Ejemplo n.º 1
0
void test_complex_generic(int nfft)
{
    typedef typename FFT<T>::Complex Complex;
    typedef typename VectorType<Container,Complex>::type ComplexVector;

    FFT<T> fft;

    ComplexVector inbuf(nfft);
    ComplexVector outbuf;
    ComplexVector buf3;
    for (int k=0;k<nfft;++k)
        inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
    fft.fwd( outbuf , inbuf);

    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check
    fft.inv( buf3 , outbuf);

    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check

    // verify that the Unscaled flag takes effect
    ComplexVector buf4;
    fft.SetFlag(fft.Unscaled);
    fft.inv( buf4 , outbuf);
    for (int k=0;k<nfft;++k)
        buf4[k] *= T(1./nfft);
    VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>()  );// gross check

    // verify that ClearFlag works
    fft.ClearFlag(fft.Unscaled);
    fft.inv( buf3 , outbuf);
    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
}
Ejemplo n.º 2
0
void test_scalar_generic(int nfft)
{
    typedef typename FFT<T>::Complex Complex;
    typedef typename FFT<T>::Scalar Scalar;
    typedef typename VectorType<Container, Scalar>::type ScalarVector;
    typedef typename VectorType<Container, Complex>::type ComplexVector;

    FFT<T>        fft;
    ScalarVector  tbuf(nfft);
    ComplexVector freqBuf;

    for (int k = 0; k < nfft; ++k)
        tbuf[k] = (T)(rand() / (double)RAND_MAX - .5);

    // make sure it DOESN'T give the right full spectrum answer
    // if we've asked for half-spectrum
    fft.SetFlag(fft.HalfSpectrum);
    fft.fwd(freqBuf, tbuf);
    VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1));
    VERIFY(fft_rmse(freqBuf, tbuf) < test_precision<T>());  // gross check

    fft.ClearFlag(fft.HalfSpectrum);
    fft.fwd(freqBuf, tbuf);
    VERIFY((size_t)freqBuf.size() == (size_t)nfft);
    VERIFY(fft_rmse(freqBuf, tbuf) < test_precision<T>());  // gross check

    if (nfft & 1)
        return; // odd FFTs get the wrong size inverse FFT

    ScalarVector tbuf2;
    fft.inv(tbuf2, freqBuf);
    VERIFY(dif_rmse(tbuf, tbuf2) < test_precision<T>());  // gross check


    // verify that the Unscaled flag takes effect
    ScalarVector tbuf3;
    fft.SetFlag(fft.Unscaled);

    fft.inv(tbuf3, freqBuf);

    for (int k = 0; k < nfft; ++k)
        tbuf3[k] *= T(1. / nfft);


    // for (size_t i=0;i<(size_t) tbuf.size();++i)
    //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl;

    VERIFY(dif_rmse(tbuf, tbuf3) < test_precision<T>());  // gross check

    // verify that ClearFlag works
    fft.ClearFlag(fft.Unscaled);
    fft.inv(tbuf2, freqBuf);
    VERIFY(dif_rmse(tbuf, tbuf2) < test_precision<T>());  // gross check
}
Ejemplo n.º 3
0
void bench(int nfft,bool fwd,bool unscaled=false, bool halfspec=false)
{
    typedef typename NumTraits<T>::Real Scalar;
    typedef typename std::complex<Scalar> Complex;
    int nits = NDATA/nfft;
    vector<T> inbuf(nfft);
    vector<Complex > outbuf(nfft);
    FFT< Scalar > fft;

    if (unscaled) {
        fft.SetFlag(fft.Unscaled);
        cout << "unscaled ";
    }
    if (halfspec) {
        fft.SetFlag(fft.HalfSpectrum);
        cout << "halfspec ";
    }


    std::fill(inbuf.begin(),inbuf.end(),0);
    fft.fwd( outbuf , inbuf);

