0 ) {
        IntArray afflictedNodes( this->domain->giveNumberOfDofManagers() );
        afflictedNodes.zero();
        for ( int ielem = 1; ielem <= this->elements.giveSize(); ++ielem ) {
            Element *e = this->domain->giveElement( this->elements.at(ielem) );
            for ( int inode = 1; inode <= e->giveNumberOfNodes(); ++inode ) {
                afflictedNodes.at( e->giveNode(inode)->giveNumber() ) = 1;
            }
        }

        IntArray bNodes;
        for ( int ibnd = 1; ibnd <= this->elementBoundaries.giveSize() / 2; ++ibnd ) {
            Element *e = this->domain->giveElement( this->elementBoundaries.at(ibnd * 2 - 1) );
            int boundary = this->elementBoundaries.at(ibnd * 2);
            FEInterpolation *fei = e->giveInterpolation();
            fei->boundaryGiveNodes(bNodes, boundary);
            for ( int inode = 1; inode <= bNodes.giveSize(); ++inode ) {
                afflictedNodes.at( e->giveNode( bNodes.at(inode) )->giveNumber() ) = 1;
            }
        }

        IntArray eNodes;
        for ( int iedge = 1; iedge <= this->elementEdges.giveSize() / 2; ++iedge ) {
            Element *e = this->domain->giveElement( this->elementEdges.at(iedge * 2 - 1) );
            int edge = this->elementEdges.at(iedge * 2);
            FEInterpolation3d *fei = static_cast< FEInterpolation3d * >( e->giveInterpolation() );
            fei->computeLocalEdgeMapping(eNodes, edge);
            for ( int inode = 1; inode <= eNodes.giveSize(); ++inode ) {
                afflictedNodes.at( e->giveNode( eNodes.at(inode) )->giveNumber() ) = 1;
            }
        }

        for ( int inode = 1; inode <= this->nodes.giveSize(); ++inode ) {
            afflictedNodes.at( this->nodes.at(inode) ) = 1;
        }
        totalNodes.findNonzeros(afflictedNodes);
    }
    return this->totalNodes;
}
Ejemplo n.º 20
0
bool Inclusion :: isMaterialModified(GaussPoint &iGP, Element &iEl, CrossSection * &opCS) const
{
    // Check if the point is located inside the inclusion

    FloatArray N;
    FEInterpolation *interp = iEl.giveInterpolation();
    interp->evalN( N, * iGP.giveNaturalCoordinates(), FEIElementGeometryWrapper(& iEl) );

    const IntArray &elNodes = iEl.giveDofManArray();

    double levelSetGP = 0.0;
    interpLevelSet(levelSetGP, N, elNodes);

    if ( levelSetGP < 0.0 ) {
        opCS = mpCrossSection;
        return true;
    }

    return false;
}
Ejemplo n.º 21
0
void 
PlaneStrainElement :: computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int lowerIndx, int upperIndx)
// Returns the [ 4 x (nno*2) ] strain-displacement matrix {B} of the receiver,
// evaluated at gp.
{
    FEInterpolation *interp = this->giveInterpolation();
    FloatMatrix dNdx; 
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), *this->giveCellGeometryWrapper() );
    
    
    answer.resize(4, dNdx.giveNumberOfRows() * 2);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, i * 2 - 1) = dNdx.at(i, 1);
        answer.at(2, i * 2 - 0) = dNdx.at(i, 2);

        answer.at(4, 2 * i - 1) = dNdx.at(i, 2);
        answer.at(4, 2 * i - 0) = dNdx.at(i, 1);
    }
}
Ejemplo n.º 22
0
double
NLStructuralElement :: computeCurrentVolume(TimeStep *tStep)
{
    double vol=0.0;
    for ( auto &gp: *this->giveDefaultIntegrationRulePtr() ) {
        FloatArray F;
        FloatMatrix Fm;


        computeDeformationGradientVector(F, gp, tStep);
        Fm.beMatrixForm(F);
        double J = Fm.giveDeterminant();

        FEInterpolation *interpolation = this->giveInterpolation();
        double detJ = fabs( ( interpolation->giveTransformationJacobian( gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) ) ) );

        vol += gp->giveWeight() * detJ * J;
    }

    return vol;
}
void MixedGradientPressureWeakPeriodic :: integrateTractionVelocityTangent(FloatMatrix &answer, Element *el, int boundary)
{
    // Computes the integral: int dt . dv dA
    FloatArray normal, n, coords;
    FloatMatrix nMatrix, mMatrix;

