Ejemplo n.º 1
0
void
MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyline)
{
    if (!this->initialized) this->initialize();
    
    if (this->islands.empty()) {
        polyline->points.push_back(from);
        polyline->points.push_back(to);
        return;
    }
    
    // Are both points in the same island?
    int island_idx = -1;
    for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
        if (island->contains(from) && island->contains(to)) {
            // since both points are in the same island, is a direct move possible?
            // if so, we avoid generating the visibility environment
            if (island->contains(Line(from, to))) {
                polyline->points.push_back(from);
                polyline->points.push_back(to);
                return;
            }
            island_idx = island - this->islands.begin();
            break;
        }
    }
    
    // Now check whether points are inside the environment.
    Point inner_from    = from;
    Point inner_to      = to;
    bool from_is_inside, to_is_inside;
    if (island_idx == -1) {
        if (!(from_is_inside = this->outer.contains(from))) {
            // Find the closest inner point to start from.
            from.nearest_point(this->outer, &inner_from);
        }
        if (!(to_is_inside = this->outer.contains(to))) {
            // Find the closest inner point to start from.
            to.nearest_point(this->outer, &inner_to);
        }
    } else {
        if (!(from_is_inside = this->inner[island_idx].contains(from))) {
            // Find the closest inner point to start from.
            from.nearest_point(this->inner[island_idx], &inner_from);
        }
        if (!(to_is_inside = this->inner[island_idx].contains(to))) {
            // Find the closest inner point to start from.
            to.nearest_point(this->inner[island_idx], &inner_to);
        }
    }
    
    // perform actual path search
    MotionPlannerGraph* graph = this->init_graph(island_idx);
    graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to), polyline);
    
    polyline->points.insert(polyline->points.begin(), from);
    polyline->points.push_back(to);
}
Ejemplo n.º 2
0
MotionPlannerGraph*
MotionPlanner::init_graph(int island_idx)
{
    if (this->graphs[island_idx + 1] == NULL) {
        Polygons pp;
        if (island_idx == -1) {
            pp = this->outer;
        } else {
            pp = this->inner[island_idx];
        }
        
        MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
        
        // add polygon boundaries as edges
        size_t node_idx = 0;
        Lines lines;
        for (Polygons::const_iterator polygon = pp.begin(); polygon != pp.end(); ++polygon) {
            graph->nodes.push_back(polygon->points.back());
            node_idx++;
            for (Points::const_iterator p = polygon->points.begin(); p != polygon->points.end(); ++p) {
                graph->nodes.push_back(*p);
                double dist = graph->nodes[node_idx-1].distance_to(*p);
                graph->add_edge(node_idx-1, node_idx, dist);
                graph->add_edge(node_idx, node_idx-1, dist);
                node_idx++;
            }
            polygon->lines(&lines);
        }
        
        // add Voronoi edges as internal edges
        {
            typedef voronoi_diagram<double> VD;
            typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
            VD vd;
            t_vd_vertices vd_vertices;
            
            boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
            for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
                if (edge->is_infinite()) continue;
                
                const VD::vertex_type* v0 = edge->vertex0();
                const VD::vertex_type* v1 = edge->vertex1();
                Point p0 = Point(v0->x(), v0->y());
                Point p1 = Point(v1->x(), v1->y());
                // contains() should probably be faster than contains(),
                // and should it fail on any boundary points it's not a big problem
                if (island_idx == -1) {
                    if (!this->outer.contains(p0) || !this->outer.contains(p1)) continue;
                } else {
                    if (!this->inner[island_idx].contains(p0) || !this->inner[island_idx].contains(p1)) continue;
                }
                
                t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
                size_t v0_idx;
                if (i_v0 == vd_vertices.end()) {
                    graph->nodes.push_back(p0);
                    v0_idx = node_idx;
                    vd_vertices[v0] = node_idx;
                    node_idx++;
                } else {
                    v0_idx = i_v0->second;
                }
                
                t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
                size_t v1_idx;
                if (i_v1 == vd_vertices.end()) {
                    graph->nodes.push_back(p1);
                    v1_idx = node_idx;
                    vd_vertices[v1] = node_idx;
                    node_idx++;
                } else {
                    v1_idx = i_v1->second;
                }
                
                double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
                graph->add_edge(v0_idx, v1_idx, dist);
            }
        }
        
        return graph;
    }
    return this->graphs[island_idx + 1];
}
Ejemplo n.º 3
0
MotionPlannerGraph*
MotionPlanner::init_graph(int island_idx)
{
    if (this->graphs[island_idx + 1] == NULL) {
        // if this graph doesn't exist, initialize it
        MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
        
