Ejemplo n.º 1
0
int ExportQuake3Model(const TCHAR *filename, ExpInterface *ei, Interface *gi, int start_time, std::list<ExportNode> lTags, std::list<ExportNode> lMeshes)
{
	FILE *file;
	int i, j, totalTags, totalMeshes, current_time = 0;
	long pos_current, totalTris = 0, totalVerts = 0;
	std::list<FrameRange>::iterator range_i;
	std::vector<Point3> lFrameBBoxMin;
	std::vector<Point3> lFrameBBoxMax;
	long pos_tagstart;
	long pos_tagend;
	long pos_filesize;
	long pos_framestart;
	int lazynamesfixed = 0;
	const Point3 x_axis(1, 0, 0);
	const Point3 z_axis(0, 0, 1);

	SceneEnumProc checkScene(ei->theScene, start_time, gi);
	totalTags = (int)lTags.size();
	if (g_tag_for_pivot)
		totalTags++;
	totalMeshes = (int)lMeshes.size();

	// open file
	file = _tfopen(filename, _T("wb"));
	if (!file)
	{
		ExportError("Cannot open file '%s'.", filename);
		return FALSE;
	}
	ExportDebug("%s:", filename);

	// sync pattern and version
	putChars("IDP3", 4, file);
	put32(15, file);
	putChars("Darkplaces MD3 Exporter", 64, file);
	put32(0, file);   // flags
	
	// MD3 header
	ExportState("Writing MD3 header");
	put32(g_total_frames, file);      // how many frames
	put32(totalTags, file);	  // tagsnum
	put32(totalMeshes, file); // meshnum
	put32(1, file);   // maxskinnum
	put32(108, file); // headersize
	pos_tagstart = ftell(file); put32(0, file);   // tagstart
	pos_tagend	= ftell(file);  put32(256, file); // tagend
	pos_filesize = ftell(file); put32(512, file); // filesize
	ExportDebug("    %i frames, %i tags, %i meshes", g_total_frames, totalTags, totalMeshes);

	// frame info
	// bbox arrays get filled while exported mesh and written back then
	ExportState("Writing frame info");
	pos_framestart = ftell(file);
	lFrameBBoxMin.resize(g_total_frames);
	lFrameBBoxMax.resize(g_total_frames);
	for (i = 0; i < g_total_frames; i++)
	{
		// init frame data
		lFrameBBoxMin[i].Set(0, 0, 0);
		lFrameBBoxMax[i].Set(0, 0, 0);
		// put data
		putFloat(-1.0f, file); // bbox min vector
		putFloat(-1.0f, file);
		putFloat(-1.0f, file);	
		putFloat( 1.0f, file); // bbox max vector
		putFloat(1.0f, file);
		putFloat(1.0f, file);
		putFloat(0.0f, file);  // local origin (usually 0 0 0)
		putFloat(0.0f, file);
		putFloat(0.0f, file);
		putFloat(1.0f, file);  // radius of bounding sphere
		putChars("", 16, file);
	}

	// tags
	pos_current = ftell(file);
	fseek(file, pos_tagstart, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);
	
	// for each frame range cycle all frames and write out each tag
	long pos_tags = pos_current;
	if (totalTags)
	{
		long current_frame = 0;
		ExportState("Writing %i tags", totalTags);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;

				// write out tags
				if (lTags.size())
				{
					for (std::list<ExportNode>::iterator tag_i = lTags.begin(); tag_i != lTags.end(); tag_i++)
					{
						INode *node	= current_scene[tag_i->i]->node;
						Matrix3	tm = node->GetObjTMAfterWSM(current_time);

						ExportState("Writing '%s' frame %i of %i", tag_i->name, i, g_total_frames);

						// tagname
						putChars(tag_i->name, 64, file);
						// origin, rotation matrix
						Point3 row = tm.GetRow(3);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(0);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(1);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(2);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
					}
				}

				// write the center of mass tag_pivot which is avg of all objects's pivots
				if (g_tag_for_pivot)
				{
					ExportState("Writing 'tag_pivot' frame %i of %i", i, g_total_frames);

					// write the null data as tag_pivot need to be written after actual geometry
					// (it needs information on frame bound boxes to get proper blendings)
					putChars("tag_pivot", 64, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
				}
			}
		}
	}

	// write the tag object offsets
	pos_current = ftell(file);
	fseek(file, pos_tagend, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	// allocate the structs used to calculate tag_pivot
	std::vector<Point3> tag_pivot_origin;
	std::vector<double> tag_pivot_volume;
	if (g_tag_for_pivot)
	{
		tag_pivot_origin.resize(g_total_frames);
		tag_pivot_volume.resize(g_total_frames);
	}

