// Given an initial estimate of line spacing (m_in) and the positions of each // baseline, computes the line spacing of the block more accurately in m_out, // and the corresponding intercept in c_out, and the number of spacings seen // in index_delta. Returns the error of fit to the line spacing model. // Uses a simple linear regression, but optimized the offset using the median. double BaselineBlock::FitLineSpacingModel( const GenericVector<double>& positions, double m_in, double* m_out, double* c_out, int* index_delta) { if (m_in == 0.0f || positions.size() < 2) { *m_out = m_in; *c_out = 0.0; if (index_delta != NULL) *index_delta = 0; return 0.0; } GenericVector<double> offsets; // Get the offset (remainder) linespacing for each line and choose the median. for (int i = 0; i < positions.size(); ++i) offsets.push_back(fmod(positions[i], m_in)); // Get the median offset. double median_offset = MedianOfCircularValues(m_in, &offsets); // Now fit a line to quantized line number and offset. LLSQ llsq; int min_index = MAX_INT32; int max_index = -MAX_INT32; for (int i = 0; i < positions.size(); ++i) { double y_pos = positions[i]; int row_index = IntCastRounded((y_pos - median_offset) / m_in); UpdateRange(row_index, &min_index, &max_index); llsq.add(row_index, y_pos); } // Get the refined line spacing. *m_out = llsq.m(); // Use the median offset rather than the mean. offsets.truncate(0); for (int i = 0; i < positions.size(); ++i) offsets.push_back(fmod(positions[i], *m_out)); // Get the median offset. if (debug_level_ > 2) { for (int i = 0; i < offsets.size(); ++i) tprintf("%d: %g\n", i, offsets[i]); } *c_out = MedianOfCircularValues(*m_out, &offsets); if (debug_level_ > 1) { tprintf("Median offset = %g, compared to mean of %g.\n", *c_out, llsq.c(*m_out)); } // Index_delta is the number of hypothesized line gaps present. if (index_delta != NULL) *index_delta = max_index - min_index; // Use the regression model's intercept to compute the error, as it may be // a full line-spacing in disagreement with the median. double rms_error = llsq.rms(*m_out, llsq.c(*m_out)); if (debug_level_ > 1) { tprintf("Linespacing of y=%g x + %g improved to %g x + %g, rms=%g\n", m_in, median_offset, *m_out, *c_out, rms_error); } return rms_error; }
// Fits a straight baseline to the points. Returns true if it had enough // points to be reasonably sure of the fitted baseline. // If use_box_bottoms is false, baselines positions are formed by // considering the outlines of the blobs. bool BaselineRow::FitBaseline(bool use_box_bottoms) { // Deterministic fitting is used wherever possible. fitter_.Clear(); // Linear least squares is a backup if the DetLineFit produces a bad line. LLSQ llsq; BLOBNBOX_IT blob_it(blobs_); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { BLOBNBOX* blob = blob_it.data(); if (!use_box_bottoms) blob->EstimateBaselinePosition(); const TBOX& box = blob->bounding_box(); int x_middle = (box.left() + box.right()) / 2; #ifdef kDebugYCoord if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord) { tprintf("Box bottom = %d, baseline pos=%d for box at:", box.bottom(), blob->baseline_position()); box.print(); } #endif fitter_.Add(ICOORD(x_middle, blob->baseline_position()), box.width() / 2); llsq.add(x_middle, blob->baseline_position()); } // Fit the line. ICOORD pt1, pt2; baseline_error_ = fitter_.Fit(&pt1, &pt2); baseline_pt1_ = pt1; baseline_pt2_ = pt2; if (baseline_error_ > max_baseline_error_ && fitter_.SufficientPointsForIndependentFit()) { // The fit was bad but there were plenty of points, so try skipping // the first and last few, and use the new line if it dramatically improves // the error of fit. double error = fitter_.Fit(kNumSkipPoints, kNumSkipPoints, &pt1, &pt2); if (error < baseline_error_ / 2.0) { baseline_error_ = error; baseline_pt1_ = pt1; baseline_pt2_ = pt2; } } int debug = 0; #ifdef kDebugYCoord Print(); debug = bounding_box_.bottom() < kDebugYCoord && bounding_box_.top() > kDebugYCoord ? 3 : 2; #endif // Now we obtained a direction from that fit, see if we can improve the // fit using the same direction and some other start point. FCOORD direction(pt2 - pt1); double target_offset = direction * pt1; good_baseline_ = false; FitConstrainedIfBetter(debug, direction, 0.0, target_offset); // Wild lines can be produced because DetLineFit allows vertical lines, but // vertical text has been rotated so angles over pi/4 should be disallowed. // Near vertical lines can still be produced by vertically aligned components // on very short lines. double angle = BaselineAngle(); if (fabs(angle) > M_PI * 0.25) { // Use the llsq fit as a backup. baseline_pt1_ = llsq.mean_point(); baseline_pt2_ = baseline_pt1_ + FCOORD(1.0f, llsq.m()); // TODO(rays) get rid of this when m and c are no longer used. double m = llsq.m(); double c = llsq.c(m); baseline_error_ = llsq.rms(m, c); good_baseline_ = false; } return good_baseline_; }