    BenchTimer timer;
    timer.reset();
    for (int k=0;k<8;++k) {
        timer.start();
        if (fwd)
            for(int i = 0; i < nits; i++)
                fft.fwd( outbuf , inbuf);
        else
            for(int i = 0; i < nits; i++)
                fft.inv(inbuf,outbuf);
        timer.stop();
    }

    cout << nameof<Scalar>() << " ";
    double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits );
    if ( NumTraits<T>::IsComplex ) {
        cout << "complex";
    }else{
        cout << "real   ";
        mflops /= 2;
    }


    if (fwd)
        cout << " fwd";
    else
        cout << " inv";

    cout << " NFFT=" << nfft << "  " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s  " << mflops << "MFLOPS\n";
}
Ejemplo n.º 4
0
void test_return_by_value(int len)
{
    VectorXf in;
    VectorXf in1;
    in.setRandom( len );
    VectorXcf out1,out2;
    FFT<float> fft;

    fft.SetFlag(fft.HalfSpectrum );

    fft.fwd(out1,in);
    out2 = fft.fwd(in);
    VERIFY( (out1-out2).norm() < test_precision<float>() );
    in1 = fft.inv(out1);
    VERIFY( (in1-in).norm() < test_precision<float>() );
}
Ejemplo n.º 5
0
void fwd_inv(size_t nfft)
{
    typedef typename NumTraits<T_freq>::Real Scalar;
    vector<T_time> timebuf(nfft);
    RandomFill(timebuf);

    vector<T_freq> freqbuf;
    static FFT<Scalar> fft;
    fft.fwd(freqbuf,timebuf);

    vector<T_time> timebuf2;
    fft.inv(timebuf2,freqbuf);

    long double rmse = mag2(timebuf - timebuf2) / mag2(timebuf);
    cout << "roundtrip rmse: " << rmse << endl;
}
Ejemplo n.º 6
0
int main(int argc, char*argv[])
{
        // create FFT class implementation
        // each implementation has its own plan map.
        FFT<double> fft;
        // create some data
        size_t N = 1024 * 1024;
        std::vector<complex<double>,fftalloc<complex<double> > > data(N);
        std::vector<complex<double>,fftalloc<complex<double> > > dataFourier(N);
        std::vector<complex<double>,fftalloc<complex<double> > > dataCalc(N);
        std::cout << "1) --- original data ---" << endl;
        for(std::vector<complex<double> >::size_type i = 0; i != data.size(); i++) {
            data[i] = polar(sin(double(i)/N * M_PI * 2), 0.0);
//            std::cout << i << data[i] << endl;
        }

        // fft
        std::cout << "2) --- fft data ---" << endl;
        fft.fwd(dataFourier, data);
        std::cout << "speed / ms: " << fft.speed()/1000 << endl;
//        for(std::vector<complex<double> >::size_type i = 0; i != dataFourier.size(); i++) {
//            std::cout << i << dataFourier[i] << endl;
//        }

        // ifft
        std::cout << "3) --- ifft data ---" << endl;
        fft.inv(dataCalc, dataFourier);
        std::cout << "speed / ms: " << fft.speed()/1000 << endl;
//        for(std::vector<complex<double> >::size_type i = 0; i != dataCalc.size(); i++) {
//            std::cout << i << dataCalc[i] << endl;
//        }
//        std::cout << "4) --- comparison data ---" << endl;
//        for(std::vector<complex<double> >::size_type i = 0; i != dataCalc.size(); i++) {
//            std::cout << i << data[i] - dataCalc[i] << endl;
//        }

    std::getchar();
    return 0;
}
Ejemplo n.º 7
0
boolean CAlgorithmHilbertTransform::process(void)
{

	uint32 l_ui32ChannelCount = ip_pMatrix->getDimensionSize(0);
	uint32 l_ui32SamplesPerChannel = ip_pMatrix->getDimensionSize(1);

	IMatrix* l_pInputMatrix = ip_pMatrix;
	IMatrix* l_pOutputEnvelopeMatrix = op_pEnvelopeMatrix;
	IMatrix* l_pOutputPhaseMatrix = op_pPhaseMatrix;