	// mesh objects
	// for each mesh object write uv and frames
	SceneEnumProc scratch(ei->theScene, start_time, gi);
	ExportState("Writing %i meshes", (int)lMeshes.size());
	for (std::list<ExportNode>::iterator mesh_i = lMeshes.begin(); mesh_i != lMeshes.end(); mesh_i++)
	{
		bool needsDel;

		ExportState("Start mesh #%i", mesh_i);
		INode *node = checkScene[mesh_i->i]->node;
		Matrix3 tm	= node->GetObjTMAfterWSM(start_time);
		TriObject *tri = GetTriObjectFromNode(node, start_time, needsDel);
		if (!tri)
			continue;

		// get mesh, compute normals
		Mesh &mesh = tri->GetMesh();
		MeshNormalSpec *meshNormalSpec = mesh.GetSpecifiedNormals();
		if (meshNormalSpec)
		{
			if (!meshNormalSpec->GetNumFaces())
				meshNormalSpec = NULL;
			else
			{
				meshNormalSpec->SetParent(&mesh);
				meshNormalSpec->CheckNormals();
			}
		}
		mesh.checkNormals(TRUE);

		// fix lazy object names
		ExportState("Attempt to fix mesh name '%s'", mesh_i->name);
		char  meshname[64];
		size_t meshnamelen = min(63, strlen(mesh_i->name));
		memset(meshname, 0, 64);
		strncpy(meshname, mesh_i->name, meshnamelen);
		meshname[meshnamelen] = 0;
		if (!strncmp("Box", meshname, 3)    || !strncmp("Sphere", meshname, 6)  || !strncmp("Cylinder", meshname, 8) ||
            !strncmp("Torus", meshname, 5)  || !strncmp("Cone", meshname, 4)    || !strncmp("GeoSphere", meshname, 9) ||
			!strncmp("Tube", meshname, 4)   || !strncmp("Pyramid", meshname, 7) || !strncmp("Plane", meshname, 5) ||
			!strncmp("Teapot", meshname, 6) || !strncmp("Object", meshname, 6))
		{
name_conflict:
			lazynamesfixed++;
			if (lazynamesfixed == 1)
				strcpy(meshname, "base");
			else
				sprintf(meshname, "base%i", lazynamesfixed);

			// check if it's not used by another mesh
			for (std::list<ExportNode>::iterator m_i = lMeshes.begin(); m_i != lMeshes.end(); m_i++)
				if (!strncmp(m_i->name, meshname, strlen(meshname)))
					goto name_conflict;
			// approve name
			ExportWarning("Lazy object name '%s' (mesh renamed to '%s').", node->GetName(), meshname);
		}

		// special mesh check
		bool shadow_or_collision = false;
		if (g_mesh_special)
			  if (!strncmp("collision", meshname, 9) || !strncmp("shadow", meshname, 6))
				shadow_or_collision = true;

		// get material
		const char *shadername = NULL;
		Texmap *tex = 0;
		Mtl *mtl = 0;
		if (!shadow_or_collision)
		{
			mtl = node->GetMtl();
			if (mtl)
			{
				// check for multi-material
				if (mtl->IsMultiMtl())
				{
					// check if it's truly multi material
					// we do support multi-material with only one texture (some importers set it)
					bool multi_material = false;
					MtlID matId = mesh.faces[0].getMatID();
					for (i = 1; i < mesh.getNumFaces(); i++)
						if (mesh.faces[i].getMatID() != matId)
							multi_material = true;

					if (multi_material)
						if (g_mesh_multimaterials == MULTIMATERIALS_NONE)
							ExportWarning("Object '%s' is multimaterial and using multiple materials on its faces, that case is not yet supported (truncating to first submaterial).", node->GetName());
					
					// switch to submaterial
					mtl = mtl->GetSubMtl(matId);
				}

				// get shader from material if supplied
				char *materialname = GetChar(mtl->GetName());
				if (g_mesh_materialasshader && (strstr(materialname, "/") != NULL || strstr(materialname, "\\") != NULL))
					shadername = GetChar(mtl->GetName());
				else
				{
					// get texture
					tex = mtl->GetSubTexmap(ID_DI);
					if (tex)
					{
						if (tex->ClassID() == Class_ID(BMTEX_CLASS_ID, 0x00))
						{
							shadername = GetChar(((BitmapTex *)tex)->GetMapName());
							if (shadername == NULL || !shadername[0])
								ExportWarning("Object '%s' material '%s' has no bitmap.", tex->GetName(), node->GetName());
						}
						else
						{
							tex = NULL;
							ExportWarning("Object '%s' has material with wrong texture type (only Bitmap are supported).", node->GetName());
						}
					}
					else
						ExportWarning("Object '%s' has material but no texture.", node->GetName());
				}
			}
			else
				ExportWarning("Object '%s' has no material.", node->GetName());
		}

		long pos_meshstart = ftell(file);

