Ejemplo n.º 1
0
void
ModelGeneral::Complete4DBackground(const int nx, const int ny, const int nz, const int nxPad, const int nyPad, const int nzPad,NRLib::Vector &initial_mean,NRLib::Matrix &initial_cov)
{
  // Static grids (3 + 6) are set in process4DBackground.
  // Dynamic grids (3 + 6 + 9) are set here.

  FFTGrid * dynamicVp;
  FFTGrid * dynamicVs;
  FFTGrid * dynamicRho;
  FFTGrid * dynamicVpVp;

  FFTGrid *dynamicVpVs;
  FFTGrid *dynamicVpRho;
  FFTGrid *dynamicVsVs;
  FFTGrid *dynamicVsRho;
  FFTGrid *dynamicRhoRho;

  FFTGrid *staticDynamicVpVp;
  FFTGrid *staticDynamicVpVs;
  FFTGrid *staticDynamicVpRho;
  FFTGrid *staticDynamicVsVp;
  FFTGrid *staticDynamicVsVs;
  FFTGrid *staticDynamicVsRho;
  FFTGrid *staticDynamicRhoVp;
  FFTGrid *staticDynamicRhoVs;
  FFTGrid *staticDynamicRhoRho;

  dynamicVp = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVp->fillInConstant(0.0);
  dynamicVp->setType(FFTGrid::PARAMETER);
  dynamicVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVs->fillInConstant(0.0);
  dynamicVs->setType(FFTGrid::PARAMETER);
  dynamicRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicRho->fillInConstant(0.0);
  dynamicRho->setType(FFTGrid::PARAMETER);

  state4d_.setDynamicMu(dynamicVp, dynamicVs, dynamicRho);
  initial_mean=state4d_.GetFullMean000();

  dynamicVpVp = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVpVp->fillInConstant(0.0);
  dynamicVpVp->setType(FFTGrid::COVARIANCE);
  dynamicVpVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVpVs->fillInConstant(0.0);
  dynamicVpVs->setType(FFTGrid::COVARIANCE);
  dynamicVpRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVpRho->fillInConstant(0.0);
  dynamicVpRho->setType(FFTGrid::COVARIANCE);
  dynamicVsVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVsVs->fillInConstant(0.0);
  dynamicVsVs->setType(FFTGrid::COVARIANCE);
  dynamicVsRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicVsRho->fillInConstant(0.0);
  dynamicVsRho->setType(FFTGrid::COVARIANCE);
  dynamicRhoRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  dynamicRhoRho->fillInConstant(0.0);
  dynamicRhoRho->setType(FFTGrid::COVARIANCE);

  state4d_.setDynamicSigma(dynamicVpVp, dynamicVpVs, dynamicVpRho,
                                        dynamicVsVs, dynamicVsRho,
                                                     dynamicRhoRho);

  staticDynamicVpVp = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVpVp->fillInConstant(0.0);
  staticDynamicVpVp->setType(FFTGrid::COVARIANCE);
  staticDynamicVpVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVpVs->fillInConstant(0.0);
  staticDynamicVpVs->setType(FFTGrid::COVARIANCE);
  staticDynamicVpRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVpRho->fillInConstant(0.0);
  staticDynamicVpRho->setType(FFTGrid::COVARIANCE);
  staticDynamicVsVp = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVsVp->fillInConstant(0.0);
  staticDynamicVsVp->setType(FFTGrid::COVARIANCE);
  staticDynamicVsVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVsVs->fillInConstant(0.0);
  staticDynamicVsVs->setType(FFTGrid::COVARIANCE);
  staticDynamicVsRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicVsRho->fillInConstant(0.0);
  staticDynamicVsRho->setType(FFTGrid::COVARIANCE);
  staticDynamicRhoVp = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicRhoVp->fillInConstant(0.0);
  staticDynamicRhoVp->setType(FFTGrid::COVARIANCE);
  staticDynamicRhoVs = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicRhoVs->fillInConstant(0.0);
  staticDynamicRhoVs->setType(FFTGrid::COVARIANCE);
  staticDynamicRhoRho = ModelGeneral::CreateFFTGrid(nx, ny, nz, nxPad, nyPad, nzPad, false);
  staticDynamicRhoRho->fillInConstant(0.0);
  staticDynamicRhoRho->setType(FFTGrid::COVARIANCE);

  state4d_.setStaticDynamicSigma(staticDynamicVpVp,  staticDynamicVpVs,  staticDynamicVpRho,
                                 staticDynamicVsVp,  staticDynamicVsVs,  staticDynamicVsRho,
                                 staticDynamicRhoVp, staticDynamicRhoVs, staticDynamicRhoRho);

  initial_cov=state4d_.GetFullCov();