        /*  We don't add polygon boundaries as graph edges, because we'd need to connect
            them to the Voronoi-generated edges by recognizing coinciding nodes. */
        
        typedef voronoi_diagram<double> VD;
        VD vd;
        
        // mapping between Voronoi vertices and graph nodes
        typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
        t_vd_vertices vd_vertices;
        
        // get boundaries as lines
        ExPolygonCollection env = this->get_env(island_idx);
        Lines lines = env.lines();
        boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
        
        // traverse the Voronoi diagram and generate graph nodes and edges
        for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
            if (edge->is_infinite()) continue;
            
            const VD::vertex_type* v0 = edge->vertex0();
            const VD::vertex_type* v1 = edge->vertex1();
            Point p0 = Point(v0->x(), v0->y());
            Point p1 = Point(v1->x(), v1->y());
            
            // skip edge if any of its endpoints is outside our configuration space
            if (!env.contains_b(p0) || !env.contains_b(p1)) continue;
            
            t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
            size_t v0_idx;
            if (i_v0 == vd_vertices.end()) {
                graph->nodes.push_back(p0);
                vd_vertices[v0] = v0_idx = graph->nodes.size()-1;
            } else {
                v0_idx = i_v0->second;
            }
            
            t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
            size_t v1_idx;
            if (i_v1 == vd_vertices.end()) {
                graph->nodes.push_back(p1);
                vd_vertices[v1] = v1_idx = graph->nodes.size()-1;
            } else {
                v1_idx = i_v1->second;
            }
            
            // Euclidean distance is used as weight for the graph edge
            double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
            graph->add_edge(v0_idx, v1_idx, dist);
        }
        
        return graph;
    }
    return this->graphs[island_idx + 1];
}
Ejemplo n.º 4
0
Polyline
MotionPlanner::shortest_path(const Point &from, const Point &to)
{
    // lazy generation of configuration space
    if (!this->initialized) this->initialize();
    
    // if we have an empty configuration space, return a straight move
    if (this->islands.empty()) {
        Polyline p;
        p.points.push_back(from);
        p.points.push_back(to);
        return p;
    }
    
    // Are both points in the same island?
    int island_idx = -1;
    for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
        if (island->contains(from) && island->contains(to)) {
            // since both points are in the same island, is a direct move possible?
            // if so, we avoid generating the visibility environment
            if (island->contains(Line(from, to))) {
                Polyline p;
                p.points.push_back(from);
                p.points.push_back(to);
                return p;
            }
            island_idx = island - this->islands.begin();
            break;
        }
    }
    
    // get environment
    ExPolygonCollection env = this->get_env(island_idx);
    if (env.expolygons.empty()) {
        // if this environment is empty (probably because it's too small), perform straight move
        // and avoid running the algorithms on empty dataset
        Polyline p;
        p.points.push_back(from);
        p.points.push_back(to);
        return p; // bye bye
    }
    
    // Now check whether points are inside the environment.
    Point inner_from    = from;
    Point inner_to      = to;

    if (!env.contains(from)) {
        // Find the closest inner point to start from.
        inner_from = this->nearest_env_point(env, from, to);
    }
    if (!env.contains(to)) {
        // Find the closest inner point to start from.
        inner_to = this->nearest_env_point(env, to, inner_from);
    }
    
    // perform actual path search
    MotionPlannerGraph* graph = this->init_graph(island_idx);
    Polyline polyline = graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to));
    
    polyline.points.insert(polyline.points.begin(), from);
    polyline.points.push_back(to);
    
    {
        // grow our environment slightly in order for simplify_by_visibility()
        // to work best by considering moves on boundaries valid as well
        ExPolygonCollection grown_env;
        offset(env, &grown_env.expolygons, +SCALED_EPSILON);
        
        // remove unnecessary vertices
        polyline.simplify_by_visibility(grown_env);
    }
    
