Ejemplo n.º 1
0
int main(int argc, char* argv[]) {
  LogisticRegression lr;
  LogisticRegressionScoreTest lrst;
  LogisticRegressionPermutationTest lrpt;

  Vector y;
  Matrix x;
  Matrix cov;

  LoadVector("input.y", y);
  LoadMatrix("input.x", x);
  LoadMatrix("input.cov", cov);

  Matrix xall;
  xall = x;
  xall.StackRight(cov);  // 1 + x + cov

  if (lr.FitLogisticModel(xall, y, 100) == false) {
    fprintf(stderr, "Fitting failed!\n");
    return -1;
  }

  Vector& beta = lr.GetCovEst();
  Matrix& v = lr.GetCovB();
  Vector& pWald = lr.GetAsyPvalue();

  fprintf(stdout, "wald_beta\t");
  Print(beta);
  fputc('\n', stdout);

  fprintf(stdout, "wald_vcov\t");
  Print(v);
  fputc('\n', stdout);

  fprintf(stdout, "wald_p\t");
  Print(pWald[1]);
  fputc('\n', stdout);

  if (lrpt.FitLogisticModelCov(xall, 1, y, 2000, -1) == false) {
    fprintf(stderr, "Fitting failed!\n");
    return -1;
  }

  fprintf(stdout, "permutation_p\t");
  double permu_p = lrpt.getPvalue();
  Print(permu_p);
  fputc('\n', stdout);

  if (lrst.FitLogisticModel(xall, y, 1, 100) == false) {
    fprintf(stderr, "Fitting failed!\n");
    return -1;
  }

  fprintf(stdout, "score_p\t");
  double score_p = lrst.GetPvalue();
  Print(score_p);
  fputc('\n', stdout);

  return 0;
};
Ejemplo n.º 2
0
TEST_F(LR_Separable_Test, test_separable) {

        LogisticRegression lr;
        int separableColumn = lr.dataIsSeparable(cov, response);
        ASSERT_EQ( separableColumn, 0);

}
Ejemplo n.º 3
0
int main (void)
{
    cout << "Hello world for Logistic Regression" << endl;

    LogisticRegression toDo;
    toDo.Test ();

    return 0;
}
Ejemplo n.º 4
0
int main(int argc, char *argv[])
{
    time_t now  = time(0);
	
		printf("chisq p = 0.05 cutoff = %f",chidist(3.84, 1.0));
    printf("Start analysis at %s \n", ctime(&now));
	
	
	/*
	Matrix a(2,2);
	a[0][0] = 1.0;
	a[1][1] = 1.0;
	a[0][1] = a[1][0] = 0.5;
		
	SVD svd;
	svd.InvertInPlace(a);
	for (int i = 0; i < a.rows; i ++) {
		for (int j = 0; j < a.cols; j ++) {
			std::cout << "a[" << i << "]" << "[" << j << "]" << a[i][j] << "\t";
		}
		std::cout << "\n";
	}
	
	return 0;
	 */

    Matrix X;
    String Xinput = "ExampleX.test";
    Vector Y;
    String Yinput = "ExampleY.test";

    if (loadMatrix(X,Xinput) || loadVector(Y, Yinput)) {
        fprintf(stderr, "Data loading problem!\n");
        exit(1);
    }

    LogisticRegression lr;
    if (lr.FitLogisticModel(X, Y, 30) ) {
        printf("fit all right!\n");
    } else {
        printf("fit failed\n");
    }
    now = time(0);
    printf("Finsihed analysis at %s \n", ctime(&now));

    LogisticRegressionScoreTest lrst;
    int Xcol = 1;
    lrst.FitLogisticModel(X,Y,Xcol,30);
    printf("score p-value is: %lf \n", lrst.getPvalue());
    Vector& pvalue = lr.GetAsyPvalue();
    printf("wald p-value is: %lf \n", pvalue[Xcol]);
    return 0;
}
Ejemplo n.º 5
0
int main()
{
    double alpha = 0.001;
    int iters = 10000;
    LogisticRegression lr;

    lr.readData("input.txt");
    lr.gradientDescent(alpha, iters);
    