  state4d_.FFT();
  state4d_.setRelativeGridBase(nx, ny, nz, nxPad, nyPad, nzPad);
}
Ejemplo n.º 2
0
PosteriorElasticPDF3D::PosteriorElasticPDF3D(const std::vector<double>               & d1,        // first dimension of data points
        const std::vector<double>               & d2,        // second dimension of data points
        const std::vector<double>               & d3,        // third dimension of data points
        const std::vector<int>                  & t1,        // trend data points
        const std::vector<std::vector<double> > & v,        // Transformation of elastic variables from 3D to 2D
        const double             *const*const   sigma,     // Gaussian smoothing kernel in 2D
        int                                     n1,        // resolution of density grid in elastic dimension 1
        int                                     n2,        // resolution of density grid in elastic dimension 2
        int                                     n3,        // resolution of density grid in the trend dimension
        double                                  d1_min,
        double                                  d1_max,
        double                                  d2_min,
        double                                  d2_max,
        double                                  t1_min,
        double                                  t1_max,
        int                                     ind)
    : n1_(n1),
      n2_(n2),
      n3_(n3),
      x_min_(d1_min),
      x_max_(d1_max),
      y_min_(d2_min),
      y_max_(d2_max),
      z_min_(t1_min),
      z_max_(t1_max)
{
    // We assume that the input vectors are of the same length
    if (d1.size()!=d2.size() || d2.size()!=d3.size() || d3.size()!=t1.size())
        throw NRLib::Exception("Facies probabilities: Size of input vectors do not match.");
    if (v.size()>2 || static_cast<int>(v[0].size()) != 3 ||  static_cast<int>(v[1].size()) != 3)
        throw NRLib::Exception("Facies probabilities: Transformation matrix v does not have the right dimensions");

    v1_.resize(3);
    v2_.resize(3);

    for(int i=0; i<3; i++) {
        v1_[i] = v[0][i];
        v2_[i] = v[1][i];
    }

    int dim = static_cast<int>(d1.size());

    std::vector<std::vector<double> > x(2);
    x[0].resize(dim);
    x[1].resize(dim);

    //computes x and y from d1, d2 and d3
    CalculateTransform2D(d1, d2, d3, x, v);

    histogram_ = new FFTGrid(n1_, n2_, n3_, n1_, n2_, n3_);
    histogram_->createRealGrid(false);
    int rnxp = histogram_->getRNxp();
    histogram_->setType(FFTGrid::PARAMETER);
    histogram_->setAccessMode(FFTGrid::WRITE);

    for(int l=0; l<n3_; l++) {
        for(int k=0; k<n2_; k++) {
            for(int j=0; j<rnxp; j++)
                histogram_->setNextReal(0.0f);
        }
    }
    histogram_->endAccess();

    // Spacing variables in the density grid
    dx_ = (x_max_ - x_min_)/n1_;
    dy_ = (y_max_ - y_min_)/n2_;
    dz_ = (z_max_ - z_min_)/n3_;

    // Go through data points and place in bins in histogram

    for (int i = 0; i < dim; i++) {
        //volume->getIndexes(d1[i], d2[i], d3[i], i_tmp, j_tmp, k_tmp);
        int i_tmp = static_cast<int>(floor((x[0][i]-x_min_)/dx_));
        int j_tmp = static_cast<int>(floor((x[1][i]-y_min_)/dy_));
        int k_tmp = t1[i];
        // Counting data points in index (i,j,k)
        histogram_->setAccessMode(FFTGrid::RANDOMACCESS);
        histogram_->setRealValue(i_tmp, j_tmp, k_tmp, histogram_->getRealValue(i_tmp,j_tmp,k_tmp) + 1.0f);
        histogram_->endAccess();
    }

    //multiply by normalizing constant for the PDF - dim is the total number of entries
    histogram_->setAccessMode(FFTGrid::READANDWRITE);
    histogram_->multiplyByScalar(float(1.0f/dim));
    histogram_->endAccess();

    if(ModelSettings::getDebugLevel() >= 1) {
        std::string baseName = "Hist_" + NRLib::ToString(ind) + IO::SuffixAsciiFiles();
        std::string fileName = IO::makeFullFileName(IO::PathToDebug(), baseName);
        histogram_->writeAsciiFile(fileName);
    }

    histogram_->fftInPlace();

    double **sigma_tmp = new double *[2];
    for (int i=0; i<2; i++) {
        sigma_tmp[i] = new double[2];
    }
    for(int i=0; i<2; i++) {
        for(int j=0; j<2; j++)
            sigma_tmp[i][j] = sigma[i][j];
    }
    // Matrix inversion of the covariance matrix sigma
    // SINGULAR MATRIX ?!
    double **sigma_inv = new double *[2];
    for(int i=0; i<2; i++)
        sigma_inv[i] = new double [2];

    InvertSquareMatrix(sigma_tmp,sigma_inv,2);

    FFTGrid *smoother = new FFTGrid(n1, n2, n3, n1, n2, n3);

    smoother->createRealGrid(false);
    smoother->setType(FFTGrid::PARAMETER);
    smoother->setAccessMode(FFTGrid::WRITE);
    for(int l=0; l<n3_; l++) {
        for(int k=0; k<n2_; k++) {
            for(int j=0; j<static_cast<int>(smoother->getRNxp()); j++)
                smoother->setNextReal(0.0f);
        }
    }
    smoother->endAccess();

    //SetupSmoothingGaussian2D(smoother, sigma_inv, n1, n2, n3, dx_, dy_);

    if(ModelSettings::getDebugLevel() >= 1) {
        std::string baseName = "Smoother" + IO::SuffixAsciiFiles();
        std::string fileName = IO::makeFullFileName(IO::PathToDebug(), baseName);
        smoother->writeAsciiFile(fileName);
    }

    // Carry out multiplication of the smoother with the density grid (histogram) in the Fourier domain
    smoother->fftInPlace();
    histogram_->multiply(smoother);
    histogram_->invFFTInPlace();
    histogram_->multiplyByScalar(sqrt(float(n1_*n2_*n3_)));
    histogram_->endAccess();

    delete smoother;
    for(int i=0; i<2; i++) {
        delete [] sigma_inv[i];
        delete [] sigma_tmp[i];
    }
    delete [] sigma_tmp;
    delete [] sigma_inv;
}