		// surface object
		ExportState("Writing mesh '%s' header", meshname);
		putChars("IDP3", 4, file);
		putChars(meshname, 64, file);
		put32(0, file); // flags
		put32(g_total_frames, file);                          // framecount
		put32(1, file);                                       // skincount
		long pos_vertexnum = ftell(file); put32(0, file);     // vertexcount
		put32(mesh.getNumFaces(), file);                      // trianglecount
		long pos_trianglestart = ftell(file); put32(0, file); // start triangles
		put32(108, file);                                     // header size
		long pos_texvecstart = ftell(file); put32(0, file);   // texvecstart
		long pos_vertexstart = ftell(file); put32(16, file);  // vertexstart
		long pos_meshsize = ftell(file); put32(32, file);	  // meshsize

		// write out a single 'skin'
		ExportState("Writing mesh %s texture", meshname);
		if (shadow_or_collision)
			putChars(meshname, 64, file);
		else if (shadername) 
			putMaterial(shadername, mtl, tex, file);
		else
			putChars("noshader", 64, file);
		put32(0, file); // flags

		// build geometry
		ExportState("Building vertexes/triangles");
		std::vector<ExportVertex>vVertexes;
		std::vector<ExportTriangle>vTriangles;
		vVertexes.resize(mesh.getNumVerts());
		int vExtraVerts = mesh.getNumVerts();
		for (i = 0; i < mesh.getNumVerts(); i++)
		{
			vVertexes[i].vert = i;
			vVertexes[i].normalfilled = false;
			// todo: check for coincident verts
		}
		int vNumExtraVerts = 0;

		// check normals
		if (!mesh.normalsBuilt && !shadow_or_collision)
			ExportWarning("Object '%s' does not have normals contructed.", node->GetName());

		// get info for triangles
		const float normal_epsilon = 0.01f;
		vTriangles.resize(mesh.getNumFaces());
		for (i = 0; i < mesh.getNumFaces(); i++)
		{
			DWORD smGroup = mesh.faces[i].getSmGroup();
			ExportState("Mesh %s: checking normals for face %i of %i", meshname, i, mesh.getNumFaces());
			for (j = 0; j < 3; j++)
			{
				int vert = mesh.faces[i].getVert(j);
				vTriangles[i].e[j] = vert;
				// find a right normal for this vertex and save its 'address'
				int vni;
				Point3 vn;
				if (!mesh.normalsBuilt || shadow_or_collision)
				{
					vn.Set(0, 0, 0);
					vni = 0;
				}
				else
				{
					int numNormals;
					RVertex *rv = mesh.getRVertPtr(vert);
					if (meshNormalSpec)
					{  
						ExportState("face %i vert %i have normal specified", i, j);
						// mesh have explicit normals (i.e. Edit Normals modifier)
						vn = meshNormalSpec->GetNormal(i, j);
						vni = meshNormalSpec->GetNormalIndex(i, j);
					}
					else if (rv && rv->rFlags & SPECIFIED_NORMAL)
					{
						ExportState("face %i vert %i have SPECIFIED_NORMAL flag", i, j);
						// SPECIFIED_NORMAL flag
						vn = rv->rn.getNormal();
						vni = 0;
					}
					else if (rv && (numNormals = rv->rFlags & NORCT_MASK) && smGroup)
					{
						// If there is only one vertex is found in the rn member.
						if (numNormals == 1)
						{
							ExportState("face %i vert %i have solid smooth group", i, j);
							vn = rv->rn.getNormal();
							vni = 0;
							
						}
						else
						{
							ExportState("face %i vert %i have mixed smoothing groups", i, j);
							// If two or more vertices are there you need to step through them
							// and find the vertex with the same smoothing group as the current face.
							// You will find multiple normals in the ern member.
							for (int k = 0; k < numNormals; k++)
							{
								if (rv->ern[k].getSmGroup() & smGroup)
								{
									vn = rv->ern[k].getNormal();
									vni = 1 + k;
								}
							}
						}
					}
					else
					{
						ExportState("face %i vert %i flat shaded", i, j);
						// Get the normal from the Face if no smoothing groups are there
						vn = mesh.getFaceNormal(i);
						vni = 0 - (i + 1);
					}
				}

				// subdivide to get all normals right
				if (!vVertexes[vert].normalfilled)
				{
					vVertexes[vert].normal = vn;
					vVertexes[vert].normalindex = vni;
					vVertexes[vert].normalfilled = true;
				}
				else if ((vVertexes[vert].normal - vn).Length() >= normal_epsilon)
				{
					// current vertex not matching normal - it was already filled by different smoothing group
					// find a vert in extra verts in case it was already created
					bool vert_found = false;
					for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
					{
						if (vVertexes[ev].vert == vert && (vVertexes[ev].normal - vn).Length() < normal_epsilon)
						{
							vert_found = true;
							vTriangles[i].e[j] = ev;
							break;
						}
					}
					// we havent found a vertex, create new
					if (!vert_found)
					{
						ExportVertex NewVert;
						NewVert.vert = vVertexes[vert].vert;
						NewVert.normal = vn;
						NewVert.normalindex = vni;
						NewVert.normalfilled = true;
						vTriangles[i].e[j] = (int)vVertexes.size();
						vVertexes.push_back(NewVert);
						vNumExtraVerts++;
					}
				}
			}
		}
		int vNumExtraVertsForSmoothGroups = vNumExtraVerts;