    FEInterpolation *interp = el->giveInterpolation(); // Geometry interpolation. The displacements or velocities must have the same interpolation scheme (on the boundary at least).

    int maxorder = this->order + interp->giveInterpolationOrder() * 3;
    std :: unique_ptr< IntegrationRule >ir( interp->giveBoundaryIntegrationRule(maxorder, boundary) );
    int nsd = this->giveDomain()->giveNumberOfSpatialDimensions();

    answer.clear();
    for ( GaussPoint *gp: *ir ) {
        const FloatArray &lcoords = gp->giveNaturalCoordinates();
        FEIElementGeometryWrapper cellgeo(el);

        double detJ = interp->boundaryEvalNormal(normal, boundary, lcoords, cellgeo);
        interp->boundaryEvalN(n, boundary, lcoords, cellgeo);
        interp->boundaryLocal2Global(coords, boundary, lcoords, cellgeo);

        // Construct the basis functions for the tractions:
        this->constructMMatrix(mMatrix, coords, normal);
        nMatrix.beNMatrixOf(n, nsd);

        answer.plusProductUnsym( mMatrix, nMatrix, detJ * gp->giveWeight() );
    }
}
int
SmoothedNodalInternalVariableField :: evaluateAt(FloatArray &answer, FloatArray &coords, ValueModeType mode, TimeStep *tStep)
{
    int result = 0; // assume ok
    FloatArray lc, n;
    const FloatArray *nodalValue;

    // use whole domain recovery
    // create a new set containing all elements
    Set elemSet(0, this->domain);
    elemSet.addAllElements();
    this->smoother->recoverValues(elemSet, istType, tStep);
    // request element containing target point
    Element *elem = this->domain->giveSpatialLocalizer()->giveElementContainingPoint(coords);
    if ( elem ) { // ok element containing target point found
        FEInterpolation *interp = elem->giveInterpolation();
        if ( interp ) {
            // map target point to element local coordinates
            if ( interp->global2local( lc, coords, FEIElementGeometryWrapper(elem) ) ) {
                // evaluate interpolation functions at target point
                interp->evalN( n, lc, FEIElementGeometryWrapper(elem) );
                // loop over element nodes
                for ( int i = 1; i <= n.giveSize(); i++ ) {
                    // request nodal value
                    this->smoother->giveNodalVector( nodalValue, elem->giveDofManagerNumber(i) );
                    // multiply nodal value by value of corresponding shape function and add this to answer
                    answer.add(n.at(i), * nodalValue);
                }
            } else { // mapping from global to local coordinates failed
                result = 1; // failed
            }
        } else {  // element without interpolation
            result = 1; // failed
        }
    } else { // no element containing given point found
        result = 1; // failed
    }
    return result;
}
Ejemplo n.º 25
0
void
Structural3DElement :: computeBmatrixAt(GaussPoint *gp, FloatMatrix &answer, int li, int ui)
// Returns the [ 6 x (nno*3) ] strain-displacement matrix {B} of the receiver, eva-
// luated at gp.
// B matrix  -  6 rows : epsilon-X, epsilon-Y, epsilon-Z, gamma-YZ, gamma-ZX, gamma-XY  :
{
    FEInterpolation *interp = this->giveInterpolation();
    FloatMatrix dNdx; 
    interp->evaldNdx( dNdx, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    
    answer.resize(6, dNdx.giveNumberOfRows() * 3);
    answer.zero();

    for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
        answer.at(1, 3 * i - 2) = dNdx.at(i, 1);
        answer.at(2, 3 * i - 1) = dNdx.at(i, 2);
        answer.at(3, 3 * i - 0) = dNdx.at(i, 3);

        answer.at(5, 3 * i - 2) = answer.at(4, 3 * i - 1) = dNdx.at(i, 3);
        answer.at(6, 3 * i - 2) = answer.at(4, 3 * i - 0) = dNdx.at(i, 2);
        answer.at(6, 3 * i - 1) = answer.at(5, 3 * i - 0) = dNdx.at(i, 1);
    }
}
Ejemplo n.º 26
0
void
IntElLine2IntPen :: computeCovarBaseVectorAt(IntegrationPoint *ip, FloatArray &G)
{
//	printf("Entering IntElLine2IntPen :: computeCovarBaseVectorAt\n");

	// Since we are averaging over the whole element, always evaluate the base vectors at xi = 0.

