Ejemplo n.º 1
0
// returns the cross field as a pair of othogonal vectors (NOT in parametric coordinates, but real 3D coordinates)
Pair<SVector3, SVector3> frameFieldBackgroundMesh2D::compute_crossfield_directions(double u, double v,
        double angle_current)
{
    // get the unit normal at that point
    GFace *face = dynamic_cast<GFace*>(gf);
    if(!face) {
        Msg::Error("Entity is not a face in background mesh");
        return Pair<SVector3,SVector3>(SVector3(), SVector3());
    }

    Pair<SVector3, SVector3> der = face->firstDer(SPoint2(u,v));
    SVector3 s1 = der.first();
    SVector3 s2 = der.second();
    SVector3 n = crossprod(s1,s2);
    n.normalize();

    SVector3 basis_u = s1;
    basis_u.normalize();
    SVector3 basis_v = crossprod(n,basis_u);

    // normalize vector t1 that is tangent to gf at uv
    SVector3 t1 = basis_u * cos(angle_current) + basis_v * sin(angle_current) ;
    t1.normalize();

    // compute the second direction t2 and normalize (t1,t2,n) is the tangent frame
    SVector3 t2 = crossprod(n,t1);
    t2.normalize();

    return Pair<SVector3,SVector3>(SVector3(t1[0],t1[1],t1[2]),
                                   SVector3(t2[0],t2[1],t2[2]));
}
Ejemplo n.º 2
0
bool frameFieldBackgroundMesh2D::compute_RK_infos(double u,double v, double x, double y, double z, RK_form &infos)
{
    // check if point is in domain
    if (!inDomain(u,v)) return false;

    // get stored angle

    double angle_current = angle(u,v);

    // compute t1,t2: cross field directions

    // get the unit normal at that point
    GFace *face = dynamic_cast<GFace*>(gf);
    if(!face) {
        Msg::Error("Entity is not a face in background mesh");
        return false;
    }

    Pair<SVector3, SVector3> der = face->firstDer(SPoint2(u,v));
    SVector3 s1 = der.first();
    SVector3 s2 = der.second();
    SVector3 n = crossprod(s1,s2);
    n.normalize();
    SVector3 basis_u = s1;
    basis_u.normalize();
    SVector3 basis_v = crossprod(n,basis_u);
    // normalize vector t1 that is tangent to gf at uv
    SVector3 t1 = basis_u * cos(angle_current) + basis_v * sin(angle_current) ;
    t1.normalize();
    // compute the second direction t2 and normalize (t1,t2,n) is the tangent frame
    SVector3 t2 = crossprod(n,t1);
    t2.normalize();

    // get metric

    double L = size(u,v);
    infos.metricField = SMetric3(1./(L*L));
    FieldManager *fields = gf->model()->getFields();
    if(fields->getBackgroundField() > 0) {
        Field *f = fields->get(fields->getBackgroundField());
        if (!f->isotropic()) {
            (*f)(x,y,z, infos.metricField,gf);
        }
        else {
            L = (*f)(x,y,z,gf);
            infos.metricField = SMetric3(1./(L*L));
        }
    }
    double M = dot(s1,s1);
    double N = dot(s2,s2);
    double E = dot(s1,s2);
    // compute the first fundamental form i.e. the metric tensor at the point
    // M_{ij} = s_i \cdot s_j
    double metric[2][2] = {{M,E},{E,N}};

    // get sizes

    double size_1 = sqrt(1. / dot(t1,infos.metricField,t1));
    double size_2 = sqrt(1. / dot(t2,infos.metricField,t2));

    // compute covariant coordinates of t1 and t2 - cross field directions in parametric domain
    double covar1[2],covar2[2];
    // t1 = a s1 + b s2 -->
    // t1 . s1 = a M + b E
    // t1 . s2 = a E + b N --> solve the 2 x 2 system
    // and get covariant coordinates a and b
    double rhs1[2] = {dot(t1,s1),dot(t1,s2)};
    bool singular = false;
    if (!sys2x2(metric,rhs1,covar1)) {
        Msg::Info("Argh surface %d %g %g %g -- %g %g %g -- %g %g",gf->tag(),s1.x(),s1.y(),s1.z(),s2.x(),s2.y(),s2.z(),size_1,size_2);
        covar1[1] = 1.0;
        covar1[0] = 0.0;
        singular = true;
    }
    double rhs2[2] = {dot(t2,s1),dot(t2,s2)};
    if (!sys2x2(metric,rhs2,covar2)) {
        Msg::Info("Argh surface %d %g %g %g -- %g %g %g",gf->tag(),s1.x(),s1.y(),s1.z(),s2.x(),s2.y(),s2.z());
        covar2[0] = 1.0;
        covar2[1] = 0.0;
        singular = true;
    }