    int n = _getch();
    return 1;
}
Ejemplo n.º 6
0
void PosteriorEstimator::estimate(vector<pair<double, bool> >& combined,
                                  LogisticRegression& lr) {
  // switch sorting order
  if (!reversed) {
    reverse(combined.begin(), combined.end());
  }
  vector<double> medians;
  vector<unsigned int> negatives, sizes;
  binData(combined, medians, negatives, sizes);
  lr.setData(medians, negatives, sizes);
  lr.roughnessPenaltyIRLS();
  // restore sorting order
  if (!reversed) {
    reverse(combined.begin(), combined.end());
  }
}
Ejemplo n.º 7
0
void PosteriorEstimator::estimatePEP(
                                     vector<pair<double, bool> >& combined,
                                     double pi0, vector<double>& peps,
				       bool include_negative) {
  // Logistic regression on the data
  size_t nTargets = 0, nDecoys = 0;
  LogisticRegression lr;
  estimate(combined, lr);
  vector<double> xvals(0);
  vector<pair<double, bool> >::const_iterator elem = combined.begin();
  for (; elem != combined.end(); ++elem)
    if (elem->second) {
      xvals.push_back(elem->first);
      ++nTargets;
    } else {
      if (include_negative) {
        xvals.push_back(elem->first);
      }
      ++nDecoys;
    }
  lr.predict(xvals, peps);
#define OUTPUT_DEBUG_FILES
#undef OUTPUT_DEBUG_FILES
#ifdef OUTPUT_DEBUG_FILES
  ofstream drFile("decoyRate.all", ios::out), xvalFile("xvals.all", ios::out);
  ostream_iterator<double> drIt(drFile, "\n"), xvalIt(xvalFile, "\n");
  copy(peps.begin(), peps.end(), drIt);
  copy(xvals.begin(), xvals.end(), xvalIt);
#endif
  double factor = pi0 * ((double)nTargets / (double)nDecoys);
  double top = min(1.0, factor
      * exp(*max_element(peps.begin(), peps.end())));
  vector<double>::iterator pep = peps.begin();
  bool crap = false;
  for (; pep != peps.end(); ++pep) {
    if (crap) {
      *pep = top;
      continue;
    }
    *pep = factor * exp(*pep);
    if (*pep >= top) {
      *pep = top;
      crap = true;
    }
  }
  partial_sum(peps.rbegin(), peps.rend(), peps.rbegin(), mymin);
}
Ejemplo n.º 8
0
int main(int argc,char **argv)
{
	if(argc!=6)
	{
		cerr<<"usage: ";
		cout<<argv[0]<<" train_feature_data test_feature_data regularization_parameter bias_parameter feature_config"<<endl;
		return -1;
	}
	int rank,size;
	MPI_Init(&argc,&argv);
	MPI_Comm_rank(MPI_COMM_WORLD,&rank);
	MPI_Comm_size(MPI_COMM_WORLD,&size);
//	string train_data=string(argv[1])+string(".")+CommonTool::to_string(rank);
//	string test_data=string(argv[2])+string(".")+CommonTool::to_string(rank);
	bool split=true;
	string train_data=string(argv[1]);
	string test_data=string(argv[2]);
	LogisticRegression LR;
	LR.set_mpirank(rank);
	LR.set_mpisize(size);
	if(rank==0)
	{
		cerr<<" mpi rank="<<rank<<" mpi size="<<size<<endl;
		time_t t=time(0);
		cerr<<"start process:"<<asctime(localtime(&t))<<endl;
	}
//	LR.read_dataset("data/train.feature.filter","conf/overall.conf");
//	LR.init_data_buffer("data/train.feature.filter");
	LR.init_data_buffer(train_data,test_data,split);
	string parameters;
	float lambda=atof(argv[3]);
	float bias=atof(argv[4]);
	string feature_conf(argv[5]);
	int status=LR.optimize(feature_conf,string("model/para"),parameters,lambda,bias);
	if(rank==0)
	{
		cerr<<"LBFGS status:"<<status<<endl;
		time_t t=time(0);
		cerr<<"end process:"<<asctime(localtime(&t))<<endl;
	}
	MPI_Finalize();
	return 0;
}
Ejemplo n.º 9
0
void PosteriorEstimator::estimatePEPGeneralized(
                                     vector<pair<double, bool> >& combined,
                                     vector<double>& peps,
				       bool include_negative) {
  // Logistic regression on the data
  size_t nTargets = 0, nDecoys = 0;
  LogisticRegression lr;
  estimate(combined, lr);
  vector<double> xvals(0);
  vector<pair<double, bool> >::const_iterator elem = combined.begin();
  for (; elem != combined.end(); ++elem) {
    xvals.push_back(elem->first);
    if (elem->second) {
      ++nTargets;
    } else {
      if (include_negative) {
        xvals.push_back(elem->first);
      }
      ++nDecoys;
    }
  }
  lr.predict(xvals, peps);
#ifdef OUTPUT_DEBUG_FILES
  ofstream drFile("decoyRate.all", ios::out), xvalFile("xvals.all", ios::out);
  ostream_iterator<double> drIt(drFile, "\n"), xvalIt(xvalFile, "\n");
  copy(peps.begin(), peps.end(), drIt);
  copy(xvals.begin(), xvals.end(), xvalIt);
#endif
  double top = exp(*max_element(peps.begin(), peps.end()));
  top = top/(1+top);
  bool crap = false;
  vector<double>::iterator pep = peps.begin();
  for (; pep != peps.end(); ++pep) {
    if (crap) {
      *pep = top;
      continue;
    }
    // eg = p/(1-p)
    // eg - egp = p
    // p = eg/(1+eg)
    double eg = exp(*pep);
    *pep = eg/(1+eg);
    if (*pep >= top) {
      *pep = top;
      crap = true;
    }
  }
  partial_sum(peps.rbegin(), peps.rend(), peps.rbegin(), mymin);
  double high = *max_element(peps.begin(), peps.end());
  double low = *min_element(peps.begin(), peps.end());
  assert(high>low);

