Ejemplo n.º 1
0
void display(void){
    const uint2 imageSize = kfusion.configuration.inputSize;
    static bool integrate = true;

    glClear( GL_COLOR_BUFFER_BIT );
    const double startFrame = Stats.start();

    DepthFrameKinect();
    const double startProcessing = Stats.sample("kinect");

    kfusion.setKinectDeviceDepth(depthImage.getDeviceImage());
    Stats.sample("raw to cooked");

    integrate = kfusion.Track();
    Stats.sample("track");

        if(integrate || reset){
            kfusion.Integrate();
            Stats.sample("integrate");
            reset = false;
        }

    renderLight( lightModel.getDeviceImage(), kfusion.vertex, kfusion.normal, light, ambient);
    renderLight( lightScene.getDeviceImage(), kfusion.inputVertex[0], kfusion.inputNormal[0], light, ambient );
    renderTrackResult( depth.getDeviceImage(), kfusion.reduction );
    cudaDeviceSynchronize();

    Stats.sample("render");

    glClear(GL_COLOR_BUFFER_BIT);
    glRasterPos2i(0,imageSize.y * 0);
    glDrawPixels(lightScene);
    glRasterPos2i(imageSize.x, imageSize.y * 0);
    glDrawPixels(depth);
    glRasterPos2i(0,imageSize.y * 1);
    glDrawPixels(lightModel);
    const double endProcessing = Stats.sample("draw");

    Stats.sample("total", endProcessing - startFrame, PerfStats::TIME);
    Stats.sample("total_proc", endProcessing - startProcessing, PerfStats::TIME);

    if(printCUDAError())
        exit(1);

    ++counter;

    if(counter % 50 == 0){
        Stats.print();
        Stats.reset();
        cout << endl;
    }

    glutSwapBuffers();
}
Ejemplo n.º 2
0
void keys(unsigned char key, int x, int y){
    switch(key){
    case 'c':
        kfusion.Reset();
        kfusion.setPose(toMatrix4(initPose));
        reset = true;
        break;
    case 'q':
        exit(0);
        break;
    }
}
Ejemplo n.º 3
0
void exitFunc(void){
//    CloseKinect();

    rgbdDevice->close();
    delete rgbdDevice;

    kfusion.Clear();
    cudaDeviceReset();
}
Ejemplo n.º 4
0
void keys(unsigned char key, int x, int y){
    switch(key){
    case 'c':
        kfusion.Reset();
        kfusion.setPose(toMatrix4(initPose));
        reset = true;
        break;
    case 'q':
        exit(0);
        break;
    case 'i':
        should_integrate = !should_integrate;
        break;
    case 't':
        render_texture = !render_texture;
        break;
    }
}
Ejemplo n.º 5
0
void keys(unsigned char key, int x, int y) {
    switch(key){
    case 'r':
        kfusion.setPose( toMatrix4( trans * rot * preTrans ));
        break;
    case 'c':
        kfusion.Reset();
        kfusion.setPose( toMatrix4( trans * rot * preTrans ));
        break;
    case 'd':
        cout << kfusion.pose << endl;
        break;
    case 'q':
        exit(0);
        break;
    }
    glutPostRedisplay();
}
Ejemplo n.º 6
0
int main(int argc, char ** argv) {
    const float size = (argc > 1) ? atof(argv[1]) : 2.f;

    KFusionConfig config;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    config.volumeSize = make_uint3(128);
    // config.volumeSize = make_uint3(256);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240); 
    config.camera =  make_float4(297.12732, 296.24240, 169.89365, 121.25151);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2, config.inputSize.y * 2);
    glutCreateWindow("kfusion");

    kfusion.Init(config);
    if(printCUDAError())
        exit(1);

    kfusion.setPose(toMatrix4(initPose));

    lightScene.alloc(config.inputSize), depth.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    depthImage.alloc(make_uint2(640, 480));

    if(InitKinect(depthImage.data()))
        exit(1);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    return 0;
}
Ejemplo n.º 7
0
void exitFunc(void){
    CloseKinect();
    kfusion.Clear();
    cudaDeviceReset();
}
Ejemplo n.º 8
0
void display(void){
    const uint2 imageSize = kfusion.configuration.inputSize;
    static bool integrate = true;

    glClear( GL_COLOR_BUFFER_BIT );
    const double startFrame = Stats.start();
    const double startProcessing = Stats.sample("kinect");

    //    kfusion.setKinectDeviceDepth(depthImage[GetKinectFrame()].getDeviceImage());

    kfusion.setKinectDeviceDepth(depthImage[rgbdDevice->currentDepthBufferIndex()].getDeviceImage());