	FloatArray xi_0 = {0.0};

    FloatMatrix dNdxi;
    FEInterpolation *interp = this->giveInterpolation();
//    interp->evaldNdxi( dNdxi, ip->giveNaturalCoordinates(), FEIElementGeometryWrapper(this) );
    interp->evaldNdxi( dNdxi, xi_0, FEIElementGeometryWrapper(this) );

    G.resize(2);
    G.zero();
    int numNodes = this->giveNumberOfNodes();
    for ( int i = 1; i <= dNdxi.giveNumberOfRows(); i++ ) {
        double X1_i = 0.5 * ( this->giveNode(i)->giveCoordinate(1) + this->giveNode(i + numNodes / 2)->giveCoordinate(1) ); // (mean) point on the fictious mid surface
        double X2_i = 0.5 * ( this->giveNode(i)->giveCoordinate(2) + this->giveNode(i + numNodes / 2)->giveCoordinate(2) );
        G.at(1) += dNdxi.at(i, 1) * X1_i;
        G.at(2) += dNdxi.at(i, 1) * X2_i;
    }
}
Ejemplo n.º 27
0
Archivo: set.C Proyecto: Micket/oofem
const IntArray &Set :: giveNodeList()
{
    // Lazy evaluation, we compute the unique set of nodes if needed (and store it).
    if ( this->totalNodes.giveSize() == 0 ) {
        IntArray afflictedNodes( this->domain->giveNumberOfDofManagers() );
        afflictedNodes.zero();
        for ( int ielem = 1; ielem <= this->elements.giveSize(); ++ielem ) {
            Element *e = this->domain->giveElement( this->elements.at(ielem) );
            for ( int inode = 1; inode <= e->giveNumberOfNodes(); ++inode ) {
                afflictedNodes.at( e->giveNode(inode)->giveNumber() ) = 1;
            }
        }
        
        /* boundary entities are obsolete, use edges and/or surfaces instead */
        IntArray bNodes;
        for ( int ibnd = 1; ibnd <= this->elementBoundaries.giveSize() / 2; ++ibnd ) {
            Element *e = this->domain->giveElement( this->elementBoundaries.at(ibnd * 2 - 1) );
            int boundary = this->elementBoundaries.at(ibnd * 2);
            FEInterpolation *fei = e->giveInterpolation();
            fei->boundaryGiveNodes(bNodes, boundary);
            for ( int inode = 1; inode <= bNodes.giveSize(); ++inode ) {
                afflictedNodes.at( e->giveNode( bNodes.at(inode) )->giveNumber() ) = 1;
            }
        }

        IntArray eNodes;
        for ( int iedge = 1; iedge <= this->elementEdges.giveSize() / 2; ++iedge ) {
            Element *e = this->domain->giveElement( this->elementEdges.at(iedge * 2 - 1) );
            int edge = this->elementEdges.at(iedge * 2);
            FEInterpolation *fei = e->giveInterpolation();
            fei->boundaryEdgeGiveNodes(eNodes, edge);
            for ( int inode = 1; inode <= eNodes.giveSize(); ++inode ) {
                afflictedNodes.at( e->giveNode( eNodes.at(inode) )->giveNumber() ) = 1;
            }
        }

        for ( int isurf = 1; isurf <= this->elementSurfaces.giveSize() / 2; ++isurf ) {
            Element *e = this->domain->giveElement( this->elementSurfaces.at(isurf * 2 - 1) );
            int surf = this->elementSurfaces.at(isurf * 2);
            FEInterpolation *fei = e->giveInterpolation();
            fei->boundarySurfaceGiveNodes(eNodes, surf);
            for ( int inode = 1; inode <= eNodes.giveSize(); ++inode ) {
                afflictedNodes.at( e->giveNode( eNodes.at(inode) )->giveNumber() ) = 1;
            }
        }

        

        for ( int inode = 1; inode <= this->nodes.giveSize(); ++inode ) {
            afflictedNodes.at( this->nodes.at(inode) ) = 1;
        }
        totalNodes.findNonzeros(afflictedNodes);
    }
    return this->totalNodes;
}
Ejemplo n.º 28
0
void SurfaceTensionBoundaryCondition :: computeLoadVectorFromElement(FloatArray &answer, Element *e, int side, TimeStep *tStep)
{
    FEInterpolation *fei = e->giveInterpolation();
    if ( !fei ) {
        OOFEM_ERROR("No interpolation or default integration available for element.");
    }
    std :: unique_ptr< IntegrationRule > iRule( fei->giveBoundaryIntegrationRule(fei->giveInterpolationOrder()-1, side) );

    int nsd = e->giveDomain()->giveNumberOfSpatialDimensions();

    if ( side == -1 ) {
        side = 1;
    }

    answer.clear();

    if ( nsd == 2 ) {

        FEInterpolation2d *fei2d = static_cast< FEInterpolation2d * >(fei);