	FFT< double, internal::kissfft_impl<double > > fft;

	if(this->isInputTriggerActive(OVP_Algorithm_HilbertTransform_InputTriggerId_Process))
	{
		//Computing Hilbert transform for all channels
		for(uint32 channel=0; channel<l_ui32ChannelCount; channel++)
		{
			//Initialization of buffer vectors
			m_vecXcdSignalBuffer = RowVectorXcd::Zero(l_ui32SamplesPerChannel);
			m_vecXcdSignalFourier = RowVectorXcd::Zero(l_ui32SamplesPerChannel);

			//Initialization of vector h used to compute analytic signal
			m_vecXdHilbert.resize(l_ui32SamplesPerChannel);
			m_vecXdHilbert(0) = 1.0;
			if(l_ui32SamplesPerChannel%2 == 0)
			{
				m_vecXdHilbert(l_ui32SamplesPerChannel/2) = 1.0;
				for(uint32 i=1; i<l_ui32SamplesPerChannel/2; i++)
				{
					m_vecXdHilbert(i) = 2.0;
				}
				for(uint32 i=(l_ui32SamplesPerChannel/2)+1; i<l_ui32SamplesPerChannel; i++)
				{
					m_vecXdHilbert(i) = 0.0;
				}
			}
			else
			{
				m_vecXdHilbert((l_ui32SamplesPerChannel/2)+1) = 1.0;
				for(uint32 i=1; i<(l_ui32SamplesPerChannel/2)+1; i++)
				{
					m_vecXdHilbert(i) = 2.0;
				}
					for(uint32 i=(l_ui32SamplesPerChannel/2)+2; i<l_ui32SamplesPerChannel; i++)
				{
					m_vecXdHilbert(i) = 0.0;
				}
			}

			//Copy input signal chunk on buffer
			for(uint32 samples=0; samples<l_ui32SamplesPerChannel;samples++)
			{
				m_vecXcdSignalBuffer(samples).real(l_pInputMatrix->getBuffer()[samples + channel * (l_ui32SamplesPerChannel)]);
				m_vecXcdSignalBuffer(samples).imag(0.0);
			}

			//Fast Fourier Transform of input signal
			fft.fwd(m_vecXcdSignalFourier, m_vecXcdSignalBuffer);

			//Apply Hilbert transform by element-wise multiplying fft vector by h
			m_vecXcdSignalFourier = m_vecXcdSignalFourier * m_vecXdHilbert;

			//Inverse Fast Fourier transform
			fft.inv(m_vecXcdSignalBuffer, m_vecXcdSignalFourier); //m_vecXcdSignalBuffer is now the analytical signal of the initial input signal

			//Compute envelope and phase and pass it to the corresponding output
			for(uint32 samples=0; samples<l_ui32SamplesPerChannel;samples++)
			{
				l_pOutputEnvelopeMatrix->getBuffer()[samples + channel*samples] = abs(m_vecXcdSignalBuffer(samples));
				l_pOutputPhaseMatrix->getBuffer()[samples + channel*samples] = arg(m_vecXcdSignalBuffer(samples));
			}

		}
	}
	return true;
}
boolean CAlgorithmHilbertTransform::process(void)
{

	uint32 l_ui32ChannelCount = ip_pMatrix->getDimensionSize(0);
	uint32 l_ui32SamplesPerChannel = ip_pMatrix->getDimensionSize(1);


	IMatrix* l_pInputMatrix = ip_pMatrix;
	IMatrix* l_pOutputHilbertMatrix = op_pHilbertMatrix;
	IMatrix* l_pOutputEnvelopeMatrix = op_pEnvelopeMatrix;
	IMatrix* l_pOutputPhaseMatrix = op_pPhaseMatrix;

	FFT< double, internal::kissfft_impl<double > > fft; //create instance of fft transform

	if(this->isInputTriggerActive(OVP_Algorithm_HilbertTransform_InputTriggerId_Initialize)) //Check if the input is correct
	{
		if( l_pInputMatrix->getDimensionCount() != 2)
		{
			this->getLogManager() << LogLevel_Error << "The input matrix must have 2 dimensions, here the dimension is ";
			std::cout<<l_pInputMatrix->getDimensionCount()<<std::endl;
			return false;
		}