    Stats.sample("raw to cooked");

    integrate = kfusion.Track();
    Stats.sample("track");

    if((should_integrate && integrate && ((counter % integration_rate) == 0)) || reset){
        kfusion.Integrate();
        kfusion.Raycast();
        Stats.sample("integrate");
        if(counter > 2) // use the first two frames to initialize
            reset = false;
    }

    renderLight( lightScene.getDeviceImage(), kfusion.inputVertex[0], kfusion.inputNormal[0], light, ambient );
    renderLight( lightModel.getDeviceImage(), kfusion.vertex, kfusion.normal, light, ambient);
    renderTrackResult(trackModel.getDeviceImage(), kfusion.reduction);
    static int count = 4;
    if(count > 3 || redraw_big_view){
        renderInput( pos, normals, dep, kfusion.integration, toMatrix4( trans * rot * preTrans ) * getInverseCameraMatrix(kfusion.configuration.camera * 2), kfusion.configuration.nearPlane, kfusion.configuration.farPlane, kfusion.configuration.stepSize(), 0.75 * kfusion.configuration.mu);
        count = 0;
        redraw_big_view = false;
    } else
        count++;
    if(render_texture)
        renderTexture( texModel.getDeviceImage(), pos, normals, rgbImage.getDeviceImage(), getCameraMatrix(2*kfusion.configuration.camera) * inverse(kfusion.pose), light);
    else
        renderLight( texModel.getDeviceImage(), pos, normals, light, ambient);
    cudaDeviceSynchronize();

    Stats.sample("render");

    glClear(GL_COLOR_BUFFER_BIT);
    glRasterPos2i(0, 0);
    glDrawPixels(lightScene); // left top
    glRasterPos2i(0, 240);
    glPixelZoom(0.5, -0.5);
    glDrawPixels(rgbImage); // left bottom
    glPixelZoom(1,-1);
    glRasterPos2i(320,0);
    glDrawPixels(lightModel); // middle top
    glRasterPos2i(320,240);
    glDrawPixels(trackModel); // middle bottom
    glRasterPos2i(640, 0);
    glDrawPixels(texModel); // right
    const double endProcessing = Stats.sample("draw");

    Stats.sample("total", endProcessing - startFrame, PerfStats::TIME);
    Stats.sample("total_proc", endProcessing - startProcessing, PerfStats::TIME);

    if(printCUDAError())
        exit(1);

    ++counter;

    if(counter % 50 == 0){
        Stats.print();
        Stats.reset();
        std::cout << std::endl;
    }

    glutSwapBuffers();
}
Ejemplo n.º 9
0
int main(int argc, char ** argv) {
    const float default_size = 2.f;

    KFusionConfig config;

    // Search for --help argument
    for (int i = 0; i < argc; ++i) {
        if (std::string(argv[i]) == "--help") {
            std::cout << "Usage: kinect [size] [dist_threshold] [normal_threshold]" << std::endl;
            std::cout << std::endl;
            std::cout << "Defaults:" << std::endl;
            std::cout << "  size: " << default_size << std::endl;
            std::cout << "  dist_threshold: " << config.dist_threshold << std::endl;
            std::cout << "  normal_threshold: " << config.normal_threshold << std::endl;
            return 0;
        }
    }

    const float size = (argc > 1) ? atof(argv[1]) : default_size;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    // config.volumeSize = make_uint3(128);
//    config.volumeSize = make_uint3(256);
    config.volumeSize = make_uint3(512);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240);
//    config.inputSize = make_uint2(640,480);

    config.camera =  make_float4(531.15/2, 531.15/2, 640/4, 480/4);
//    config.camera =  make_float4(614.221/2, 614.221/2, 640/4, 480/4);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));


    //    rgbdDevice = RGBD::create(RGBD::kRGBDDeviceKinect);
    //    rgbdDevice = RGBD::create(RGBD::kRGBDRealSense);
    rgbdDevice = RGBD::create(RGBD::kRGBDDeviceOpenNI2);

    if (rgbdDevice == 0L) {
            std::cerr << "no capture device" << std::endl;
            return -1;
        }


    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2 + 640, max(config.inputSize.y * 2, 480));
    glutCreateWindow("kfusion");

    kfusion.Init(config);

    // input buffers
    depthImage[0].alloc(make_uint2(640, 480));
    depthImage[1].alloc(make_uint2(640, 480));
    rgbImage.alloc(make_uint2(640, 480));

