Ejemplo n.º 1
0
template <typename PointT> void
pcl::MaximumLikelihoodSampleConsensus<PointT>::computeMedian (
    const PointCloudConstPtr &cloud, const IndicesPtr &indices, Eigen::Vector4f &median)
{
  // Copy the values to vectors for faster sorting
  std::vector<float> x (indices->size ());
  std::vector<float> y (indices->size ());
  std::vector<float> z (indices->size ());
  for (size_t i = 0; i < indices->size (); ++i)
  {
    x[i] = cloud->points[(*indices)[i]].x;
    y[i] = cloud->points[(*indices)[i]].y;
    z[i] = cloud->points[(*indices)[i]].z;
  }
  std::sort (x.begin (), x.end ());
  std::sort (y.begin (), y.end ());
  std::sort (z.begin (), z.end ());

  int mid = indices->size () / 2;
  if (indices->size () % 2 == 0)
  {
    median[0] = (x[mid-1] + x[mid]) / 2;
    median[1] = (y[mid-1] + y[mid]) / 2;
    median[2] = (z[mid-1] + z[mid]) / 2;
  }
  else
  {
    median[0] = x[mid];
    median[1] = y[mid];
    median[2] = z[mid];
  }
  median[3] = 0;
}
Ejemplo n.º 2
0
template <typename PointT> double
pcl::MaximumLikelihoodSampleConsensus<PointT>::computeMedianAbsoluteDeviation (
    const PointCloudConstPtr &cloud, const IndicesPtr &indices, double sigma)
{
  std::vector<double> distances (indices->size ());

  Eigen::Vector4f median;
  // median (dist (x - median (x)))
  computeMedian (cloud, indices, median);

  for (size_t i = 0; i < indices->size (); ++i)
  {
    pcl::Vector4fMapConst pt = cloud->points[(*indices)[i]].getVector4fMap ();
    Eigen::Vector4f ptdiff = pt - median;
    ptdiff[3] = 0;
    distances[i] = ptdiff.dot (ptdiff);
  }

  std::sort (distances.begin (), distances.end ());

  double result;
  int mid = indices->size () / 2;
  // Do we have a "middle" point or should we "estimate" one ?
  if (indices->size () % 2 == 0)
    result = (sqrt (distances[mid-1]) + sqrt (distances[mid])) / 2;
  else
    result = sqrt (distances[mid]);
  return (sigma * result);
}
Ejemplo n.º 3
0
template <typename PointT> void
pcl::MaximumLikelihoodSampleConsensus<PointT>::getMinMax (
    const PointCloudConstPtr &cloud, const IndicesPtr &indices, Eigen::Vector4f &min_p, Eigen::Vector4f &max_p)
{
  min_p.setConstant (FLT_MAX);
  max_p.setConstant (-FLT_MAX);
  min_p[3] = max_p[3] = 0;

  for (size_t i = 0; i < indices->size (); ++i)
  {
    if (cloud->points[(*indices)[i]].x < min_p[0]) min_p[0] = cloud->points[(*indices)[i]].x;
    if (cloud->points[(*indices)[i]].y < min_p[1]) min_p[1] = cloud->points[(*indices)[i]].y;
    if (cloud->points[(*indices)[i]].z < min_p[2]) min_p[2] = cloud->points[(*indices)[i]].z;

    if (cloud->points[(*indices)[i]].x > max_p[0]) max_p[0] = cloud->points[(*indices)[i]].x;
    if (cloud->points[(*indices)[i]].y > max_p[1]) max_p[1] = cloud->points[(*indices)[i]].y;
    if (cloud->points[(*indices)[i]].z > max_p[2]) max_p[2] = cloud->points[(*indices)[i]].z;
  }
}
Ejemplo n.º 4
0
Archivo: mls.hpp Proyecto: Cakem1x/pcl
pcl::MovingLeastSquares<PointInT, PointOutT>::MLSVoxelGrid::MLSVoxelGrid (PointCloudInConstPtr& cloud,
    IndicesPtr &indices,
    float voxel_size) :
    voxel_grid_ (), bounding_min_ (), bounding_max_ (), data_size_ (), voxel_size_ (voxel_size)
{
  pcl::getMinMax3D (*cloud, *indices, bounding_min_, bounding_max_);

  Eigen::Vector4f bounding_box_size = bounding_max_ - bounding_min_;
  double max_size = (std::max) ((std::max)(bounding_box_size.x (), bounding_box_size.y ()), bounding_box_size.z ());
  // Put initial cloud in voxel grid
  data_size_ = static_cast<uint64_t> (1.5 * max_size / voxel_size_);
  for (unsigned int i = 0; i < indices->size (); ++i)
    if (pcl_isfinite (cloud->points[(*indices)[i]].x))
    {
      Eigen::Vector3i pos;
      getCellIndex (cloud->points[(*indices)[i]].getVector3fMap (), pos);

      uint64_t index_1d;
      getIndexIn1D (pos, index_1d);
      Leaf leaf;
      voxel_grid_[index_1d] = leaf;
    }
}