		// generate UV map
		// VorteX: use direct maps reading since getNumTVerts()/getTVert is deprecated
		//  max sets two default mesh maps: 0 - vertex color, 1 : UVW, 2 & up are custom ones
		ExportState("Building UV map");
		std::vector<ExportUV>vUVMap;
		vUVMap.resize(vVertexes.size());
		int meshMap = 1;
		if (!mesh.mapSupport(meshMap) || !mesh.getNumMapVerts(meshMap) || shadow_or_collision)
		{
			for (i = 0; i < mesh.getNumVerts(); i++)
			{
				vUVMap[i].u = 0.5;
				vUVMap[i].v = 0.5;
			}
			if (!shadow_or_collision)
				ExportWarning("No UV mapping was found on object '%s'.", node->GetName());
		}
		else
		{
			UVVert *meshUV = mesh.mapVerts(meshMap);
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				ExportState("Mesh %s: converting tvert for face %i of %i", meshname, i, (int)vTriangles.size());
				// for 3 face vertexes
				for (j = 0; j < 3; j++)
				{
					int vert = vTriangles[i].e[j];
					int tv = mesh.tvFace[i].t[j];
					UVVert &UV = meshUV[tv];

					if (!vUVMap[vert].filled)
					{
						// fill uvMap vertex
						vUVMap[vert].u = UV.x;
						vUVMap[vert].v = UV.y;
						vUVMap[vert].filled = true;
						vUVMap[vert].tvert = tv;
					}
					else if (tv != vUVMap[vert].tvert)
					{
						// uvMap slot for this vertex has been filled
						// we should arrange triangle to other vertex, which not filled and having same shading and uv
						// check if any of the extra vertices can fit
						bool vert_found = false;
						for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
						{
							if (vVertexes[ev].vert == vert && vUVMap[vert].u == UV.x &&vUVMap[vert].v == UV.y  && (vVertexes[ev].normal - vVertexes[vert].normal).Length() < normal_epsilon)
							{
								vert_found = true;
								vTriangles[i].e[j] = vVertexes[ev].vert;
								break;
							}
						}
						if (!vert_found)
						{
							// create new vert
							ExportVertex NewVert;
							NewVert.vert = vVertexes[vert].vert;
							NewVert.normal = vVertexes[vert].normal;
							NewVert.normalindex = vVertexes[vert].normalindex;
							NewVert.normalfilled = vVertexes[vert].normalfilled;
							vTriangles[i].e[j] = (int)vVertexes.size();
							vVertexes.push_back(NewVert);
							vNumExtraVerts++;
							// create new TVert
							ExportUV newUV;
							newUV.filled = true;
							newUV.u = UV.x;
							newUV.v = UV.y;
							newUV.tvert = tv;
							vUVMap.push_back(newUV);
						}
					}
				}
			}
		}
		int vNumExtraVertsForUV = (vNumExtraVerts - vNumExtraVertsForSmoothGroups);

		// print some debug stats
		ExportDebug("    mesh %s: %i vertexes +%i %s +%i UV, %i triangles", meshname, ((int)vVertexes.size() - vNumExtraVerts), vNumExtraVertsForSmoothGroups, meshNormalSpec ? "EditNormals" : "SmoothGroups", vNumExtraVertsForUV, (int)vTriangles.size());

		// fill in triangle start
		pos_current = ftell(file);
		fseek(file, pos_trianglestart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// detect if object have negative scale (mirrored)
		// in this canse we should rearrange triangles counterclockwise
		// so stuff will not be inverted
		ExportState("Mesh %s: writing %i triangles", meshname, (int)vTriangles.size());
		if (DotProd(CrossProd(tm.GetRow(0), tm.GetRow(1)), tm.GetRow(2)) < 0.0)
		{
			ExportWarning("Object '%s' is mirrored (having negative scale on it's transformation)", node->GetName());
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].b, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].a, file);	// of triangle
			}
		}
		else
		{
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].a, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].b, file);	// of triangle
			}
		}

		// fill in texvecstart
		// write out UV mapping coords.
		ExportState("Mesh %s: writing %i UV vertexes", meshname, (int)vUVMap.size());
		pos_current = ftell(file);
		fseek(file, pos_texvecstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);
		for (i = 0; i < (int)vUVMap.size(); i++)
		{
			putFloat(vUVMap[i].u, file); // texture coord u,v
			putFloat(1.0f - vUVMap[i].v, file);	// for vertex
		}
		vUVMap.clear();