        ///@todo More of this grunt work should be moved to the interpolation classes
        IntArray bnodes;
        fei2d->boundaryGiveNodes(bnodes, side);
        int nodes = bnodes.giveSize();
        FloatMatrix xy(2, nodes);
        for ( int i = 1; i <= nodes; i++ ) {
            Node *node = e->giveNode(bnodes.at(i));
            ///@todo This should rely on the xindex and yindex in the interpolator..
            xy.at(1, i) = node->giveCoordinate(1);
            xy.at(2, i) = node->giveCoordinate(2);
        }

        FloatArray tmp; // Integrand
        FloatArray es; // Tangent vector to curve
        FloatArray dNds;

        if ( e->giveDomain()->isAxisymmetric() ) {
            FloatArray N;
            FloatArray gcoords;
            for ( GaussPoint *gp: *iRule ) {
                fei2d->edgeEvaldNds( dNds, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                fei->boundaryEvalN( N, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double J = fei->boundaryGiveTransformationJacobian( side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                fei->boundaryLocal2Global( gcoords, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double r = gcoords(0); // First coordinate is the radial coord.

                es.beProductOf(xy, dNds);

                tmp.resize( 2 * nodes);
                for ( int i = 0; i < nodes; i++ ) {
                    tmp(2 * i)   = dNds(i) * es(0) * r + N(i);
                    tmp(2 * i + 1) = dNds(i) * es(1) * r;
                }

                answer.add(- 2 * M_PI * gamma * J * gp->giveWeight(), tmp);
            }
        } else {
            for ( GaussPoint *gp: *iRule ) {
                double t = e->giveCrossSection()->give(CS_Thickness, gp);
                fei2d->edgeEvaldNds( dNds, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double J = fei->boundaryGiveTransformationJacobian( side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                es.beProductOf(xy, dNds);

                tmp.resize( 2 * nodes);
                for ( int i = 0; i < nodes; i++ ) {
                    tmp(2 * i)   = dNds(i) * es(0);
                    tmp(2 * i + 1) = dNds(i) * es(1);
                    //B.at(1, 1+i*2) = B.at(2, 2+i*2) = dNds(i);
                }
                //tmp.beTProductOf(B, es);

                answer.add(- t * gamma * J * gp->giveWeight(), tmp);
            }
        }
    } else if ( nsd ==  3 ) {

        FEInterpolation3d *fei3d = static_cast< FEInterpolation3d * >(fei);
        FloatArray n, surfProj;
        FloatMatrix dNdx, B;
        for ( GaussPoint *gp: *iRule ) {
            fei3d->surfaceEvaldNdx( dNdx, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
            double J = fei->boundaryEvalNormal( n, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );

            // [I - n(x)n]  in voigt form:
            surfProj = {1. - n(0)*n(0), 1. - n(1)*n(1), 1. - n(2)*n(2),
                        - n(1)*n(2), - n(0)*n(2), - n(0)*n(1),
            };

            // Construct B matrix of the surface nodes
            B.resize(6, 3 * dNdx.giveNumberOfRows());
            for ( int i = 1; i <= dNdx.giveNumberOfRows(); i++ ) {
                B.at(1, 3 * i - 2) = dNdx.at(i, 1);
                B.at(2, 3 * i - 1) = dNdx.at(i, 2);
                B.at(3, 3 * i - 0) = dNdx.at(i, 3);

