Ejemplo n.º 1
0
// A utility function for cloning the apply instruction.
static FullApplySite CloneApply(FullApplySite AI, SILBuilder &Builder) {
  // Clone the Apply.
  Builder.setCurrentDebugScope(AI.getDebugScope());
  Builder.addOpenedArchetypeOperands(AI.getInstruction());
  auto Args = AI.getArguments();
  SmallVector<SILValue, 8> Ret(Args.size());
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    Ret[i] = Args[i];

  FullApplySite NAI;

  switch (AI.getInstruction()->getKind()) {
  case ValueKind::ApplyInst:
    NAI = Builder.createApply(AI.getLoc(), AI.getCallee(),
                                   AI.getSubstCalleeSILType(),
                                   AI.getType(),
                                   AI.getSubstitutions(),
                                   Ret,
                                   cast<ApplyInst>(AI)->isNonThrowing());
    break;
  case ValueKind::TryApplyInst: {
    auto *TryApplyI = cast<TryApplyInst>(AI.getInstruction());
    NAI = Builder.createTryApply(AI.getLoc(), AI.getCallee(),
                                      AI.getSubstCalleeSILType(),
                                      AI.getSubstitutions(),
                                      Ret,
                                      TryApplyI->getNormalBB(),
                                      TryApplyI->getErrorBB());
    }
    break;
  default:
    llvm_unreachable("Trying to clone an unsupported apply instruction");
  }

  NAI.getInstruction();
  return NAI;
}
Ejemplo n.º 2
0
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
///    self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI,
                                                     SILValue ClassOrMetatype) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();
  auto *CMI = cast<ClassMethodInst>(AI.getCallee());
  auto ClassOrMetatypeType = ClassOrMetatype.getType();
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, CMI->getMember());

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
                                        ClassOrMetatypeType, AI);
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);

  SILBuilderWithScope B(AI.getInstruction());
  FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F);

  // Create the argument list for the new apply, casting when needed
  // in order to handle covariant indirect return types and
  // contravariant argument types.
  llvm::SmallVector<SILValue, 8> NewArgs;
  auto Args = AI.getArguments();
  auto ParamTypes = SubstCalleeType->getParameterSILTypes();

  for (unsigned i = 0, e = Args.size() - 1; i != e; ++i)
    NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), Args[i],
                                                   Args[i].getType(),
                                                   ParamTypes[i]).getValue());

  // Add the self argument, upcasting if required because we're
  // calling a base class's method.
  auto SelfParamTy = SubstCalleeType->getSelfParameter().getSILType();
  NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(),
                                                 ClassOrMetatype,
                                                 ClassOrMetatypeType,
                                                 SelfParamTy).getValue());

  // If we have a direct return type, make sure we use the subst callee return
  // type. If we have an indirect return type, AI's return type of the empty
  // tuple should be ok.
  SILType ResultTy = AI.getType();
  if (!SubstCalleeType->hasIndirectResult()) {
    ResultTy = SubstCalleeType->getSILResult();
  }

  SILType SubstCalleeSILType =
    SILType::getPrimitiveObjectType(SubstCalleeType);
  FullApplySite NewAI;

  SILBasicBlock *ResultBB = nullptr;
  SILBasicBlock *NormalBB = nullptr;
  SILValue ResultValue;
  bool ResultCastRequired = false;
  SmallVector<Operand *, 4> OriginalResultUses;

  if (!isa<TryApplyInst>(AI)) {
    NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy,
                          Subs, NewArgs, cast<ApplyInst>(AI)->isNonThrowing());
    ResultValue = SILValue(NewAI.getInstruction(), 0);
  } else {
    auto *TAI = cast<TryApplyInst>(AI);
    // Create new normal and error BBs only if:
    // - re-using a BB would create a critical edge
    // - or, the result of the new apply would be of different
    //   type than the argument of the original normal BB.
    if (TAI->getNormalBB()->getSinglePredecessor())
      ResultBB = TAI->getNormalBB();
    else {
      ResultBB = B.getFunction().createBasicBlock();
      ResultBB->createBBArg(ResultTy);
    }

    NormalBB = TAI->getNormalBB();

    SILBasicBlock *ErrorBB = nullptr;
    if (TAI->getErrorBB()->getSinglePredecessor())
      ErrorBB = TAI->getErrorBB();
    else {
      ErrorBB = B.getFunction().createBasicBlock();
      ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType());
    }

    NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType,
                             Subs, NewArgs,
                             ResultBB, ErrorBB);
    if (ErrorBB != TAI->getErrorBB()) {
      B.setInsertionPoint(ErrorBB);
      B.createBranch(TAI->getLoc(), TAI->getErrorBB(),
                     {ErrorBB->getBBArg(0)});
    }