    // transform the sizes with respect to the metric
    // consider a vector v of size 1 in the parameter plane
    // its length is sqrt (v^T M v) --> if I want a real size
    // of size1 in direction v, it should be sqrt(v^T M v) * size1
    double l1 = sqrt(covar1[0]*covar1[0]+covar1[1]*covar1[1]);
    double l2 = sqrt(covar2[0]*covar2[0]+covar2[1]*covar2[1]);

    covar1[0] /= l1;
    covar1[1] /= l1;
    covar2[0] /= l2;
    covar2[1] /= l2;

    double size_param_1  = size_1 / sqrt (  M*covar1[0]*covar1[0]+
                                            2*E*covar1[1]*covar1[0]+
                                            N*covar1[1]*covar1[1]);
    double size_param_2  = size_2 / sqrt (  M*covar2[0]*covar2[0]+
                                            2*E*covar2[1]*covar2[0]+
                                            N*covar2[1]*covar2[1]);
    if (singular) {
        size_param_1 = size_param_2 = std::min (size_param_1,size_param_2);
    }


    // filling form...

    infos.t1 = t1;
    infos.h.first  = size_1;
    infos.h.second = size_2;
    infos.paramh.first  = size_param_1;
    infos.paramh.second = size_param_2;
    infos.paramt1 = SPoint2(covar1[0],covar1[1]);
    infos.paramt2 = SPoint2(covar2[0],covar2[1]);
    infos.angle = angle_current;
    infos.localsize = L;
    infos.normal = n;

    return true;
}
Ejemplo n.º 3
0
void frameFieldBackgroundMesh2D::computeCrossField(simpleFunction<double> &eval_diffusivity)
{
    angles.clear();

    DoubleStorageType _cosines4,_sines4;

    list<GEdge*> e;
    GFace *face = dynamic_cast<GFace*>(gf);
    if(!face) {
        Msg::Error("Entity is not a face in background mesh");
        return;
    }

    replaceMeshCompound(face, e);

    list<GEdge*>::const_iterator it = e.begin();

    for( ; it != e.end(); ++it ) {
        if (!(*it)->isSeam(face)) {
            for(unsigned int i = 0; i < (*it)->lines.size(); i++ ) {
                MVertex *v[2];
                v[0] = (*it)->lines[i]->getVertex(0);
                v[1] = (*it)->lines[i]->getVertex(1);
                SPoint2 p1,p2;
                reparamMeshEdgeOnFace(v[0],v[1],face,p1,p2);
                Pair<SVector3, SVector3> der = face->firstDer((p1+p2)*.5);
                SVector3 t1 = der.first();
                SVector3 t2 = der.second();
                SVector3 n = crossprod(t1,t2);
                n.normalize();
                SVector3 d1(v[1]->x()-v[0]->x(),v[1]->y()-v[0]->y(),v[1]->z()-v[0]->z());
                t1.normalize();
                d1.normalize();
                double _angle = myAngle (t1,d1,n);
                normalizeAngle (_angle);
                for (int i=0; i<2; i++) {
                    DoubleStorageType::iterator itc = _cosines4.find(v[i]);
                    DoubleStorageType::iterator its = _sines4.find(v[i]);
                    if (itc != _cosines4.end()) {
                        itc->second  = 0.5*(itc->second + cos(4*_angle));
                        its->second  = 0.5*(its->second + sin(4*_angle));
                    }
                    else {
                        _cosines4[v[i]] = cos(4*_angle);
                        _sines4[v[i]] = sin(4*_angle);
                    }
                }
            }
        }
    }

    propagateValues(_cosines4,eval_diffusivity,false);
    propagateValues(_sines4,eval_diffusivity,false);

    std::map<MVertex*,MVertex*>::iterator itv2 = _2Dto3D.begin();
    for ( ; itv2 != _2Dto3D.end(); ++itv2) {
        MVertex *v_2D = itv2->first;
        MVertex *v_3D = itv2->second;
        double angle = atan2(_sines4[v_3D],_cosines4[v_3D]) / 4.0;
        normalizeAngle (angle);
        angles[v_2D] = angle;
    }
}