Ejemplo n.º 1
0
void ompl::geometric::FMT::assureGoalIsSampled(const ompl::base::GoalSampleableRegion *goal)
{
    // Ensure that there is at least one node near each goal
    while (const base::State *goalState = pis_.nextGoal())
    {
        Motion *gMotion = new Motion(si_);
        si_->copyState(gMotion->getState(), goalState);

        std::vector<Motion*> nearGoal;
        nn_->nearestR(gMotion, goal->getThreshold(), nearGoal);

        // If there is no node in the goal region, insert one
        if (nearGoal.empty())
        {
            OMPL_DEBUG("No state inside goal region");
            if (si_->getStateValidityChecker()->isValid(gMotion->getState()))
            {
                nn_->add(gMotion);
                goalState_ = gMotion->getState();
            }
            else
            {
                si_->freeState(gMotion->getState());
                delete gMotion;
            }
        }
        else // There is already a sample in the goal region
        {
            goalState_ = nearGoal[0]->getState();
            si_->freeState(gMotion->getState());
            delete gMotion;
        }
    } // For each goal
}
Ejemplo n.º 2
0
void ompl::geometric::FMT::sampleFree(const base::PlannerTerminationCondition &ptc)
{
    unsigned int nodeCount = 0;
    unsigned int sampleAttempts = 0;
    Motion *motion = new Motion(si_);

    // Sample numSamples_ number of nodes from the free configuration space
    while (nodeCount < numSamples_ && !ptc)
    {
        sampler_->sampleUniform(motion->getState());
        sampleAttempts++;

        bool collision_free = si_->isValid(motion->getState());

        if (collision_free)
        {
            nodeCount++;
            nn_->add(motion);
            motion = new Motion(si_);
        } // If collision free
    } // While nodeCount < numSamples
    si_->freeState(motion->getState());
    delete motion;

    // 95% confidence limit for an upper bound for the true free space volume
    freeSpaceVolume_ = boost::math::binomial_distribution<>::find_upper_bound_on_p(sampleAttempts, nodeCount, 0.05) * si_->getStateSpace()->getMeasure();
}
Ejemplo n.º 3
0
bool ompl::geometric::FMT::expandTreeFromNode(Motion **z)
{
    // Find all nodes that are near z, and also in set Unvisited

    std::vector<Motion*> xNear;
    const std::vector<Motion*> &zNeighborhood = neighborhoods_[*z];
    const unsigned int zNeighborhoodSize = zNeighborhood.size();
    xNear.reserve(zNeighborhoodSize);

    for (unsigned int i = 0; i < zNeighborhoodSize; ++i)
    {
        Motion *x = zNeighborhood[i];
        if (x->getSetType() == Motion::SET_UNVISITED)
        {
            saveNeighborhood(x);
            if (nearestK_)
            {
                // Only include neighbors that are mutually k-nearest
                // Relies on NN datastructure returning k-nearest in sorted order
                const base::Cost connCost = opt_->motionCost((*z)->getState(), x->getState());
                const base::Cost worstCost = opt_->motionCost(neighborhoods_[x].back()->getState(), x->getState());

                if (opt_->isCostBetterThan(worstCost, connCost))
                    continue;
                else
                    xNear.push_back(x);
            }
            else
                xNear.push_back(x);
        }
    }

    // For each node near z and in set Unvisited, attempt to connect it to set Open
    std::vector<Motion*> yNear;
    std::vector<Motion*> Open_new;
    const unsigned int xNearSize = xNear.size();
    for (unsigned int i = 0 ; i < xNearSize; ++i)
    {
        Motion *x = xNear[i];

        // Find all nodes that are near x and in set Open
        const std::vector<Motion*> &xNeighborhood = neighborhoods_[x];

        const unsigned int xNeighborhoodSize = xNeighborhood.size();
        yNear.reserve(xNeighborhoodSize);
        for (unsigned int j = 0; j < xNeighborhoodSize; ++j)
        {
            if (xNeighborhood[j]->getSetType() == Motion::SET_OPEN)
                yNear.push_back(xNeighborhood[j]);
        }

        // Find the lowest cost-to-come connection from Open to x
        base::Cost cMin(std::numeric_limits<double>::infinity());
        Motion *yMin = getBestParent(x, yNear, cMin);
        yNear.clear();