		// fill in vertexstart
		pos_current = ftell(file);
		fseek(file, pos_vertexstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// fill in vertexnum
		pos_current = ftell(file);
		fseek(file, pos_vertexnum, SEEK_SET);
		put32((int)vVertexes.size(), file);
		fseek(file, pos_current, SEEK_SET);

		// write out for each frame the position of each vertex
		long current_frame = 0;
		ExportState("Mesh %s: writing %i frames", meshname, g_total_frames);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				bool _needsDel;

				// get triobject for current frame
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;
				INode *_node = current_scene[mesh_i->i]->node;
				TriObject *_tri	= GetTriObjectFromNode(_node, current_time, _needsDel);
				if (!_tri)
					continue;

				// get mesh, compute normals
				Mesh &_mesh	= _tri->GetMesh();
				MeshNormalSpec *_meshNormalSpec = _mesh.GetSpecifiedNormals();
				if (_meshNormalSpec)
				{
					if (!_meshNormalSpec->GetNumFaces())
						_meshNormalSpec = NULL;
					else
					{
						_meshNormalSpec->SetParent(&_mesh);
						_meshNormalSpec->CheckNormals();
					}
				}
				_mesh.checkNormals(TRUE);

				// get transformations for current frame
				Matrix3 _tm	= _node->GetObjTMAfterWSM(current_time);

				ExportState("Mesh %s: writing frame %i of %i", meshname, current_frame, g_total_frames);

				Point3 BoxMin(0, 0, 0);
				Point3 BoxMax(0, 0, 0);
				for (j = 0; j < (int)vVertexes.size(); j++) // number of vertices
				{
					ExportState("Mesh %s: transform vertex %i of %i", meshname, j, (int)vVertexes.size());

					int vert = vVertexes[j].vert;
					Point3 &v = _tm.PointTransform(_mesh.getVert(vert));
					
					// populate bbox data
					if (!shadow_or_collision)
					{
						BoxMin.x = min(BoxMin.x, v.x);
						BoxMin.y = min(BoxMin.y, v.y);
						BoxMin.z = min(BoxMin.z, v.z);
						BoxMax.x = max(BoxMax.x, v.x);
						BoxMax.y = max(BoxMax.y, v.y);
						BoxMax.z = max(BoxMax.z, v.z);
					}

					// write vertex
					double f;
					f = v.x * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.y * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.z * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);

					// get normal
					ExportState("Mesh %s: transform vertex normal %i of %i", meshname, j, (int)vVertexes.size());
					Point3 n;
					if (_meshNormalSpec) // mesh have explicit normals (i.e. Edit Normals modifier)
						n = _meshNormalSpec->Normal(vVertexes[j].normalindex);
					else if (!vVertexes[j].normalfilled || !_mesh.normalsBuilt)
						n = _mesh.getNormal(vert);
					else
					{
						RVertex *rv = _mesh.getRVertPtr(vert);
						if (vVertexes[j].normalindex < 0)
							n = _mesh.getFaceNormal((0 - vVertexes[j].normalindex) - 1);
						else if (vVertexes[j].normalindex == 0)
							n = rv->rn.getNormal();
						else 
							n = rv->ern[vVertexes[j].normalindex - 1].getNormal();
					}

					// transform normal
					Point3 &nt = _tm.VectorTransform(n).Normalize();

					// encode a normal vector into a 16-bit latitude-longitude value
					double lng = acos(nt.z) * 255 / (2 * pi);
					double lat = atan2(nt.y, nt.x) * 255 / (2 * pi);
					put16((((int)lat & 0xFF) << 8) | ((int)lng & 0xFF), file);
				}

				// blend the pivot positions for tag_pivot using mesh's volumes for blending power
				if (g_tag_for_pivot && !shadow_or_collision)
				{
					ExportState("Mesh %s: writing tag_pivot", meshname);

					Point3 Size = BoxMax - BoxMin;
					double BoxVolume = pow(Size.x * Size.y * Size.z, 0.333f);

					// blend matrices
					float blend = (float)(BoxVolume / (BoxVolume + tag_pivot_volume[current_frame]));
					float iblend = 1 - blend;
					tag_pivot_volume[current_frame]   = tag_pivot_volume[current_frame] + BoxVolume;
					Point3 row = _tm.GetRow(3) - _node->GetObjOffsetPos();
					tag_pivot_origin[current_frame].x = tag_pivot_origin[current_frame].x * iblend + row.x * blend;
					tag_pivot_origin[current_frame].y = tag_pivot_origin[current_frame].y * iblend + row.y * blend;
					tag_pivot_origin[current_frame].z = tag_pivot_origin[current_frame].z * iblend + row.z * blend;
				}

