Ejemplo n.º 1
0
SelfIntersection::SelfIntersection(
        const MatrixFr& vertices, const MatrixIr& faces)
: m_faces(faces) {
    const size_t num_vertices = vertices.rows();
    const size_t dim = vertices.cols();
    const size_t num_faces = faces.rows();
    const size_t vertex_per_face = faces.cols();

    if (dim != 3) {
        throw NotImplementedError(
                "Self intersection check only support 3D");
    }
    if (vertex_per_face != 3) {
        throw NotImplementedError(
                "Self intersection check only works with triangles");
    }

    m_points.resize(num_vertices);
    for (size_t i=0; i<num_vertices; i++) {
        m_points[i] = Point_3(
                vertices(i,0),
                vertices(i,1),
                vertices(i,2));
    }
}
Ejemplo n.º 2
0
void SimpleInflator::generate_joint(
        const MatrixFr& pts, const VectorI& source_ids, size_t vertex_index) {
    const size_t dim = m_wire_network->get_dim();
    ConvexHullEngine::Ptr convex_hull = ConvexHullEngine::create(dim, "qhull");
    convex_hull->run(pts);

    MatrixFr vertices = convex_hull->get_vertices();
    MatrixIr faces = convex_hull->get_faces();
    VectorI  index_map = convex_hull->get_index_map();

    if (dim == 2) {
        // Need to triangulate the loop.
        const size_t num_vertices = vertices.rows();
        TriangleWrapper tri(vertices, faces);
        tri.run(std::numeric_limits<Float>::max(), false, false, false);
        vertices = tri.get_vertices();
        faces = tri.get_faces();
        assert(vertices.rows() == num_vertices);
    }

    m_vertex_list.push_back(vertices);
    const size_t num_faces = faces.rows();
    for (size_t i=0; i<num_faces; i++) {
        const auto& face = faces.row(i);
        if (dim == 3) {
            auto ori_indices = map_indices(face, index_map);
            if (belong_to_the_same_loop(ori_indices, source_ids)) continue;
        }
        m_face_list.push_back(face.array() + m_num_vertex_accumulated);
        m_face_source_list.push_back(vertex_index+1);
    }

    m_num_vertex_accumulated += vertices.rows();
}
Ejemplo n.º 3
0
    CarveMeshPtr create_mesh(const MatrixFr& vertices, const MatrixIr& faces) {
        const size_t num_vertices = vertices.rows();
        const size_t num_faces = faces.rows();

        if (vertices.cols() != 3) {
            throw NotImplementedError("Only 3D mesh is supported.");
        }
        if (faces.cols() != 3) {
            throw NotImplementedError("Only triangle mesh is supported.");
        }

        std::vector<CarveVector> points;

        for (size_t i=0; i<num_vertices; i++) {
            const auto& v = vertices.row(i);
            CarveVector p;
            p.v[0] = v[0];
            p.v[1] = v[1];
            p.v[2] = v[2];
            points.push_back(p);
        }

        std::vector<int> raw_faces;
        raw_faces.reserve(num_faces * 4);
        for (size_t i=0; i<num_faces; i++) {
            raw_faces.push_back(3);
            raw_faces.push_back(faces(i,0));
            raw_faces.push_back(faces(i,1));
            raw_faces.push_back(faces(i,2));
        }

        return CarveMeshPtr(new CarveMesh(points, num_faces, raw_faces));
    }
Ejemplo n.º 4
0
GeoMeshPtr GeogramMeshUtils::raw_to_geomesh(
        const MatrixFr& vertices, const MatrixIr& faces) {
    const size_t dim = vertices.cols();
    const size_t vertex_per_face = faces.cols();
    const size_t num_vertices = vertices.rows();
    const size_t num_faces = faces.rows();

    if (vertex_per_face != 3) {
        throw NotImplementedError("Converting non-triangle mesh to "
                "Geogram mesh is not yet implemented");
    }

    auto geo_mesh = std::make_shared<GeoMesh>(dim, false);
    geo_mesh->vertices.clear();
    geo_mesh->vertices.create_vertices(num_vertices);
    geo_mesh->facets.clear();
    geo_mesh->facets.create_triangles(num_faces);

    for (size_t i=0; i<num_vertices; i++) {
        auto& p = geo_mesh->vertices.point(i);
        for (size_t j=0; j<dim; j++) {
            p[j] = vertices(i,j);
        }
    }

    for (size_t i=0; i<num_faces; i++) {
        geo_mesh->facets.set_vertex(i, 0, faces(i,0));
        geo_mesh->facets.set_vertex(i, 1, faces(i,1));
        geo_mesh->facets.set_vertex(i, 2, faces(i,2));
    }