        // If an optimal connection from Open to x was found
        if (yMin != nullptr)
        {
            bool collision_free = false;
            if (cacheCC_)
            {
                if (!yMin->alreadyCC(x))
                {
                    collision_free = si_->checkMotion(yMin->getState(), x->getState());
                    ++collisionChecks_;
                    // Due to FMT* design, it is only necessary to save unsuccesful
                    // connection attemps because of collision
                    if (!collision_free)
                        yMin->addCC(x);
                }
            }
            else
            {
                ++collisionChecks_;
                collision_free = si_->checkMotion(yMin->getState(), x->getState());
            }

            if (collision_free)
            {
                // Add edge from yMin to x
                x->setParent(yMin);
                x->setCost(cMin);
                x->setHeuristicCost(opt_->motionCostHeuristic(x->getState(), goalState_));
                yMin->getChildren().push_back(x);

                // Add x to Open
                Open_new.push_back(x);
                // Remove x from Unvisited
                x->setSetType(Motion::SET_CLOSED);
            }
        } // An optimal connection from Open to x was found
    } // For each node near z and in set Unvisited, try to connect it to set Open

    // Update Open
    Open_.pop();
    (*z)->setSetType(Motion::SET_CLOSED);

    // Add the nodes in Open_new to Open
    unsigned int openNewSize = Open_new.size();
    for (unsigned int i = 0; i < openNewSize; ++i)
    {
        Open_.insert(Open_new[i]);
        Open_new[i]->setSetType(Motion::SET_OPEN);
    }
    Open_new.clear();

    if (Open_.empty())
    {
        if(!extendedFMT_)
            OMPL_INFORM("Open is empty before path was found --> no feasible path exists");
        return false;
    }

    // Take the top of Open as the new z
    *z = Open_.top()->data;

    return true;
}
Ejemplo n.º 4
0
ompl::base::PlannerStatus ompl::geometric::FMT::solve(const base::PlannerTerminationCondition &ptc)
{
    if (lastGoalMotion_) {
        OMPL_INFORM("solve() called before clear(); returning previous solution");
        traceSolutionPathThroughTree(lastGoalMotion_);
        OMPL_DEBUG("Final path cost: %f", lastGoalMotion_->getCost().value());
        return base::PlannerStatus(true, false);
    }
    else if (Open_.size() > 0)
    {
        OMPL_INFORM("solve() called before clear(); no previous solution so starting afresh");
        clear();
    }

    checkValidity();
    base::GoalSampleableRegion *goal = dynamic_cast<base::GoalSampleableRegion*>(pdef_->getGoal().get());
    Motion *initMotion = nullptr;

    if (!goal)
    {
        OMPL_ERROR("%s: Unknown type of goal", getName().c_str());
        return base::PlannerStatus::UNRECOGNIZED_GOAL_TYPE;
    }

    // Add start states to V (nn_) and Open
    while (const base::State *st = pis_.nextStart())
    {
        initMotion = new Motion(si_);
        si_->copyState(initMotion->getState(), st);
        Open_.insert(initMotion);
        initMotion->setSetType(Motion::SET_OPEN);
        initMotion->setCost(opt_->initialCost(initMotion->getState()));
        nn_->add(initMotion); // V <-- {x_init}
    }

    if (!initMotion)
    {
        OMPL_ERROR("Start state undefined");
        return base::PlannerStatus::INVALID_START;
    }

    // Sample N free states in the configuration space
    if (!sampler_)
        sampler_ = si_->allocStateSampler();
    sampleFree(ptc);
    assureGoalIsSampled(goal);
    OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size());

    // Calculate the nearest neighbor search radius
    /// \todo Create a PRM-like connection strategy
    if (nearestK_)
    {
        NNk_ = std::ceil(std::pow(2.0 * radiusMultiplier_, (double)si_->getStateDimension()) *
                        (boost::math::constants::e<double>() / (double)si_->getStateDimension()) *
                        log((double)nn_->size()));
        OMPL_DEBUG("Using nearest-neighbors k of %d", NNk_);
    }
    else
    {
        NNr_ = calculateRadius(si_->getStateDimension(), nn_->size());
        OMPL_DEBUG("Using radius of %f", NNr_);
    }

    // Execute the planner, and return early if the planner returns a failure
    bool plannerSuccess = false;
    bool successfulExpansion = false;
    Motion *z = initMotion; // z <-- xinit
    saveNeighborhood(z);

    while (!ptc)
    {
        if ((plannerSuccess = goal->isSatisfied(z->getState())))
            break;

        successfulExpansion = expandTreeFromNode(&z);

        if (!extendedFMT_ && !successfulExpansion)
            break;
        else if (extendedFMT_ && !successfulExpansion)
        {
            //Apply RRT*-like connections: sample and connect samples to tree
            std::vector<Motion*>       nbh;
            std::vector<base::Cost>    costs;
            std::vector<base::Cost>    incCosts;
            std::vector<std::size_t>   sortedCostIndices;