                B.at(5, 3 * i - 2) = B.at(4, 3 * i - 1) = dNdx.at(i, 3);
                B.at(6, 3 * i - 2) = B.at(4, 3 * i - 0) = dNdx.at(i, 2);
                B.at(6, 3 * i - 1) = B.at(5, 3 * i - 0) = dNdx.at(i, 1);
            }

            answer.plusProduct(B, surfProj, -gamma * J * gp->giveWeight() );
        }
    }
}
Ejemplo n.º 29
0
void SurfaceTensionBoundaryCondition :: computeTangentFromElement(FloatMatrix &answer, Element *e, int side, TimeStep *tStep)
{
    FEInterpolation *fei = e->giveInterpolation();
    if ( !fei ) {
        OOFEM_ERROR("No interpolation available for element.");
    }
    std :: unique_ptr< IntegrationRule > iRule( fei->giveBoundaryIntegrationRule(fei->giveInterpolationOrder()-1, side) );

    int nsd = e->giveDomain()->giveNumberOfSpatialDimensions();
    int nodes = e->giveNumberOfNodes();
    if ( side == -1 ) {
        side = 1;
    }

    answer.clear();

    if ( nsd == 2 ) {
        FEInterpolation2d *fei2d = static_cast< FEInterpolation2d * >(fei);

        ///@todo More of this grunt work should be moved to the interpolation classes
        FloatMatrix xy(2, nodes);
        Node *node;
        for ( int i = 1; i <= nodes; i++ ) {
            node = e->giveNode(i);
            xy.at(1, i) = node->giveCoordinate(1);
            xy.at(2, i) = node->giveCoordinate(2);
        }

        FloatArray tmpA(2 *nodes);
        FloatArray es; // Tangent vector to curve
        FloatArray dNds;
        FloatMatrix B(2, 2 *nodes);
        B.zero();

        if ( e->giveDomain()->isAxisymmetric() ) {
            FloatArray N;
            FloatArray gcoords;
            FloatArray tmpB(2 *nodes);
            for ( GaussPoint *gp: *iRule ) {
                fei2d->edgeEvaldNds( dNds, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                fei->boundaryEvalN( N, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double J = fei->boundaryGiveTransformationJacobian( side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                fei->boundaryLocal2Global( gcoords, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double r = gcoords(0); // First coordinate is the radial coord.

                es.beProductOf(xy, dNds);

                // Construct the different matrices in the integrand;
                for ( int i = 0; i < nodes; i++ ) {
                    tmpA(i * 2 + 0) = dNds(i) * es(0);
                    tmpA(i * 2 + 1) = dNds(i) * es(1);
                    tmpB(i * 2 + 0) = N(i);
                    tmpB(i * 2 + 1) = 0;
                    B(i * 2, 0) = B(i * 2 + 1, 1) = dNds(i);
                }

                double dV = 2 *M_PI *gamma *J *gp->giveWeight();
                answer.plusDyadUnsym(tmpA, tmpB, dV);
                answer.plusDyadUnsym(tmpB, tmpA, dV);
                answer.plusProductSymmUpper(B, B, r * dV);
                answer.plusDyadUnsym(tmpA, tmpA, -r * dV);
            }
        } else {
            for ( GaussPoint *gp: *iRule ) {
                double t = e->giveCrossSection()->give(CS_Thickness, gp); ///@todo The thickness is not often relevant or used in FM.
                fei2d->edgeEvaldNds( dNds, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
                double J = fei->boundaryGiveTransformationJacobian( side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );

                es.beProductOf(xy, dNds);

                // Construct the different matrices in the integrand;
                for ( int i = 0; i < nodes; i++ ) {
                    tmpA(i * 2 + 0) = dNds(i) * es(0);
                    tmpA(i * 2 + 1) = dNds(i) * es(1);
                    B(i * 2, 0) = B(i * 2 + 1, 1) = dNds(i);
                }

                double dV = t * gamma * J * gp->giveWeight();
                answer.plusProductSymmUpper(B, B, dV);
                answer.plusDyadSymmUpper(tmpA, -dV);
            }
        }

        answer.symmetrized();
    }  else if ( nsd ==  3 ) {

        FEInterpolation3d *fei3d = static_cast< FEInterpolation3d * >(fei);

        OOFEM_ERROR("3D tangents not implemented yet.");

        //FloatMatrix tmp(3 *nodes, 3 *nodes);
        FloatMatrix dNdx;
        FloatArray n;
        for ( GaussPoint *gp: *iRule ) {
            fei3d->surfaceEvaldNdx( dNdx, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
            /*double J = */ fei->boundaryEvalNormal( n, side, gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(e) );
            //double dV = gamma * J * gp->giveWeight();