    return geo_mesh;
}
Ejemplo n.º 5
0
 Polyhedron generate_polyhedron(
         const MatrixFr& vertices, const MatrixIr& faces) {
     Polyhedron P;
     PolyhedronBuilder<HalfedgeDS> triangle(vertices, faces);
     P.delegate(triangle);
     assert(vertices.rows() == P.size_of_vertices());
     assert(faces.rows() == P.size_of_facets());
     return P;
 }
Ejemplo n.º 6
0
void InflatorEngine::save_mesh(const std::string& filename,
        const MatrixFr& vertices, const MatrixIr& faces, VectorF debug) {
    VectorF flattened_vertices(vertices.rows() * vertices.cols());
    std::copy(vertices.data(), vertices.data() + vertices.rows() *
            vertices.cols(), flattened_vertices.data());
    VectorI flattened_faces(faces.rows() * faces.cols());
    std::copy(faces.data(), faces.data() + faces.rows() * faces.cols(),
            flattened_faces.data());
    VectorI voxels = VectorI::Zero(0);

    Mesh::Ptr mesh = MeshFactory().load_data(
            flattened_vertices, flattened_faces, voxels,
            vertices.cols(), faces.cols(), 0).create_shared();
    mesh->add_attribute("debug");
    mesh->set_attribute("debug", debug);

    MeshWriter::Ptr writer = MeshWriter::create(filename);
    writer->with_attribute("debug");
    writer->write_mesh(*mesh);
}
Ejemplo n.º 7
0
    void triangulate(MatrixFr vertices, MatrixIr edges,
            MatrixFr& output_vertices, MatrixIr& output_faces, Float max_area) {
        assert(edges.rows() >= 3);
        MeshCleaner cleaner;
        cleaner.remove_isolated_vertices(vertices, edges);
        cleaner.remove_duplicated_vertices(vertices, edges, 1e-12);
        assert(vertices.rows() >= 3);

        TriangleWrapper triangle(vertices, edges);
        triangle.run(max_area, false, true, true);

        output_vertices = triangle.get_vertices();
        output_faces = triangle.get_faces();
    }
Ejemplo n.º 8
0
Boundary::Ptr Boundary::extract_surface_boundary_raw(
        MatrixFr& vertices, MatrixIr& faces) {
    VectorF flattened_vertices = Eigen::Map<VectorF>(vertices.data(),
            vertices.rows() * vertices.cols());
    VectorI flattened_faces = Eigen::Map<VectorI>(faces.data(),
            faces.rows() * faces.cols());
    VectorI voxels = VectorI::Zero(0);

    MeshFactory factory;
    Mesh::Ptr mesh = factory.load_data(flattened_vertices, flattened_faces,
            voxels, vertices.cols(), faces.cols(), 0).create();

    return extract_surface_boundary(*mesh);
}
Ejemplo n.º 9
0
    EdgeMap compute_edge_map(const MatrixIr& faces) {
        assert(faces.cols() == 3);
        EdgeMap result;
        const size_t num_faces = faces.rows();
        for (size_t i=0; i<num_faces; i++) {
            const Vector3I& f = faces.row(i);
            Triplet e0(f[1], f[2]);
            Triplet e1(f[2], f[0]);
            Triplet e2(f[0], f[1]);

            result.insert(e0, i);
            result.insert(e1, i);
            result.insert(e2, i);
        }

        return result;
    }
Ejemplo n.º 10
0
 std::vector<Box> get_triangle_bboxes(
         const SelfIntersection::Points& pts, const MatrixIr& faces) {
     const size_t num_faces = faces.rows();
     std::vector<Box> boxes;
     boxes.reserve(num_faces);
     for (size_t i=0; i<num_faces; i++) {
         const Vector3I f = faces.row(i);
         const std::vector<SelfIntersection::Point_3> corners{
             pts[f[0]], pts[f[1]], pts[f[2]]
         };
         if (CGAL::collinear(pts[f[0]], pts[f[1]], pts[f[2]])) {
             // Triangle is degenerated.
             continue;
         }
         boxes.emplace_back(CGAL::bbox_3(corners.begin(), corners.end()));
         boxes.back().set_id(i);
     }
     return boxes;
 }
Ejemplo n.º 11
0
    std::vector<bool> create_duplication_mask(const MatrixIr& edges) {
        const size_t num_edges = edges.rows();

        std::unordered_set<Triplet, hash> unique_set;
        std::vector<bool> mask(num_edges, false);

        for (size_t i=0; i<num_edges; i++) {
            const auto& edge = edges.row(i);
            Triplet key(edge[0], edge[1]);
            auto itr = unique_set.find(key);
            if (itr == unique_set.end()) {
                unique_set.insert(key);
            } else {
                mask[i] = true;
            }
        }

        return mask;
    }
Ejemplo n.º 12
0
Boundary::Ptr Boundary::extract_volume_boundary_raw(
        MatrixFr& vertices, MatrixIr& voxels) {
    VectorF flattened_vertices = Eigen::Map<VectorF>(vertices.data(),
            vertices.rows() * vertices.cols());
    VectorI faces = VectorI::Zero(0);
    VectorI flattened_voxels = Eigen::Map<VectorI>(voxels.data(),
            voxels.rows() * voxels.cols());

    size_t vertex_per_voxel = voxels.cols();
    size_t vertex_per_face=0;
    if (vertex_per_voxel == 4) vertex_per_face = 3;
    else if (vertex_per_voxel == 8) vertex_per_face = 4;
    else {
        throw RuntimeError("Unknown voxel type.");
    }