            // our functor for sorting nearest neighbors
            CostIndexCompare compareFn(costs, *opt_);

            Motion *m = new Motion(si_);
            while (!ptc && Open_.empty())
            {
                sampler_->sampleUniform(m->getState());

                if (!si_->isValid(m->getState()))
                    continue;

                if (nearestK_)
                    nn_->nearestK(m, NNk_, nbh);
                else
                    nn_->nearestR(m, NNr_, nbh);

                // Get neighbours in the tree.
                std::vector<Motion*> yNear;
                yNear.reserve(nbh.size());
                for (std::size_t j = 0; j < nbh.size(); ++j)
                {
                    if (nbh[j]->getSetType() == Motion::SET_CLOSED)
                    {
                        if (nearestK_)
                        {
                            // Only include neighbors that are mutually k-nearest
                            // Relies on NN datastructure returning k-nearest in sorted order
                            const base::Cost connCost = opt_->motionCost(nbh[j]->getState(), m->getState());
                            const base::Cost worstCost = opt_->motionCost(neighborhoods_[nbh[j]].back()->getState(), nbh[j]->getState());

                            if (opt_->isCostBetterThan(worstCost, connCost))
                                continue;
                            else
                                yNear.push_back(nbh[j]);
                        }
                        else
                            yNear.push_back(nbh[j]);
                    }
                }

                // Sample again if the new sample does not connect to the tree.
                if (yNear.empty())
                    continue;

                // cache for distance computations
                //
                // Our cost caches only increase in size, so they're only
                // resized if they can't fit the current neighborhood
                if (costs.size() < yNear.size())
                {
                    costs.resize(yNear.size());
                    incCosts.resize(yNear.size());
                    sortedCostIndices.resize(yNear.size());
                }

                // Finding the nearest neighbor to connect to
                // By default, neighborhood states are sorted by cost, and collision checking
                // is performed in increasing order of cost
                //
                // calculate all costs and distances
                for (std::size_t i = 0 ; i < yNear.size(); ++i)
                {
                    incCosts[i] = opt_->motionCost(yNear[i]->getState(), m->getState());
                    costs[i] = opt_->combineCosts(yNear[i]->getCost(), incCosts[i]);
                }

                // sort the nodes
                //
                // we're using index-value pairs so that we can get at
                // original, unsorted indices
                for (std::size_t i = 0; i < yNear.size(); ++i)
                    sortedCostIndices[i] = i;
                std::sort(sortedCostIndices.begin(), sortedCostIndices.begin() + yNear.size(),
                          compareFn);

               // collision check until a valid motion is found
               for (std::vector<std::size_t>::const_iterator i = sortedCostIndices.begin();
                    i != sortedCostIndices.begin() + yNear.size();
                    ++i)
               {
                   if (si_->checkMotion(yNear[*i]->getState(), m->getState()))
                   {
                       m->setParent(yNear[*i]);
                       yNear[*i]->getChildren().push_back(m);
                       const base::Cost incCost = opt_->motionCost(yNear[*i]->getState(), m->getState());
                       m->setCost(opt_->combineCosts(yNear[*i]->getCost(), incCost));
                       m->setHeuristicCost(opt_->motionCostHeuristic(m->getState(), goalState_));
                       m->setSetType(Motion::SET_OPEN);

                       nn_->add(m);
                       saveNeighborhood(m);
                       updateNeighborhood(m,nbh);

                       Open_.insert(m);
                       z = m;
                       break;
                   }
               }
            } // while (!ptc && Open_.empty())
        } // else if (extendedFMT_ && !successfulExpansion)
    } // While not at goal

    if (plannerSuccess)
    {
        // Return the path to z, since by definition of planner success, z is in the goal region
        lastGoalMotion_ = z;
        traceSolutionPathThroughTree(lastGoalMotion_);

        OMPL_DEBUG("Final path cost: %f", lastGoalMotion_->getCost().value());

        return base::PlannerStatus(true, false);
    } // if plannerSuccess
    else
    {
        // Planner terminated without accomplishing goal
        return base::PlannerStatus(false, false);
    }
}