            for ( int i = 0; i < nodes; i++ ) {
                //tmp(3*i+0) = dNdx(i,0) - (dNdx(i,0)*n(0)* + dNdx(i,1)*n(1) + dNdx(i,2)*n(2))*n(0);
                //tmp(3*i+1) = dNdx(i,1) - (dNdx(i,0)*n(0)* + dNdx(i,1)*n(1) + dNdx(i,2)*n(2))*n(1);
                //tmp(3*i+2) = dNdx(i,2) - (dNdx(i,0)*n(0)* + dNdx(i,1)*n(1) + dNdx(i,2)*n(2))*n(2);
            }
            //answer.plusProductSymmUpper(A,B, dV);
            ///@todo  Derive expressions for this.
        }
    } else {
        OOFEM_WARNING("Only 2D or 3D is possible!");
    }
}
Ejemplo n.º 30
0
void
ZZErrorEstimatorInterface :: ZZErrorEstimatorI_computeElementContributions(double &eNorm, double &sNorm,
                                                                           ZZErrorEstimator :: NormType norm,
                                                                           InternalStateType type,
                                                                           TimeStep *tStep)
{
    int nDofMans;
    FEInterpolation *interpol = element->giveInterpolation();
    const FloatArray *recoveredStress;
    FloatArray sig, lsig, diff, ldiff, n;
    FloatMatrix nodalRecoveredStreses;

    nDofMans = element->giveNumberOfDofManagers();
    // assemble nodal recovered stresses
    for ( int i = 1; i <= element->giveNumberOfNodes(); i++ ) {
        element->giveDomain()->giveSmoother()->giveNodalVector( recoveredStress,
                                                            element->giveDofManager(i)->giveNumber() );
        if ( i == 1 ) {
            nodalRecoveredStreses.resize( nDofMans, recoveredStress->giveSize() );
        }
        for ( int j = 1; j <= recoveredStress->giveSize(); j++ ) {
            nodalRecoveredStreses.at(i, j) = recoveredStress->at(j);
        }
    }
    /* Note: The recovered stresses should be in global coordinate system. This is important for shells, for example, to make
     * sure that forces and moments in the same directions are averaged. For elements where local and global coordina systems
     * are the same this does not matter.
     */

    eNorm = sNorm = 0.0;

    // compute  the e-norm and s-norm
    if ( norm == ZZErrorEstimator :: L2Norm ) {
        for ( GaussPoint *gp: *this->ZZErrorEstimatorI_giveIntegrationRule() ) {
            double dV = element->computeVolumeAround(gp);
            interpol->evalN( n, * gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(element) );

            diff.beTProductOf(nodalRecoveredStreses, n);

            element->giveIPValue(sig, gp, type, tStep);
            /* the internal stress difference is in global coordinate system */
            diff.subtract(sig);

            eNorm += diff.computeSquaredNorm() * dV;
            sNorm += sig.computeSquaredNorm() * dV;
        }
    } else if ( norm == ZZErrorEstimator :: EnergyNorm ) {
        FloatArray help, ldiff_reduced, lsig_reduced;
        FloatMatrix D, DInv;
        StructuralElement *selem = static_cast< StructuralElement * >(element);

        for ( GaussPoint *gp: *this->ZZErrorEstimatorI_giveIntegrationRule() ) {
            double dV = element->computeVolumeAround(gp);
            interpol->evalN( n, * gp->giveNaturalCoordinates(), FEIElementGeometryWrapper(element) );
            selem->computeConstitutiveMatrixAt(D, TangentStiffness, gp, tStep);
            DInv.beInverseOf(D);

            diff.beTProductOf(nodalRecoveredStreses, n);

            element->giveIPValue(sig, gp, type, tStep); // returns full value now
            diff.subtract(sig);
            /* the internal stress difference is in global coordinate system */
            /* needs to be transformed into local system to compute associated energy */
            this->ZZErrorEstimatorI_computeLocalStress(ldiff, diff);
            StructuralMaterial :: giveReducedSymVectorForm( ldiff_reduced, ldiff, gp->giveMaterialMode() );

            help.beProductOf(DInv, ldiff_reduced);
            eNorm += ldiff_reduced.dotProduct(help) * dV;
            this->ZZErrorEstimatorI_computeLocalStress(lsig, sig);
            StructuralMaterial :: giveReducedSymVectorForm( lsig_reduced, lsig, gp->giveMaterialMode() );
            help.beProductOf(DInv, lsig_reduced);
            sNorm += lsig_reduced.dotProduct(help) * dV;
        }
    } else {
        OOFEM_ERROR("unsupported norm type");
    }

    eNorm = sqrt(eNorm);
    sNorm = sqrt(sNorm);
}