				// populate bbox data for frames
				lFrameBBoxMin[current_frame].x = min(lFrameBBoxMin[current_frame].x, BoxMin.x);
				lFrameBBoxMin[current_frame].y = min(lFrameBBoxMin[current_frame].y, BoxMin.y);
				lFrameBBoxMin[current_frame].z = min(lFrameBBoxMin[current_frame].z, BoxMin.z);
				lFrameBBoxMax[current_frame].x = max(lFrameBBoxMax[current_frame].x, BoxMax.x);
				lFrameBBoxMax[current_frame].y = max(lFrameBBoxMax[current_frame].y, BoxMax.y);
				lFrameBBoxMax[current_frame].z = max(lFrameBBoxMax[current_frame].z, BoxMax.z);

				// delete the working object, if necessary.
				if (_needsDel)
					delete _tri;
			}
		}

		// delete if necessary
		if (needsDel)
			delete tri;

		// fill in meshsize
		pos_current = ftell(file);
		fseek(file, pos_meshsize, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);  

		// reset back to first frame
		SceneEnumProc scratch(ei->theScene, start_time, gi);
		totalTris += (long)vTriangles.size();
		totalVerts += (long)vVertexes.size();
		vTriangles.clear();
		vVertexes.clear();
	}

	// write tag_pivot
	ExportState("Writing tag_pivot positions");
	if (g_tag_for_pivot)
	{
		pos_current = ftell(file);
		long current_frame = 0;
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				fseek(file, pos_tags + totalTags*112*current_frame + (int)lTags.size()*112 + 64, SEEK_SET);
				// origin
				putFloat(tag_pivot_origin[current_frame].x, file);
				putFloat(tag_pivot_origin[current_frame].y, file);
				putFloat(tag_pivot_origin[current_frame].z, file);
			}
		}
		fseek(file, pos_current, SEEK_SET);
	}
	tag_pivot_volume.clear();
	tag_pivot_origin.clear();

	// write frame data
	ExportState("Writing culling info");
	long current_frame = 0;
	pos_current = ftell(file);
	for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
	{
		for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
		{
			fseek(file, pos_framestart + current_frame*56, SEEK_SET);
			putFloat(lFrameBBoxMin[current_frame].x, file);	// bbox min vector
			putFloat(lFrameBBoxMin[current_frame].y, file);
			putFloat(lFrameBBoxMin[current_frame].z, file);	
			putFloat(lFrameBBoxMax[current_frame].x, file); // bbox max vector
			putFloat(lFrameBBoxMax[current_frame].y, file);
			putFloat(lFrameBBoxMax[current_frame].z, file);
			putFloat(0, file); // local origin (usually 0 0 0)
			putFloat(0, file);
			putFloat(0, file);
			putFloat(max(lFrameBBoxMin[current_frame].Length(), lFrameBBoxMax[current_frame].Length()) , file); // radius of bounding sphere
		}
	}
	fseek(file, pos_current, SEEK_SET);
	lFrameBBoxMin.clear();
	lFrameBBoxMax.clear();

	// fill in filesize
	pos_current = ftell(file);
	fseek(file, pos_filesize, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	fclose(file);

	ExportDebug("    total: %i vertexes, %i triangles", totalVerts, totalTris);

	return TRUE;
}
Ejemplo n.º 2
0
void SolidifyPW::ModifyObject(TimeValue t, ModContext &mc, ObjectState * os, INode *node) 
{

	//TODO: Add the code for actually modifying the object
	meshInfo.Free();

	if (os->obj->IsSubClassOf(triObjectClassID)) {
		TriObject *tobj = (TriObject*)os->obj;
		Mesh &mesh = tobj->GetMesh();
		Interval iv = FOREVER;
		float a,oa;
		
		pblock->GetValue(pb_amount,t,a,iv);
		pblock->GetValue(pb_oamount,t,oa,iv);

		if (a == oa)
			oa += 0.00001f;

		BOOL overrideMatID;
		int matid;

		pblock->GetValue(pb_overridematid,t,overrideMatID,iv);
		pblock->GetValue(pb_matid,t,matid,iv);
		matid--;

		if (!overrideMatID) matid = -1;


		BOOL overridesg;
		int sg;
		pblock->GetValue(pb_overridesg,t,overridesg,iv);
		pblock->GetValue(pb_sg,t,sg,iv);
		

		if (!overridesg) sg = -1;

		int edgeMap;
		pblock->GetValue(pb_edgemap,t,edgeMap,iv);

		float tvOffset;
		pblock->GetValue(pb_tvoffset,t,tvOffset,iv);


		BOOL ioverrideMatID;
		int imatid;

		pblock->GetValue(pb_overrideinnermatid,t,ioverrideMatID,iv);
		pblock->GetValue(pb_innermatid,t,imatid,iv);
		imatid--;

		if (!ioverrideMatID) imatid = -1;