  if (VERB > 2) {
    cerr << "Highest generalized decoy rate =" << high
	 << ", low rate = " << low << endl;
  }

  pep = peps.begin();
  for (; pep != peps.end(); ++pep) {
    *pep = (*pep - low)/(high-low);
  }
}
Ejemplo n.º 10
0
bool train( CommandLineParser &parser ){

    infoLog << "Training regression model..." << endl;

    string trainDatasetFilename = "";
    string modelFilename = "";
    string defaultFilename = "linear-regression-model.grt";
    bool removeFeatures = false;
    bool defaultRemoveFeatures = false;

    //Get the filename
    if( !parser.get("filename",trainDatasetFilename) ){
        errorLog << "Failed to parse filename from command line! You can set the filename using the -f." << endl;
        printUsage();
        return false;
    }

    //Get the model filename
    parser.get("model-filename",modelFilename,defaultFilename);

    //Load the training data to train the model
    RegressionData trainingData;

    infoLog << "- Loading Training Data..." << endl;
    if( !trainingData.load( trainDatasetFilename ) ){
        errorLog << "Failed to load training data!\n";
        return false;
    }

    const unsigned int N = trainingData.getNumInputDimensions();
    const unsigned int T = trainingData.getNumTargetDimensions();
    infoLog << "- Num training samples: " << trainingData.getNumSamples() << endl;
    infoLog << "- Num input dimensions: " << N << endl;
    infoLog << "- Num target dimensions: " << T << endl;
    
    //Create a new regression instance
    LogisticRegression regression;

    regression.setMaxNumEpochs( 500 );
    regression.setMinChange( 1.0e-5 );
    regression.setUseValidationSet( true );
    regression.setValidationSetSize( 20 );
    regression.setRandomiseTrainingOrder( true );
    regression.enableScaling( true );

    //Create a new pipeline that will hold the regression algorithm
    GestureRecognitionPipeline pipeline;

    //Add a multidimensional regression instance and set the regression algorithm to Linear Regression
    pipeline.setRegressifier( MultidimensionalRegression( regression, true ) );

    infoLog << "- Training model...\n";

    //Train the classifier
    if( !pipeline.train( trainingData ) ){
        errorLog << "Failed to train model!" << endl;
        return false;
    }

    infoLog << "- Model trained!" << endl;

    infoLog << "- Saving model to: " << modelFilename << endl;

    //Save the pipeline
    if( pipeline.save( modelFilename ) ){
        infoLog << "- Model saved." << endl;
    }else warningLog << "Failed to save model to file: " << modelFilename << endl;

    infoLog << "- TrainingTime: " << pipeline.getTrainingTime() << endl;

    return true;
}
Ejemplo n.º 11
0
/**
 * Run a single likelihood ratio test.  Assumes covariates and phenotype are set as global variables.
 * The test is performed on the haps vector.
 *
 * @param haps Haplotype variable.  H_0 is that this vector is independant.
 * @param ones Set of ones.  Precomputed for speed.
 * @return ZaykingStatsInfo should contain all information for this likelihood ratio test.
 */
ZaykinStatsInfo Zaykin::runLikelihoodRatio(const vector<double> &haps, const vector<double> &ones){