    // render buffers
    lightScene.alloc(config.inputSize), trackModel.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    pos.alloc(make_uint2(640, 480)), normals.alloc(make_uint2(640, 480)), dep.alloc(make_uint2(640, 480)), texModel.alloc(make_uint2(640, 480));

    if(printCUDAError()) {
        cudaDeviceReset();
        return 1;
    }

    std::cout << "Using depthImage size: " << depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t) << " bytes " << std::endl;
    std::cout << "Using rgbImage size: " << rgbImage.size.x*rgbImage.size.y * sizeof(uchar3) << " bytes " << std::endl;

    memset(depthImage[0].data(), 0, depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t));
    memset(depthImage[1].data(), 0, depthImage[1].size.x*depthImage[1].size.y * sizeof(uint16_t));
    memset(rgbImage.data(), 0, rgbImage.size.x*rgbImage.size.y * sizeof(uchar3));

    uint16_t * buffers[2] = {depthImage[0].data(), depthImage[1].data()};



    rgbdDevice->setBuffers(buffers, (unsigned char *)rgbImage.data());

    if (rgbdDevice->open()){
        cudaDeviceReset();
        return 1;
    }



    kfusion.setPose(toMatrix4(initPose));

    // model rendering parameters
    preTrans = SE3<float>::exp(makeVector(0.0, 0, -size, 0, 0, 0));
    trans = SE3<float>::exp(makeVector(0.5, 0.5, 0.5, 0, 0, 0) * size);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

//    CloseKinect();

    return 0;
}
Ejemplo n.º 10
0
void display(void) {

    static bool integrate = true;

    const uint2 imageSize = kfusion.configuration.inputSize;

    const double start = Stats.start();
    renderInput(vertex.getDeviceImage(), normal.getDeviceImage(), depth.getDeviceImage(), reference, toMatrix4( trans * rot * preTrans ) * getInverseCameraMatrix(kfusion.configuration.camera), kfusion.configuration.nearPlane, kfusion.configuration.farPlane, kfusion.configuration.stepSize(), 0.01 );
    cudaDeviceSynchronize();
    Stats.sample("ground raycast");
    Stats.sample("ground copy");

    glRasterPos2i(0,0);
    glDrawPixels(vertex);
    glRasterPos2i(imageSize.x, 0);
    glDrawPixels(normal);
    glRasterPos2i(imageSize.x * 2, 0);
    glDrawPixels(depth);
    Stats.sample("ground draw");

    kfusion.setDepth( depth.getDeviceImage() );
    cudaDeviceSynchronize();
    const double track_start = Stats.sample("process depth");

    if(counter > 1){
        integrate = kfusion.Track();
        cudaDeviceSynchronize();
        Stats.sample("track");
    }

    renderTrackResult(rgb.getDeviceImage(), kfusion.reduction);
    cudaDeviceSynchronize();
    Stats.sample("track render");
    Stats.sample("track copy");

    if(integrate){
        kfusion.Integrate();
        cudaDeviceSynchronize();
        Stats.sample("integration");
        kfusion.Raycast();
        cudaDeviceSynchronize();
        Stats.sample("raycast");
        vertex = kfusion.vertex;
        normal = kfusion.normal;
        Stats.sample("raycast get");
    }

    glRasterPos2i(0,imageSize.y * 1);
    glDrawPixels(vertex);
    glRasterPos2i(imageSize.x, imageSize.y * 1);
    glDrawPixels(normal);
    glRasterPos2i(2 * imageSize.x, imageSize.y * 1);
    glDrawPixels(rgb);
    Stats.sample("track draw");

    Stats.sample("total track", Stats.get_time() - track_start, PerfStats::TIME);

    renderInput(vertex.getDeviceImage(), normal.getDeviceImage(), depth.getDeviceImage(), kfusion.integration,  kfusion.pose * getInverseCameraMatrix(kfusion.configuration.camera), kfusion.configuration.nearPlane, kfusion.configuration.farPlane, kfusion.configuration.stepSize(), 0.7 * kfusion.configuration.mu );
    cudaDeviceSynchronize();
    Stats.sample("view raycast");
    Stats.sample("view copy");

    glRasterPos2i(0,imageSize.y * 2);
    glDrawPixels(vertex);
    glRasterPos2i(imageSize.x, imageSize.y * 2);
    glDrawPixels(normal);
    glRasterPos2i(imageSize.x * 2, imageSize.y * 2);
    glDrawPixels(depth);
    Stats.sample("view draw");

    Stats.sample("events");
    Stats.sample("total all", Stats.get_time() - start, PerfStats::TIME);

    if(counter % 30 == 0){
        Stats.print();
        Stats.reset();
        cout << endl;
    }

    ++counter;

    printCUDAError();

    glutSwapBuffers();
}
Ejemplo n.º 11
0
int main(int argc, char ** argv) {

    benchmark = argc > 1 && string(argv[1]) == "-b";

    KFusionConfig config;
    config.volumeSize = make_uint3(128);

    config.combinedTrackAndReduce = false;