		BOOL ooverrideMatID;
		int omatid;

		pblock->GetValue(pb_overrideoutermatid,t,ooverrideMatID,iv);
		pblock->GetValue(pb_outermatid,t,omatid,iv);
		omatid--;

		if (!ooverrideMatID) omatid = -1;


		BOOL selEdges, selInner,selOuter;

		static BOOL selEdgesPrev = FALSE;
		static BOOL selInnerPrev = FALSE;
		static BOOL selOuterPrev = FALSE;
		
		BOOL updateUI = FALSE;
		
		pblock->GetValue(pb_seledges,t,selEdges,iv);
		pblock->GetValue(pb_selinner,t,selInner,iv);
		pblock->GetValue(pb_selouter,t,selOuter,iv);
		
		if (selEdges && (!selEdgesPrev))
			updateUI = TRUE;
		if (selInner && (!selInnerPrev))
			updateUI = TRUE;
		if (selOuter && (!selOuterPrev))
			updateUI = TRUE;
			
		selEdgesPrev = selEdges;
		selInnerPrev = selInner;			
		selOuterPrev = selOuter;			

		if (selEdges || selInner|| selOuter)
			{
			mesh.dispFlags = DISP_SELFACES;
			mesh.selLevel = MESH_FACE;
			}



		int segments = 1;

		pblock->GetValue(pb_segments,t,segments,iv);
		if (segments < 1) segments = 1;


		BOOL fixupCorners;
		pblock->GetValue(pb_fixupcorners,t,fixupCorners,iv);


		BOOL autoSmooth;
		float smoothAngle;
		pblock->GetValue(pb_autosmooth,t,autoSmooth,iv);
		pblock->GetValue(pb_autosmoothangle,t,smoothAngle,iv);

		BOOL bevel;
		INode *node;
		pblock->GetValue(pb_bevel,t,bevel,iv);
		pblock->GetValue(pb_bevelshape,t,node,iv);

		PolyShape shape;
		if ((bevel) && node)
		{
			ObjectState nos = node->EvalWorldState(t);
			if (nos.obj->IsShapeObject()) 
			{
				ShapeObject *pathOb = (ShapeObject*)nos.obj;

				if (!pathOb->NumberOfCurves()) 
				{
					bevel = FALSE;
				}
				else
				{
					pathOb->MakePolyShape(t, shape,PSHAPE_BUILTIN_STEPS,TRUE);
					if (shape.lines[0].IsClosed())
						bevel = FALSE;

;
				}
			
			}
		}


		DWORD selLevel = mesh.selLevel;
		
		mesh.faceSel.ClearAll();

		if (bevel)
			meshInfo.MakeSolid(&mesh,segments, a,oa,matid, sg,edgeMap,tvOffset,imatid,omatid,selEdges,selInner,selOuter,fixupCorners,autoSmooth,smoothAngle,&shape.lines[0]);
		else meshInfo.MakeSolid(&mesh,segments, a,oa,matid, sg,edgeMap,tvOffset,imatid,omatid,selEdges,selInner,selOuter,fixupCorners,autoSmooth,smoothAngle,NULL);

		
		mesh.selLevel = selLevel;

		mesh.InvalidateTopologyCache ();


		for (int i = 0; i < mesh.numFaces; i++)
		{
			for (int j = 0; j < 3; j++)
			{
				int index = mesh.faces[j].v[j];
				if ((index < 0) || (index >= mesh.numVerts))
					DebugPrint(_T("Invalid face %d(%d) %d\n"),i,j,index);
			}
		}
		
		int numMaps = mesh.getNumMaps();


		for (int mp = -NUM_HIDDENMAPS; mp < numMaps; mp++)
		{

			if (!mesh.mapSupport(mp)) continue;
			Point3 *uvw = mesh.mapVerts(mp);
			TVFace *uvwFace = mesh.mapFaces(mp);

			if ((uvw) && (uvwFace))
			{
				int numberTVVerts = mesh.getNumMapVerts(mp);
				for (int i = 0; i < mesh.numFaces; i++)
				{
					for (int j = 0; j < 3; j++)
					{
						int index = uvwFace[i].t[j];
						if ((index < 0) || (index >= numberTVVerts))
							DebugPrint(_T("Invalid Map %d tvface %d(%d) %d\n"),mp,i,j,index);
					}
				}

			}
		}



		os->obj->UpdateValidity(GEOM_CHAN_NUM,iv);
		os->obj->UpdateValidity(TOPO_CHAN_NUM,iv);
		