    MeshFactory factory;
    Mesh::Ptr mesh = factory.load_data(flattened_vertices, faces,
            flattened_voxels, vertices.cols(), vertex_per_face,
            vertex_per_voxel).create();

    return extract_volume_boundary(*mesh);
}
Ejemplo n.º 13
0
void SimpleInflator::connect_end_loops() {
    const size_t dim = m_wire_network->get_dim();
    const Float ave_thickness = m_thickness.sum() / m_thickness.size();
    const auto& edge_lengths = m_wire_network->get_attribute("edge_length");
    const size_t num_edges = m_wire_network->get_num_edges();
    const size_t loop_size = m_profile->size();

    const MatrixIr connecting_faces = generate_faces_connecting_loops(
            loop_size, dim != 2);
    const size_t num_connecting_faces = connecting_faces.rows();

    for (size_t i=0; i<num_edges; i++) {
        Float edge_length = edge_lengths(i, 0);
        const auto& end_loops = m_end_loops[i];
        const size_t num_segments = std::max(1.0,
                std::round(edge_length / ave_thickness));
        MatrixFr pts((num_segments+1)*loop_size, dim);

        for (size_t j=0; j<num_segments+1; j++) {
            Float alpha = Float(j) / Float(num_segments);
            pts.block(j*loop_size, 0, loop_size, dim) =
                end_loops.first * (1.0 - alpha) + end_loops.second * alpha;
        }

        MatrixIr faces(num_connecting_faces * num_segments, 3);
        for (size_t j=0; j<num_segments; j++) {
            faces.block(j*num_connecting_faces, 0, num_connecting_faces, 3) =
                connecting_faces.array() + j*loop_size;
        }

        m_vertex_list.push_back(pts);
        m_face_list.push_back(faces.array() + m_num_vertex_accumulated);
        m_face_source_list.push_back(int(i)*(-1)-1);
        m_num_vertex_accumulated += pts.rows();
    }
}
Ejemplo n.º 14
0
bool MeshValidation::face_source_is_valid(
        const MatrixFr& vertices,
        const MatrixIr& faces,
        const VectorI& face_sources) {
    const Float EPS = 1e-6;
    const size_t num_vertices = vertices.rows();
    const size_t num_faces = faces.rows();

    Vector3F bbox_min = vertices.colwise().minCoeff();
    Vector3F bbox_max = vertices.colwise().maxCoeff();

    bool result = true;
    for (size_t i=0; i<num_faces; i++) {
        const Vector3I& f = faces.row(i);
        const Vector3F& v0 = vertices.row(f[0]);
        const Vector3F& v1 = vertices.row(f[1]);
        const Vector3F& v2 = vertices.row(f[2]);

        if (fabs(v0[0] - bbox_min[0]) < EPS &&
            fabs(v1[0] - bbox_min[0]) < EPS &&
            fabs(v2[0] - bbox_min[0]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }

        if (fabs(v0[1] - bbox_min[1]) < EPS &&
            fabs(v1[1] - bbox_min[1]) < EPS &&
            fabs(v2[1] - bbox_min[1]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }

        if (fabs(v0[2] - bbox_min[2]) < EPS &&
            fabs(v1[2] - bbox_min[2]) < EPS &&
            fabs(v2[2] - bbox_min[2]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }

        if (fabs(v0[0] - bbox_max[0]) < EPS &&
            fabs(v1[0] - bbox_max[0]) < EPS &&
            fabs(v2[0] - bbox_max[0]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }

        if (fabs(v0[1] - bbox_max[1]) < EPS &&
            fabs(v1[1] - bbox_max[1]) < EPS &&
            fabs(v2[1] - bbox_max[1]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }

        if (fabs(v0[2] - bbox_max[2]) < EPS &&
            fabs(v1[2] - bbox_max[2]) < EPS &&
            fabs(v2[2] - bbox_max[2]) < EPS) {
            result = result && (face_sources[i] == 0);
            continue;
        }
        result = result && (face_sources[i] != 0);
        if (!result) {
            std::cout << i << ":  ";
            std::cout << face_sources[i] << std::endl;
            std::cout << v0.transpose() << std::endl;
            std::cout << v1.transpose() << std::endl;
            std::cout << v2.transpose() << std::endl;
            return result;
        }
    }
    return result;
}