Ejemplo n.º 1
0
arma::mat LinearizedKF::computeStationaryCovariance (const LinearSystem& ls)
{
    using namespace arma;

    mat H = ls.getH();
    mat M = ls.getM();
    mat R = ls.getR();

    mat Pprd;
    bool dareSolvable = dare (trans(ls.getA()),trans(ls.getH()),ls.getG() * ls.getQ() * trans(ls.getG()),
    ls.getM() * ls.getR() * trans(ls.getM()), Pprd );

    if(!dareSolvable)
    {
        OMPL_ERROR("Dare Unsolvable: The given system state is not stable/observable. Try a different state.");
        exit(1);
    }

    //makes this symmetric
    Pprd = (Pprd + trans(Pprd)) / 2;

    mat Pest = Pprd - ( Pprd * H.t()) * inv( H*Pprd*H.t() + M * R * M.t(), true) * trans(Pprd * H.t()) ;

    //makes this symmetric
    Pest = (Pest + trans(Pest)) / 2;

    return Pest;

}
Ejemplo n.º 2
0
void LinearizedKF::Update(const ompl::base::State *belief, const typename ObservationModelMethod::ObservationType& obs,
const LinearSystem& ls, ompl::base::State *updatedState)
{

    using namespace arma;

    colvec innov = this->observationModel_->computeInnovation(belief, obs);

    if(!innov.n_rows || !innov.n_cols)
    {
        updatedState = si_->cloneState(belief);
        return; // return the prediction if you don't have any innovation
    }

    assert(innov.n_rows);
    assert(innov.n_cols);

    mat covPred = belief->as<StateType>()->getCovariance();

    mat rightMatrix = ls.getH() * covPred * trans(ls.getH()) + ls.getR();
    mat leftMatrix = covPred * trans(ls.getH());
    mat KalmanGain = solve(trans(rightMatrix), trans(leftMatrix));
    KalmanGain = KalmanGain.t();

    colvec xPredVec = belief->as<StateType>()->getArmaData();

    colvec xEstVec = xPredVec + KalmanGain*innov;

    updatedState->as<StateType>()->setXYYaw(xEstVec[0], xEstVec[1], xEstVec[2]);

    mat covEst = covPred - KalmanGain* ls.getH() * covPred;

    updatedState->as<StateType>()->setCovariance(covEst);

 }