	ZaykinStatsInfo stats;
	vector<vector<double> > testVecWithout = cov;
	vector<vector<double> > testVecWith; // wait to fill this one.
	testVecWithout.push_back(ones);

	LogisticRegression lrWith, lrWithout;
	vector<vector<double> > inv_infmatrixWithOut, inv_infmatrixWith;
	vector<double> betasWith, betasWithOut;

	inv_infmatrixWithOut = vecops::getDblVec(testVecWithout.size() , testVecWithout.size());

	int retry = 0;
	double startVal = 0;  // value to start betas with.

	while(retry < 3){
		try{
			betasWithOut = lrWithout.newtonRaphson(testVecWithout, phenotype, inv_infmatrixWithOut, startVal);
			break;
		}catch(NewtonRaphsonFailureEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model in single haplotype test: Newton-Raphson setup failure.");
		}catch(NewtonRaphsonIterationEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model in single haplotype test: max iterations hit.");
		}catch(SingularMatrixEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model in single haplotype test: information matrix was singular.");
		}catch(ConditionNumberEx){
			
			LogisticRegression lr;
			int separableVariable = lr.dataIsSeparable(testVecWithout, phenotype);
			
			string message;
			if (separableVariable < 0){
				// Error: poor conditioning.
				message = "Unable to compute reduced model in single haplotype test: Poor conditioning in information matrix.";
			}else{
				message = "Unable to compute reduced model in single haplotype test: Separable data matrix.";
			}
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;	
		}catch(alglib::ap_error err){
			stringstream ss;
			ss << "Unable to compute reduced model  single haplotype test due to linalg exception: " << err.msg;
			handleException(stats, startVal, retry, ss.str());
			if (retry >= 3) return stats;
		}
	}

	retry = 0;
	startVal = 0;  // value to start betas with.

	testVecWith = testVecWithout;
	testVecWith.push_back(haps);

	inv_infmatrixWith = vecops::getDblVec(testVecWith.size() , testVecWith.size());

	while(retry < 3){
		try{
			betasWith = lrWith.newtonRaphson(testVecWith, phenotype, inv_infmatrixWith, startVal);
			break;
		}catch(NewtonRaphsonFailureEx){
			handleException(stats, startVal, retry, "Unable to compute full model in single haplotype test: Newton-Raphson setup failure.");
		}catch(NewtonRaphsonIterationEx){
			handleException(stats, startVal, retry, "Unable to compute full model in single haplotype test: max iterations hit.");
		}catch(SingularMatrixEx){
			handleException(stats, startVal, retry, "Unable to compute full model in single haplotype test: information matrix was singular.");
		}catch(ConditionNumberEx){
			
			LogisticRegression lr;
			int separableVariable = lr.dataIsSeparable(testVecWith, phenotype);
			
			string message;
			if (separableVariable < 0){
				// Error: poor conditioning.
				message = "Unable to compute full model in single haplotype test: Poor conditioning in information matrix.";
			}else{
				message = "Unable to compute full model in single haplotype test: Separable data matrix.";
			}
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;	
		}catch(alglib::ap_error err){
			stringstream ss;
			ss << "Unable to compute full model single haplotype test due to linalg exception: " << err.msg;
			handleException(stats, startVal, retry, ss.str());
			if (retry >= 3) return stats;
		}
	}

	stats.chiSqStat = lrWith.likelihoodRatio(betasWithOut, testVecWithout, betasWith, testVecWith, phenotype);
	stats.degFree = betasWith.size() - betasWithOut.size();
	double beta = betasWith.at(betasWith.size() - 1);
	double stderr = sqrt(inv_infmatrixWith.at(inv_infmatrixWith.size() - 1).at(inv_infmatrixWith.size() - 1));
	stats.OR = exp(beta);
	stats.LCI = exp(beta - 1.96*stderr);
	stats.UCI = exp(beta + 1.96*stderr);
	return stats;

}
Ejemplo n.º 12
0
/**
 * Run the global analysis.  Put all data and covariates in a logistic regression model.
 *
 * Compute likelihood ratio statistic.
 * This uses a likelihood statistic where n-1 haplotypes are tested.
 * 
 * @return pvalue.
 */
ZaykinGlobalStatsResults Zaykin::runGlobal(){