    // Does the result value need to be casted?
    ResultCastRequired = ResultTy != NormalBB->getBBArg(0)->getType();

    if (ResultBB != NormalBB)
      B.setInsertionPoint(ResultBB);
    else if (ResultCastRequired) {
      B.setInsertionPoint(NormalBB->begin());
      // Collect all uses, before casting.
      for (auto *Use : NormalBB->getBBArg(0)->getUses()) {
        OriginalResultUses.push_back(Use);
      }
      NormalBB->getBBArg(0)->replaceAllUsesWith(SILUndef::get(AI.getType(), Mod));
      NormalBB->replaceBBArg(0, ResultTy, nullptr);
    }

    // The result value is passed as a parameter to the normal block.
    ResultValue = ResultBB->getBBArg(0);
  }

  // Check if any casting is required for the return value.
  ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue,
                                             ResultTy, AI.getType()).getValue();

  DEBUG(llvm::dbgs() << "        SUCCESS: " << F->getName() << "\n");
  NumClassDevirt++;

  if (NormalBB) {
    if (NormalBB != ResultBB) {
      // If artificial normal BB was introduced, branch
      // to the original normal BB.
      B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue });
    } else if (ResultCastRequired) {
      // Update all original uses by the new value.
      for(auto *Use: OriginalResultUses) {
        Use->set(ResultValue);
      }
    }
    return std::make_pair(NewAI.getInstruction(), NewAI);
  }

  // We need to return a pair of values here:
  // - the first one is the actual result of the devirtualized call, possibly
  //   casted into an appropriate type. This SILValue may be a BB arg, if it
  //   was a cast between optional types.
  // - the second one is the new apply site.
  return std::make_pair(ResultValue.getDef(), NewAI);
}
Ejemplo n.º 3
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // Bail if any generic types parameters of the class instance type are
  // unbound.
  // We cannot devirtualize unbound generic calls yet.
  if (isClassWithUnboundGenericParameters(ClassOrMetatypeType, Mod))
    return false;

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *CMI = cast<ClassMethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, CMI->getMember());

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable or "
                          "vtable method for this class.\n");
    return false;
  }

  if (AI.getFunction()->isFragile()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!(F->isFragile() || isValidLinkageForFragileRef(F->getLinkage()) ||
          F->isExternalDeclaration()))
      return false;
  }

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
                                        ClassOrMetatypeType, AI);

  // For polymorphic functions, bail if the number of substitutions is
  // not the same as the number of expected generic parameters.
  if (GenCalleeType->isPolymorphic()) {
    auto GenericSig = GenCalleeType->getGenericSignature();
    // Get the number of expected generic parameters, which
    // is a sum of the number of explicit generic parameters
    // and the number of their recursive member types exposed
    // through protocol requirements.
    auto DepTypes = GenericSig->getAllDependentTypes();
    unsigned ExpectedGenParamsNum = 0;

    for (auto DT: DepTypes) {
      (void)DT;
      ExpectedGenParamsNum++;
    }

    if (ExpectedGenParamsNum != Subs.size())
      return false;
  }

  // Check if the optimizer knows how to cast the return type.
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType =
        GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);

  // If we have a direct return type, make sure we use the subst callee return
  // type. If we have an indirect return type, AI's return type of the empty
  // tuple should be ok.
  SILType ReturnType = AI.getType();
  if (!SubstCalleeType->hasIndirectResult()) {
    ReturnType = SubstCalleeType->getSILResult();
  }

  if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType()))
      return false;

  return true;
}
Ejemplo n.º 4
0
/// Insert monomorphic inline caches for a specific class or metatype
/// type \p SubClassTy.
static FullApplySite speculateMonomorphicTarget(FullApplySite AI,
                                                SILType SubType,
                                                CheckedCastBranchInst *&CCBI) {
  CCBI = nullptr;
  // Bail if this class_method cannot be devirtualized.
  if (!canDevirtualizeClassMethod(AI, SubType))
    return FullApplySite();

  // Create a diamond shaped control flow and a checked_cast_branch
  // instruction that checks the exact type of the object.
  // This cast selects between two paths: one that calls the slow dynamic
  // dispatch and one that calls the specific method.
  auto It = AI.getInstruction()->getIterator();
  SILFunction *F = AI.getFunction();
  SILBasicBlock *Entry = AI.getParent();

  // Iden is the basic block containing the direct call.
  SILBasicBlock *Iden = F->createBasicBlock();
  // Virt is the block containing the slow virtual call.
  SILBasicBlock *Virt = F->createBasicBlock();
  Iden->createBBArg(SubType);

  SILBasicBlock *Continue = Entry->splitBasicBlock(It);

  SILBuilderWithScope Builder(Entry, AI.getInstruction());
  // Create the checked_cast_branch instruction that checks at runtime if the
  // class instance is identical to the SILType.

  ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());

  CCBI = Builder.createCheckedCastBranch(AI.getLoc(), /*exact*/ true,
                                       CMI->getOperand(), SubType, Iden,
                                       Virt);
  It = CCBI->getIterator();

  SILBuilderWithScope VirtBuilder(Virt, AI.getInstruction());
  SILBuilderWithScope IdenBuilder(Iden, AI.getInstruction());
  // This is the class reference downcasted into subclass SubType.
  SILValue DownCastedClassInstance = Iden->getBBArg(0);

  // Copy the two apply instructions into the two blocks.
  FullApplySite IdenAI = CloneApply(AI, IdenBuilder);
  FullApplySite VirtAI = CloneApply(AI, VirtBuilder);

  // See if Continue has a release on self as the instruction right after the
  // apply. If it exists, move it into position in the diamond.
  if (auto *Release =
          dyn_cast<StrongReleaseInst>(std::next(Continue->begin()))) {
    if (Release->getOperand() == CMI->getOperand()) {
      VirtBuilder.createStrongRelease(Release->getLoc(), CMI->getOperand());
      IdenBuilder.createStrongRelease(Release->getLoc(),
                                      DownCastedClassInstance);
      Release->eraseFromParent();
    }
  }

  // Create a PHInode for returning the return value from both apply
  // instructions.
  SILArgument *Arg = Continue->createBBArg(AI.getType());
  if (!isa<TryApplyInst>(AI)) {
    IdenBuilder.createBranch(AI.getLoc(), Continue,
                             ArrayRef<SILValue>(IdenAI.getInstruction()));
    VirtBuilder.createBranch(AI.getLoc(), Continue,
                             ArrayRef<SILValue>(VirtAI.getInstruction()));
  }

  // Remove the old Apply instruction.
  if (!isa<TryApplyInst>(AI))
    AI.getInstruction()->replaceAllUsesWith(Arg);
  auto *OriginalBB = AI.getParent();
  AI.getInstruction()->eraseFromParent();
  if (OriginalBB->empty())
    OriginalBB->removeFromParent();

  // Update the stats.
  NumTargetsPredicted++;

  // Devirtualize the apply instruction on the identical path.
  auto NewInstPair = devirtualizeClassMethod(IdenAI, DownCastedClassInstance);
  assert(NewInstPair.first && "Expected to be able to devirtualize apply!");
  replaceDeadApply(IdenAI, NewInstPair.first);

  // Split critical edges resulting from VirtAI.
  if (auto *TAI = dyn_cast<TryApplyInst>(VirtAI)) {
    auto *ErrorBB = TAI->getFunction()->createBasicBlock();
    ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType());
    Builder.setInsertionPoint(ErrorBB);
    Builder.createBranch(TAI->getLoc(), TAI->getErrorBB(),
                         {ErrorBB->getBBArg(0)});

    auto *NormalBB = TAI->getFunction()->createBasicBlock();
    NormalBB->createBBArg(TAI->getNormalBB()->getBBArg(0)->getType());
    Builder.setInsertionPoint(NormalBB);
    Builder.createBranch(TAI->getLoc(), TAI->getNormalBB(),
                        {NormalBB->getBBArg(0) });

    Builder.setInsertionPoint(VirtAI.getInstruction());
    SmallVector<SILValue, 4> Args;
    for (auto Arg : VirtAI.getArguments()) {
      Args.push_back(Arg);
    }
    FullApplySite NewVirtAI = Builder.createTryApply(VirtAI.getLoc(), VirtAI.getCallee(),
        VirtAI.getSubstCalleeSILType(), VirtAI.getSubstitutions(),
        Args, NormalBB, ErrorBB);
    VirtAI.getInstruction()->eraseFromParent();
    VirtAI = NewVirtAI;
  }

  return VirtAI;
}
Ejemplo n.º 5
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType) {

  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *MI = cast<MethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable or "
                          "vtable method for this class.\n");
    return false;
  }

  if (!F->shouldOptimize()) {
    // Do not consider functions that should not be optimized.
    DEBUG(llvm::dbgs() << "        FAIL: Could not optimize function "
                       << " because it is marked no-opt: " << F->getName()
                       << "\n");
    return false;
  }

  if (AI.getFunction()->isFragile()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!F->hasValidLinkageForFragileRef())
      return false;
  }

  // Type of the actual function to be called.
  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  // Type of the actual function to be called with substitutions applied.
  CanSILFunctionType SubstCalleeType = GenCalleeType;

  // For polymorphic functions, bail if the number of substitutions is
  // not the same as the number of expected generic parameters.
  if (GenCalleeType->isPolymorphic()) {
    // First, find proper list of substitutions for the concrete
    // method to be called.
    SmallVector<Substitution, 4> Subs;
    getSubstitutionsForCallee(Mod, GenCalleeType,
                              ClassOrMetatypeType.getSwiftRValueType(),
                              AI, Subs);
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
  }

  // Check if the optimizer knows how to cast the return type.
  SILType ReturnType = SubstCalleeType->getSILResult();

  if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType()))
      return false;

  return true;
}