Ejemplo n.º 1
0
/*----------------------------------------------------------------------
|   NPT_System::SleepUntil
+---------------------------------------------------------------------*/
NPT_Result
NPT_System::SleepUntil(const NPT_TimeStamp& when)
{
    struct timespec timeout;
    struct timeval  now;
    int             result;

    // get current time from system
    if (gettimeofday(&now, NULL)) {
        return NPT_FAILURE;
    }

    // setup timeout
    NPT_UInt64 limit = (NPT_UInt64)now.tv_sec*1000000000 +
                       (NPT_UInt64)now.tv_usec*1000 +
                       when.ToNanos();
    timeout.tv_sec  = (time_t)limit/1000000000;
    timeout.tv_nsec = limit%1000000000;

    // sleep
    do {
        result = pthread_cond_timedwait(&NPT_PosixSystem::System.m_SleepCondition, 
                                        &NPT_PosixSystem::System.m_SleepMutex, 
                                        &timeout);
        if (result == ETIMEDOUT) {
            return NPT_SUCCESS;
        }
    } while (result == EINTR);

    return NPT_FAILURE;
}
Ejemplo n.º 2
0
/*----------------------------------------------------------------------
|   NPT_Win32Thread::EntryPoint
+---------------------------------------------------------------------*/
unsigned int __stdcall
NPT_Win32Thread::EntryPoint(void* argument)
{
    NPT_Win32Thread* thread = reinterpret_cast<NPT_Win32Thread*>(argument);

    NPT_LOG_FINER("thread in =======================");

    // set random seed per thread
    NPT_TimeStamp now;
    NPT_System::GetCurrentTimeStamp(now);
    NPT_System::SetRandomSeed((NPT_UInt32)(now.ToNanos()) + ::GetCurrentThreadId());

    thread->m_ThreadId = (DWORD)::GetCurrentThreadId();

    // run the thread
    thread->Run();

    // if the thread is detached, delete it
    if (thread->m_Detached) {
        delete thread->m_Delegator;
    }

    // done
    return 0;
}
Ejemplo n.º 3
0
/*----------------------------------------------------------------------
|   NPT_System::GetRandomInteger
+---------------------------------------------------------------------*/
NPT_UInt32 
NPT_System::GetRandomInteger()
{
    static bool seeded = false;
    if (seeded == false) {
        NPT_TimeStamp now;
        GetCurrentTimeStamp(now);
        SetRandomSeed((NPT_UInt32)now.ToNanos());
        seeded = true;
    }

    return rand();
}
Ejemplo n.º 4
0
/*----------------------------------------------------------------------
|   NPT_DateTime::ChangeTimeZone
+---------------------------------------------------------------------*/
NPT_Result
NPT_DateTime::ChangeTimeZone(NPT_Int32 timezone)
{
    if (timezone < -12*60 || timezone > 12*60) {
        return NPT_ERROR_OUT_OF_RANGE;
    }
    NPT_TimeStamp ts;
    NPT_Result result = ToTimeStamp(ts);
    if (NPT_FAILED(result)) return result;
    ts.SetNanos(ts.ToNanos()+(NPT_Int64)timezone*(NPT_Int64)60*(NPT_Int64)1000000000);

    result = FromTimeStamp(ts);
    m_TimeZone = timezone;
    return result;
}
Ejemplo n.º 5
0
/*----------------------------------------------------------------------
|   NPT_DateTime::FromTimeStamp
+---------------------------------------------------------------------*/
NPT_Result
NPT_DateTime::FromTimeStamp(const NPT_TimeStamp& ts, bool local)
{
    // number of seconds from the epoch (positive or negative)
    NPT_Int64 seconds = ts.ToSeconds();
    
    // check the range (we only allow up to 31 bits of negative range for seconds
    // in order to have the same lower bound as the 32-bit gmtime() function)
    if (seconds < 0 && (NPT_Int32)seconds != seconds) return NPT_ERROR_OUT_OF_RANGE;
    
    // adjust for the timezone if necessary
    NPT_Int32 timezone = 0;
    if (local) {
        timezone = GetLocalTimeZone();
        seconds += timezone*60;
    }
    
    // adjust to the number of seconds since 1900
    seconds += (NPT_Int64)NPT_SECONDS_PER_YEAR*70 + 
               (NPT_Int64)(17*NPT_SECONDS_PER_DAY); // 17 leap year between 1900 and 1970
        
    // compute the years since 1900, not adjusting for leap years
    NPT_UInt32 years_since_1900 = (NPT_UInt32)(seconds/NPT_SECONDS_PER_YEAR);
    
    // compute the number of seconds elapsed in the current year
    seconds -= (NPT_Int64)years_since_1900 * NPT_SECONDS_PER_YEAR;

    // adjust for leap years
    bool is_leap_year = false;
    NPT_UInt32 leap_years_since_1900 = ElapsedLeapYearsSince1900(years_since_1900+1900);
    if (seconds < (leap_years_since_1900 * NPT_SECONDS_PER_DAY)) {
        // not enough seconds in the current year to compensate, move one year back
        seconds += NPT_SECONDS_PER_YEAR;
        seconds -= leap_years_since_1900 * NPT_SECONDS_PER_DAY;
        --years_since_1900;
        if (NPT_TIME_YEAR_IS_LEAP(years_since_1900+1900) ) {
            seconds += NPT_SECONDS_PER_DAY;
            is_leap_year = true;
        }
    } else {
        seconds -= leap_years_since_1900 * NPT_SECONDS_PER_DAY;
        if (NPT_TIME_YEAR_IS_LEAP(years_since_1900+1900) ) {
            is_leap_year = true;
        }
    }