		//Setting size of outputs

		l_pOutputHilbertMatrix->setDimensionCount(2);
		l_pOutputHilbertMatrix->setDimensionSize(0,l_ui32ChannelCount);
		l_pOutputHilbertMatrix->setDimensionSize(1,l_ui32SamplesPerChannel);

		l_pOutputEnvelopeMatrix->setDimensionCount(2);
		l_pOutputEnvelopeMatrix->setDimensionSize(0,l_ui32ChannelCount);
		l_pOutputEnvelopeMatrix->setDimensionSize(1,l_ui32SamplesPerChannel);

		l_pOutputPhaseMatrix->setDimensionCount(2);
		l_pOutputPhaseMatrix->setDimensionSize(0,l_ui32ChannelCount);
		l_pOutputPhaseMatrix->setDimensionSize(1,l_ui32SamplesPerChannel);

	}

	if(this->isInputTriggerActive(OVP_Algorithm_HilbertTransform_InputTriggerId_Process))
	{

		//Computing Hilbert transform for all channels
		for(uint32 channel=0; channel<l_ui32ChannelCount; channel++)
		{
			//Initialization of buffer vectors
			m_vecXcdSignalBuffer = VectorXcd::Zero(l_ui32SamplesPerChannel);
			m_vecXcdSignalFourier = VectorXcd::Zero(l_ui32SamplesPerChannel);

			//Initialization of vector h used to compute analytic signal
			m_vecXdHilbert.resize(l_ui32SamplesPerChannel);
			m_vecXdHilbert(0) = 1.0;

			if(l_ui32SamplesPerChannel%2 == 0)
			{
				m_vecXdHilbert(l_ui32SamplesPerChannel/2) = 1.0;
				for(uint32 i=1; i<l_ui32SamplesPerChannel/2; i++)
				{
					m_vecXdHilbert(i) = 2.0;
				}
				for(uint32 i=(l_ui32SamplesPerChannel/2)+1; i<l_ui32SamplesPerChannel; i++)
				{
					m_vecXdHilbert(i) = 0.0;
				}
			}
			else
			{
				m_vecXdHilbert((l_ui32SamplesPerChannel+1)/2) = 1.0;
				for(uint32 i=1; i<(l_ui32SamplesPerChannel+1); i++)
				{
					m_vecXdHilbert(i) = 2.0;
				}
				for(uint32 i=(l_ui32SamplesPerChannel+1)/2+1; i<l_ui32SamplesPerChannel; i++)
				{
					m_vecXdHilbert(i) = 0.0;
				}
			}

			//Copy input signal chunk on buffer
			for(uint32 samples=0; samples<l_ui32SamplesPerChannel;samples++)
			{
				m_vecXcdSignalBuffer(samples).real(l_pInputMatrix->getBuffer()[samples + channel * (l_ui32SamplesPerChannel)]);
				m_vecXcdSignalBuffer(samples).imag(0.0);
			}

			//Fast Fourier Transform of input signal
			fft.fwd(m_vecXcdSignalFourier, m_vecXcdSignalBuffer);

			//Apply Hilbert transform by element-wise multiplying fft vector by h
			for(uint32 samples=0; samples<l_ui32SamplesPerChannel;samples++)
			{
				m_vecXcdSignalFourier(samples) = m_vecXcdSignalFourier(samples)*m_vecXdHilbert(samples);
			}

			//Inverse Fast Fourier transform
			fft.inv(m_vecXcdSignalBuffer, m_vecXcdSignalFourier); // m_vecXcdSignalBuffer is now the analytical signal of the initial input signal

			//Compute envelope and phase and pass it to the corresponding output
			for(uint32 samples=0; samples<l_ui32SamplesPerChannel;samples++)
			{
				l_pOutputHilbertMatrix->getBuffer()[samples + channel*l_ui32SamplesPerChannel] = m_vecXcdSignalBuffer(samples).imag();
				l_pOutputEnvelopeMatrix->getBuffer()[samples + channel*l_ui32SamplesPerChannel] = abs(m_vecXcdSignalBuffer(samples));
				l_pOutputPhaseMatrix->getBuffer()[samples + channel*l_ui32SamplesPerChannel] = arg(m_vecXcdSignalBuffer(samples));
			}

		}

	}
	return true;
}