    /*
        SVG svg("shortest_path.svg");
        svg.draw(this->outer);
        svg.arrows = false;
        for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
            Point a = graph->nodes[it - graph->adjacency_list.begin()];
            for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
                Point b = graph->nodes[n->target];
                svg.draw(Line(a, b));
            }
        }
        svg.arrows = true;
        svg.draw(from);
        svg.draw(inner_from, "red");
        svg.draw(to);
        svg.draw(inner_to, "red");
        svg.draw(*polyline, "red");
        svg.Close();
    */
    
    return polyline;
}
Ejemplo n.º 5
0
Polyline
MotionPlanner::shortest_path(const Point &from, const Point &to)
{
    // if we have an empty configuration space, return a straight move
    if (this->islands.empty())
        return Line(from, to);
    
    // Are both points in the same island?
    int island_idx = -1;
    for (std::vector<MotionPlannerEnv>::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
        if (island->island.contains(from) && island->island.contains(to)) {
            // since both points are in the same island, is a direct move possible?
            // if so, we avoid generating the visibility environment
            if (island->island.contains(Line(from, to)))
                return Line(from, to);
            
            island_idx = island - this->islands.begin();
            break;
        }
    }
    
    // lazy generation of configuration space
    this->initialize();
    
    // get environment
    MotionPlannerEnv env = this->get_env(island_idx);
    if (env.env.expolygons.empty()) {
        // if this environment is empty (probably because it's too small), perform straight move
        // and avoid running the algorithms on empty dataset
        return Line(from, to);
    }
    
    // Now check whether points are inside the environment.
    Point inner_from = from;
    Point inner_to   = to;
    
    if (island_idx == -1) {
        // TODO: instead of using the nearest_env_point() logic, we should
        // create a temporary graph where we connect 'from' and 'to' to the
        // nodes which don't require more than one crossing, and let Dijkstra
        // figure out the entire path - this should also replace the call to
        // find_node() below
        if (!env.island.contains(inner_from)) {
            // Find the closest inner point to start from.
            inner_from = env.nearest_env_point(from, to);
        }
        if (!env.island.contains(inner_to)) {
            // Find the closest inner point to start from.
            inner_to = env.nearest_env_point(to, inner_from);
        }
    }
    
    // perform actual path search
    MotionPlannerGraph* graph = this->init_graph(island_idx);
    Polyline polyline = graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to));
    
    polyline.points.insert(polyline.points.begin(), from);
    polyline.points.push_back(to);
    
    {
        // grow our environment slightly in order for simplify_by_visibility()
        // to work best by considering moves on boundaries valid as well
        ExPolygonCollection grown_env(offset_ex((Polygons)env.env, +SCALED_EPSILON));
        
        if (island_idx == -1) {
            /*  If 'from' or 'to' are not inside our env, they were connected using the 
                nearest_env_point() search which maybe produce ugly paths since it does not
                include the endpoint in the Dijkstra search; the simplify_by_visibility() 
                call below will not work in many cases where the endpoint is not contained in
                grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
                which may not be enough for, say, including a skirt point). So we prune
                the extra points manually. */
            if (!grown_env.contains(from)) {
                // delete second point while the line connecting first to third crosses the
                // boundaries as many times as the current first to second
                while (polyline.points.size() > 2 && intersection((Lines)Line(from, polyline.points[2]), grown_env).size() == 1) {
                    polyline.points.erase(polyline.points.begin() + 1);
                }
            }
            if (!grown_env.contains(to)) {
                while (polyline.points.size() > 2 && intersection((Lines)Line(*(polyline.points.end() - 3), to), grown_env).size() == 1) {
                    polyline.points.erase(polyline.points.end() - 2);
                }
            }
        }
        
        // remove unnecessary vertices
        // Note: this is computationally intensive and does not look very necessary
        // now that we prune the endpoints with the logic above,
        // so we comment it for now until a good test case arises
        //polyline.simplify_by_visibility(grown_env);
    
        /*
        SVG svg("shortest_path.svg");
        svg.draw(grown_env.expolygons);
        svg.arrows = false;
        for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
            Point a = graph->nodes[it - graph->adjacency_list.begin()];
            for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
                Point b = graph->nodes[n->target];
                svg.draw(Line(a, b));
            }
        }
        svg.arrows = true;
        svg.draw(from);
        svg.draw(inner_from, "red");
        svg.draw(to);
        svg.draw(inner_to, "red");
        svg.draw(polyline, "red");
        svg.Close();
        */
    }
    
    return polyline;
}