	ZaykinGlobalStatsResults stats;

	vector<vector<double> > haps;
	vector<double> ones;

	prepHaplotypes(ones, haps);

	#if DEBUG_ZAY_PROGRESS
		cout << "Zaykin start LR portion" << endl;
	#endif
	LogisticRegression with(params->getRegressionConditionNumberThreshold()), without(params->getRegressionConditionNumberThreshold());
	/*
	 * Run without the haplotypes:
	 */
	vector<vector<double> > inv_infmatrixWithOut;
	vector<double> betasWithOut;

	vector<vector<double> > inWithout;
	inWithout = cov;
	inWithout.push_back(ones);

	inv_infmatrixWithOut = vecops::getDblVec(inWithout.size() , inWithout.size());

	int retry = 0;
	double startVal = 0;  // value to start betas with.

	while(retry < 3){
		try{
			betasWithOut = without.newtonRaphson(inWithout, phenotype, inv_infmatrixWithOut, startVal);
			break;
		}catch(NewtonRaphsonFailureEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model: Newton-Raphson setup failure.");
		}catch(NewtonRaphsonIterationEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model: max iterations hit.");
		}catch(SingularMatrixEx){
			handleException(stats, startVal, retry, "Unable to compute reduced model: information matrix was singular.");
		}catch(ConditionNumberEx err){
			
			LogisticRegression lr;
			int separableVariable = lr.dataIsSeparable(inWithout, phenotype);
			
			string message;
			if (separableVariable < 0){
				// Error: poor conditioning.
				stringstream ss;
				ss << "Unable to compute reduced model: Poor conditioning in information matrix. ";
				ss << "Condition number (1-norm) is " << err.conditionNumber;
				message = ss.str();
			}else{
				stringstream ss;
				ss << "Unable to compute reduced model: Separable data matrix.";
				ss << "Condition number (1-norm) is " << err.conditionNumber;
				message = ss.str();
			}
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;	
		}catch(ADTException e){
			// This one is generic.
			string message = "Unable to compute reduced model: Newton-Raphson error.";
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;
		}catch(alglib::ap_error err){
			stringstream ss;
			ss << "Unable to compute reduced model due to linalg exception: " << err.msg;
			handleException(stats, startVal, retry, ss.str());
			if (retry >= 3) return stats;
		}
	}

	/*
	 * Run with the haplotypes:
	 */
	vector<vector<double> > inv_infmatrixWith, inWith;
	vector<double> betasWith;

	inWith = inWithout;
	for (unsigned int i=0; i < haps.size()-1; i++){ // NOTE: Don't push the very last haplotype.
		inWith.push_back(haps.at(i));
	}

	inv_infmatrixWith = vecops::getDblVec(inWith.size() , inWith.size());

	retry = 0;
	startVal = 0;  // value to start betas with.

	while(retry < 3){
		try{
			betasWith = with.newtonRaphson(inWith, phenotype, inv_infmatrixWith, startVal);
			break;
		}catch(NewtonRaphsonFailureEx){
			handleException(stats, startVal, retry, "Unable to compute full model: Newton-Raphson setup failure.");
		}catch(NewtonRaphsonIterationEx){
			handleException(stats, startVal, retry, "Unable to compute full model: max iterations hit.");
		}catch(SingularMatrixEx){
			handleException(stats, startVal, retry, "Unable to compute full model: information matrix was singular.");
		}catch(ConditionNumberEx err){
			
			LogisticRegression lr;
			int separableVariable = lr.dataIsSeparable(inWith, phenotype);
			
			stringstream ss;
			if (separableVariable < 0){
				// Error: poor conditioning.
				ss << "Unable to compute reduced model: Poor conditioning in information matrix. ";
				ss << "Condition number (1-norm) is " << err.conditionNumber;
			}else{
				ss << "Unable to compute reduced model: Separable data matrix.";
				ss << "Condition number (1-norm) is " << err.conditionNumber;
			}
			string message = ss.str();
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;	
		}catch(ADTException e){
			string message = "Unable to compute full model: Newton-Raphson error.";
			handleException(stats, startVal, retry, message);
			if (retry >= 3) return stats;
		}catch(alglib::ap_error err){
			stringstream ss;
			ss << "Unable to compute full model due to linalg exception: " << err.msg;
			handleException(stats, startVal, retry,ss.str());
			if (retry >= 3) return stats;
		}
	}