    // now we know the year
    m_Year = years_since_1900+1900;

    // compute the number of days since January 1 (0 - 365)
    NPT_UInt32 day_of_the_year = (NPT_UInt32)(seconds/NPT_SECONDS_PER_DAY);

    // compute the number of seconds in the current day
    seconds -= day_of_the_year * NPT_SECONDS_PER_DAY;

    // compute the number of months since January (0 - 11) and the day of month (1 - 31) */
    const NPT_Int32* month_day = is_leap_year?NPT_TIME_MONTH_DAY_LEAP:NPT_TIME_MONTH_DAY;
    NPT_UInt32 month;
    for (month = 1; month_day[month] < (NPT_Int32)day_of_the_year ; month++) {}

    // now we know the month and day
    m_Month = month;
    m_Day   = day_of_the_year - month_day[month-1];

    // compute the number of hours since midnight (0 - 23), minutes after the hour
    // (0 - 59), seconds after the minute (0 - 59) and nanoseconds
    m_Hours   = (NPT_Int32)seconds/3600;
    seconds  -= m_Hours * 3600L;
    m_Minutes = (NPT_Int32)seconds / 60;
    m_Seconds = (NPT_Int32)seconds - m_Minutes * 60;
    m_NanoSeconds = (NPT_Int32)(ts.ToNanos()%1000000000);
    if (local) {
        m_TimeZone = timezone;
    } else {
        m_TimeZone = 0;
    }
    
    return NPT_SUCCESS;
}
Ejemplo n.º 6
0
/*----------------------------------------------------------------------
|   TestPerformance
+---------------------------------------------------------------------*/
static void
TestPerformance()
{
    for (unsigned int i=1; i<10000; i += 1000) {
        NPT_TimeStamp before;
        NPT_System::GetCurrentTimeStamp(before);
        for (unsigned int j=0; j<10; j++) {
            NPT_Map<NPT_String, NPT_String> map;
            for (unsigned int k=0; k<i; k++) {
                char key[64] = "blablabliblibloublou";
                unsigned int run = NPT_System::GetRandomInteger()%8;
                for (unsigned int x=0; x<run; x++) {
                    key[x] = 'A'+NPT_System::GetRandomInteger()%32;
                }
                map[key] = "hello";
            }
        }
        NPT_TimeStamp after;
        NPT_System::GetCurrentTimeStamp(after);
        NPT_UInt64 duration = (after.ToNanos()-before.ToNanos())/10;
        printf("LinearMap insert: %d\t%d ns\t\t%d ns/item\n", i, (NPT_UInt32)duration, (NPT_UInt32)(duration/i));
    }

    for (unsigned int i=1; i<10000; i += 1000) {
        NPT_TimeStamp before;
        NPT_System::GetCurrentTimeStamp(before);
        for (unsigned int j=0; j<100; j++) {
            NPT_HashMap<NPT_String, NPT_String> map;
            for (unsigned int k=0; k<i; k++) {
                char key[64] = "blablabliblibloublou";
                unsigned int run = NPT_System::GetRandomInteger()%8;
                for (unsigned int x=0; x<run; x++) {
                    key[x] = 'A'+NPT_System::GetRandomInteger()%32;
                }
                map[key] = "hello";
            }
        }
        NPT_TimeStamp after;
        NPT_System::GetCurrentTimeStamp(after);
        NPT_UInt64 duration = (after.ToNanos()-before.ToNanos())/100;
        printf("HashMap insert: %d\t%d ns\t\t%d ns/item\n", i, (NPT_UInt32)duration, (NPT_UInt32)(duration/i));
    }

    for (unsigned int i=1; i<10000; i += 1000) {
        NPT_TimeStamp before;
        NPT_System::GetCurrentTimeStamp(before);
        for (unsigned int j=0; j<100; j++) {
            NPT_HashMap<NPT_String, NPT_String> map;
            for (unsigned int k=0; k<i; k++) {
                char key[64] = "blablabliblibloublou";
                unsigned int run = NPT_System::GetRandomInteger()%8;
                for (unsigned int x=0; x<run; x++) {
                    key[x] = 'A'+NPT_System::GetRandomInteger()%32;
                }
                map[key] = "hello";
            }
            for (unsigned int k=0; k<i; k++) {
                char key[64] = "blablabliblibloublou";
                unsigned int run = NPT_System::GetRandomInteger()%8;
                for (unsigned int x=0; x<run; x++) {
                    key[x] = 'A'+NPT_System::GetRandomInteger()%32;
                }
                map.Erase(key);
            }
        }
        NPT_TimeStamp after;
        NPT_System::GetCurrentTimeStamp(after);
        NPT_UInt64 duration = (after.ToNanos()-before.ToNanos())/100;
        printf("HashMap insert+erase: %d\t%d ns\t\t%d ns/item\n", i, (NPT_UInt32)duration, (NPT_UInt32)(duration/i));
    }
}