		MeshNormalSpec *pNormSpec = (MeshNormalSpec *) mesh.GetInterface (MESH_NORMAL_SPEC_INTERFACE);
		if (pNormSpec && pNormSpec->GetNumFaces() > 0)
		{
			pNormSpec->SetParent(&mesh);
			pNormSpec->BuildNormals();
			pNormSpec->ComputeNormals();
		}

		if ((updateUI) && (ip))
		{
			ip->PipeSelLevelChanged();
		}
		}
	EnableUIControls();

}
Ejemplo n.º 3
0
void SymmetryMod::ModifyTriObject (TimeValue t, ModContext &mc, TriObject *tobj, INode *inode) {
	Mesh &mesh = tobj->GetMesh();
	Interval iv = FOREVER;
	int axis, slice, weld, flip;
	float threshold;

	mp_pblock->GetValue (kSymAxis, t, axis, iv);
	mp_pblock->GetValue (kSymFlip, t, flip, iv);
	mp_pblock->GetValue (kSymSlice, t, slice, iv);
	mp_pblock->GetValue (kSymWeld, t, weld, iv);
	mp_pblock->GetValue (kSymThreshold, t, threshold, iv);
	if (threshold<0) threshold=0;

	// Get transform from mirror controller:
	Matrix3 tm  = CompMatrix (t, NULL, &mc, &iv);
	Matrix3 itm = Inverse (tm);

	// Get DotProd(N,x)=offset plane definition from transform
	Point3 Axis(0,0,0);
	Axis[axis] = flip ? -1.0f : 1.0f;
	Point3 origin = tm.GetTrans();
	Point3 N = Normalize(tm*Axis - origin);
	float offset = DotProd (N, origin);

	// Slice operation does not handle NormalSpecs, but it handles mapping channels.
	// move our mesh normal data to a map channel
	MeshNormalSpec *pNormals = mesh.GetSpecifiedNormals ();
	int normalMapChannel = INVALID_NORMALMAPCHANNEL;
	if (pNormals && pNormals->GetNumFaces())
	{
		pNormals->SetParent(&mesh);
		//find an empty map channel
		for (int mp = 0; mp < mesh.getNumMaps(); mp++) 
		{			
			if (!mesh.mapSupport(mp)) 
			{
				normalMapChannel = mp;

				mesh.setMapSupport(normalMapChannel,TRUE);
				MeshMap& map = mesh.Map(normalMapChannel);
				for (int i = 0; i < map.fnum; i++)
				{
					for (int j = 0; j < 3; j++)
					{
						unsigned int newID = pNormals->Face(i).GetNormalID(j);
						map.tf[i].t[j] = newID;
					}
				}
				map.setNumVerts(pNormals->GetNumNormals());
				for (int i = 0; i < map.vnum; i++)
				{
					map.tv[i] = pNormals->Normal(i);
				}				

				// make sure nothing is done with MeshNormalSpec (until data is copied back) 
				pNormals->Clear();
				break;
			}
		}
	}
	
	// Slice off everything below the plane.
	if (slice) SliceTriObject (mesh, N, offset);
	MirrorTriObject (mesh, axis, tm, itm,normalMapChannel);
	if (weld) WeldTriObject (mesh, N, offset, threshold);

	//now move the normals back
	if (pNormals && normalMapChannel != -1)
	{
		MeshMap& map = mesh.Map(normalMapChannel);
		pNormals->SetNumFaces(map.fnum);

		pNormals->SetNumNormals(map.vnum);
		pNormals->SetAllExplicit(true);
		BitArray temp;
		temp.SetSize(map.vnum);
		temp.SetAll();
		pNormals->SpecifyNormals(TRUE,&temp);

		for (int i = 0; i < map.vnum; i++)
		{
			pNormals->GetNormalArray()[i] = map.tv[i];
			pNormals->SetNormalExplicit(i,true);
		}	

		for (int i = 0; i < map.fnum; i++)
		{
			for (int j = 0; j < 3; j++)
			{
				pNormals->SetNormalIndex(i,j,map.tf[i].t[j]);				
				MeshNormalFace& face = pNormals->Face(i);
				face.SpecifyAll(true);
			}
		}

		pNormals->SetFlag(MESH_NORMAL_MODIFIER_SUPPORT);

		for (int i = 0; i < pNormals->GetNumFaces(); i++)
		{
			for (int j = 0; j < 3; j++)
			{
				int id = pNormals->GetNormalIndex(i,j);	
			}
		}

		pNormals->CheckNormals();
		pNormals->SetParent(NULL);

		// Free the map channel
		mesh.setMapSupport(normalMapChannel,FALSE);
	}
	
	tobj->UpdateValidity (GEOM_CHAN_NUM, iv);
	tobj->UpdateValidity (TOPO_CHAN_NUM, iv);
	tobj->UpdateValidity (VERT_COLOR_CHAN_NUM, iv);
	tobj->UpdateValidity (TEXMAP_CHAN_NUM, iv);
	tobj->UpdateValidity (SELECT_CHAN_NUM, iv);
}