	double likeRatio =  with.likelihoodRatio(betasWithOut, inWithout, betasWith, inWith, phenotype);
	try{
		stats.pvalue = Statistics::chi2prob(likeRatio, betasWith.size() - betasWithOut.size());
		stats.testStat = likeRatio;
		stats.degFreedom = betasWith.size() - betasWithOut.size();
	}catch(...){

		stringstream ss;
		ss << "Zaykin's method: unable to compute chi square: " << likeRatio << " " << betasWith.size() - betasWithOut.size() << endl;
		Logger::Instance()->writeLine(ss.str());

		stats.fillDefault();
		return stats;
	}
	return stats;
}
Ejemplo n.º 13
0
int main()
{
	LogisticRegression lr;
	lr.Test();
	return 0;
}
Ejemplo n.º 14
0
bool train( CommandLineParser &parser ){

    infoLog << "Training regression model..." << endl;

    string trainDatasetFilename = "";
    string modelFilename = "";
    float learningRate = 0;
    float minChange = 0;
    unsigned int maxEpoch = 0;
    unsigned int batchSize = 0;

    //Get the filename
    if( !parser.get("filename",trainDatasetFilename) ){
        errorLog << "Failed to parse filename from command line! You can set the filename using the -f." << endl;
        printHelp();
        return false;
    }
    
    //Get the parameters from the parser
    parser.get("model-filename",modelFilename);
    parser.get( "learning-rate", learningRate );
    parser.get( "min-change", minChange );
    parser.get( "max-epoch", maxEpoch );
    parser.get( "batch-size", batchSize );

    infoLog << "settings: learning-rate: " << learningRate << " min-change: " << minChange << " max-epoch: " << maxEpoch << " batch-size: " << batchSize << endl;

    //Load the training data to train the model
    RegressionData trainingData;

    //Try and parse the input and target dimensions
    unsigned int numInputDimensions = 0;
    unsigned int numTargetDimensions = 0;
    if( parser.get("num-inputs",numInputDimensions) && parser.get("num-targets",numTargetDimensions) ){
      infoLog << "num input dimensions: " << numInputDimensions << " num target dimensions: " << numTargetDimensions << endl;
      trainingData.setInputAndTargetDimensions( numInputDimensions, numTargetDimensions );
    }

    if( (numInputDimensions == 0 || numTargetDimensions == 0) && Util::stringEndsWith( trainDatasetFilename, ".csv" ) ){
      errorLog << "Failed to parse num input dimensions and num target dimensions from input arguments. You must supply the input and target dimensions if the data format is CSV!" << endl;
      printHelp();
      return false; 
    }

    infoLog << "- Loading Training Data..." << endl;
    if( !trainingData.load( trainDatasetFilename ) ){
        errorLog << "Failed to load training data!\n";
        return false;
    }

    const unsigned int N = trainingData.getNumInputDimensions();
    const unsigned int T = trainingData.getNumTargetDimensions();
    infoLog << "- Num training samples: " << trainingData.getNumSamples() << endl;
    infoLog << "- Num input dimensions: " << N << endl;
    infoLog << "- Num target dimensions: " << T << endl;

    //Create a new regression instance
    LogisticRegression regression;

    regression.setMaxNumEpochs( maxEpoch );
    regression.setMinChange( minChange );
    regression.setUseValidationSet( true );
    regression.setValidationSetSize( 20 );
    regression.setRandomiseTrainingOrder( true );
    regression.enableScaling( true );

    //Create a new pipeline that will hold the regression algorithm
    GestureRecognitionPipeline pipeline;

    //Add a multidimensional regression instance and set the regression algorithm to Linear Regression
    pipeline.setRegressifier( MultidimensionalRegression( regression, true ) );

    infoLog << "- Training model...\n";

    //Train the classifier
    if( !pipeline.train( trainingData ) ){
        errorLog << "Failed to train model!" << endl;
        return false;
    }

    infoLog << "- Model trained!" << endl;

    infoLog << "- Saving model to: " << modelFilename << endl;

    //Save the pipeline
    if( pipeline.save( modelFilename ) ){
        infoLog << "- Model saved." << endl;
    }else warningLog << "Failed to save model to file: " << modelFilename << endl;

    infoLog << "- TrainingTime: " << pipeline.getTrainingTime() << endl;

    return true;
}