    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 5;

    config.inputSize = make_uint2(320, 240);
    config.camera = make_float4(100, 100, 160, 120);
    config.nearPlane = 0.001;

    config.maxweight = 100;
    config.mu = 0.1;

    config.dist_threshold = 0.2f;
    config.normal_threshold = 0.8f;

    kfusion.Init(config);
    if(printCUDAError()){
        cudaDeviceReset();
        exit(1);
    }

    reference.init(config.volumeSize, config.volumeDimensions);

    initVolumeWrap(reference, 1.0f);
    setBoxWrap(reference, make_float3(0.1f,0.1f,0.8f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setBoxWrap(reference, make_float3(0.1f,0.8f,0.1f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setBoxWrap(reference, make_float3(0.8f,0.1f,0.1f), make_float3(0.9f, 0.9f, 0.9f), -1.0f);
    setSphereWrap(reference, make_float3(0.5f), 0.2f, -1.0f);

    kfusion.setPose( toMatrix4( trans * rot * preTrans ));

    vertex.alloc(config.inputSize);
    normal.alloc(config.inputSize);
    depth.alloc(config.inputSize);
    rgb.alloc(config.inputSize);

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 3, config.inputSize.y * 3);
    glutCreateWindow("kfusion test");

    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    cudaDeviceReset();

    return 0;
}
Ejemplo n.º 12
0
int main(int argc, char ** argv) {
    const float size = (argc > 1) ? atof(argv[1]) : 2.f;

    KFusionConfig config;

    // it is enough now to set the volume resolution once.
    // everything else is derived from that.
    // config.volumeSize = make_uint3(64);
    // config.volumeSize = make_uint3(128);
    config.volumeSize = make_uint3(256);

    // these are physical dimensions in meters
    config.volumeDimensions = make_float3(size);
    config.nearPlane = 0.4f;
    config.farPlane = 5.0f;
    config.mu = 0.1;
    config.combinedTrackAndReduce = false;

    // change the following parameters for using 640 x 480 input images
    config.inputSize = make_uint2(320,240);
    config.camera =  make_float4(531.15/2, 531.15/2, 640/4, 480/4);

    // config.iterations is a vector<int>, the length determines
    // the number of levels to be used in tracking
    // push back more then 3 iteraton numbers to get more levels.
    config.iterations[0] = 10;
    config.iterations[1] = 5;
    config.iterations[2] = 4;

    config.dist_threshold = (argc > 2 ) ? atof(argv[2]) : config.dist_threshold;
    config.normal_threshold = (argc > 3 ) ? atof(argv[3]) : config.normal_threshold;

    initPose = SE3<float>(makeVector(size/2, size/2, 0, 0, 0, 0));

    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE );
    glutInitWindowSize(config.inputSize.x * 2 + 640, max(config.inputSize.y * 2, 480));
    glutCreateWindow("kfusion");

    kfusion.Init(config);

    // input buffers
    depthImage[0].alloc(make_uint2(640, 480));
    depthImage[1].alloc(make_uint2(640, 480));
    rgbImage.alloc(make_uint2(640, 480));

    // render buffers
    lightScene.alloc(config.inputSize), trackModel.alloc(config.inputSize), lightModel.alloc(config.inputSize);
    pos.alloc(make_uint2(640, 480)), normals.alloc(make_uint2(640, 480)), dep.alloc(make_uint2(640, 480)), texModel.alloc(make_uint2(640, 480));

    if(printCUDAError()) {
        cudaDeviceReset();
        return 1;
    }

    memset(depthImage[0].data(), 0, depthImage[0].size.x*depthImage[0].size.y * sizeof(uint16_t));
    memset(depthImage[1].data(), 0, depthImage[1].size.x*depthImage[1].size.y * sizeof(uint16_t));
    memset(rgbImage.data(), 0, rgbImage.size.x*rgbImage.size.y * sizeof(uchar3));

    uint16_t * buffers[2] = {depthImage[0].data(), depthImage[1].data()};
    if(InitKinect(buffers, (unsigned char *)rgbImage.data())){
        cudaDeviceReset();
        return 1;
    }

    kfusion.setPose(toMatrix4(initPose));

    // model rendering parameters
    preTrans = SE3<float>::exp(makeVector(0.0, 0, -size, 0, 0, 0));
    trans = SE3<float>::exp(makeVector(0.5, 0.5, 0.5, 0, 0, 0) * size);

    atexit(exitFunc);
    glutDisplayFunc(display);
    glutKeyboardFunc(keys);
    glutSpecialFunc(specials);
    glutReshapeFunc(reshape);
    glutIdleFunc(idle);

    glutMainLoop();

    CloseKinect();

    return 0;
}