Ejemplo n.º 1
0
void LoadSINQFocus::initWorkSpace(NeXus::NXEntry& entry) {

	// read in the data
	NXData dataGroup = entry.openNXData("merged");
	NXInt data = dataGroup.openIntData();

	m_numberOfTubes = static_cast<size_t>(data.dim0());
	m_numberOfPixelsPerTube = 1;
	m_numberOfChannels = static_cast<size_t>(data.dim1());

	// dim0 * m_numberOfPixelsPerTube is the total number of detectors
	m_numberOfHistograms = m_numberOfTubes * m_numberOfPixelsPerTube;

	g_log.debug() << "NumberOfTubes: " << m_numberOfTubes << std::endl;
	g_log.debug() << "NumberOfPixelsPerTube: " << m_numberOfPixelsPerTube
			<< std::endl;
	g_log.debug() << "NumberOfChannels: " << m_numberOfChannels << std::endl;

	// Now create the output workspace
	// Might need to get this value from the number of monitors in the Nexus file
	// params:
	// workspace type,
	// total number of spectra + (number of monitors = 0),
	// bin boundaries = m_numberOfChannels + 1
	// Z/time dimension
	m_localWorkspace = WorkspaceFactory::Instance().create("Workspace2D",
			m_numberOfHistograms, m_numberOfChannels + 1, m_numberOfChannels);
	m_localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create(
			"TOF");
	m_localWorkspace->setYUnitLabel("Counts");

}
Ejemplo n.º 2
0
/**
 * Load Data details (number of tubes, channels, etc)
 *
 * @param entry First entry of nexus file
 */
void LoadILLReflectometry::loadDataDetails(NeXus::NXEntry &entry) {
  // PSD data D17 256 x 1 x 1000
  // PSD data Figaro 1 x 256 x 1000

  if (m_acqMode) {
    NXFloat timeOfFlight = entry.openNXFloat("instrument/PSD/time_of_flight");
    timeOfFlight.load();
    m_channelWidth = static_cast<double>(timeOfFlight[0]);
    m_numberOfChannels = size_t(timeOfFlight[1]);
    m_tofDelay = timeOfFlight[2];
    if (m_instrument == Supported::Figaro) {
      NXFloat eDelay = entry.openNXFloat("instrument/Theta/edelay_delay");
      eDelay.load();
      m_tofDelay += static_cast<double>(eDelay[0]);
    }
  } else { // monochromatic mode
    m_numberOfChannels = 1;
  }

  NXInt nChannels = entry.openNXInt("instrument/PSD/detsize");
  nChannels.load();
  m_numberOfHistograms = nChannels[0];

  g_log.debug()
      << "Please note that ILL reflectometry instruments have "
         "several tubes, after integration one "
         "tube remains in the Nexus file.\n Number of tubes (banks): 1\n";
  g_log.debug() << "Number of pixels per tube (number of detectors and number "
                   "of histograms): " << m_numberOfHistograms << '\n';
  g_log.debug() << "Number of time channels: " << m_numberOfChannels << '\n';
  g_log.debug() << "Channel width: " << m_channelWidth << " 1e-6 sec\n";
  g_log.debug() << "TOF delay: " << m_tofDelay << '\n';
}
/**
 * Load monitors data found in nexus file
 *
 * @param entry :: The Nexus entry
 *
 */
std::vector<std::vector<int>>
LoadILLReflectometry::loadMonitors(NeXus::NXEntry &entry) {
  // read in the data
  g_log.debug("Fetching monitor data...");

  NXData dataGroup = entry.openNXData("monitor1/data");
  NXInt data = dataGroup.openIntData();
  // load the counts from the file into memory
  data.load();

  std::vector<std::vector<int>> monitors(
      1); // vector of monitors with one entry
  std::vector<int> monitor1(data(), data() + data.size());
  monitors[0].swap(monitor1);

  // There is two monitors in data file, but the second one seems to be always 0
  dataGroup = entry.openNXData("monitor2/data");
  data = dataGroup.openIntData();
  data.load();

  std::vector<int> monitor2(data(), data() + data.size());
  monitors.push_back(monitor2);

  return monitors;
}
Ejemplo n.º 4
0
/**
 * Load data from nexus file
 *
 * @param entry :: The Nexus file entry
 * @param monitorsData :: Monitors data already loaded
 * @param xVals :: X values
 */
void LoadILLReflectometry::loadData(
    NeXus::NXEntry &entry, const std::vector<std::vector<int>> &monitorsData,
    const std::vector<double> &xVals) {
  g_log.debug("Loading data...");
  NXData dataGroup = entry.openNXData("data");
  NXInt data = dataGroup.openIntData();
  // load the counts from the file into memory
  data.load();
  const size_t nb_monitors = monitorsData.size();
  Progress progress(this, 0, 1, m_numberOfHistograms + nb_monitors);

  // write monitors
  if (!xVals.empty()) {
    HistogramData::BinEdges binEdges(xVals);
    // write data
    for (size_t j = 0; j < m_numberOfHistograms; ++j) {
      const int *data_p = &data(0, static_cast<int>(j), 0);
      const HistogramData::Counts counts(data_p, data_p + m_numberOfChannels);
      m_localWorkspace->setHistogram(j, binEdges, std::move(counts));
      progress.report();
      for (size_t im = 0; im < nb_monitors; ++im) {
        const int *monitor_p = monitorsData[im].data();
        const HistogramData::Counts counts(monitor_p,
                                           monitor_p + m_numberOfChannels);
        m_localWorkspace->setHistogram(im + m_numberOfHistograms, binEdges,
                                       std::move(counts));
        progress.report();
      }
    }
  } else
    g_log.debug("Vector of x values is empty");
}
Ejemplo n.º 5
0
void LoadSINQFocus::loadDataIntoTheWorkSpace(NeXus::NXEntry& entry) {

	// read in the data
	NXData dataGroup = entry.openNXData("merged");
	NXInt data = dataGroup.openIntData();
	data.load();

	std::vector<double> timeBinning = m_loader.getTimeBinningFromNexusPath(entry, "merged/time_binning");
	m_localWorkspace->dataX(0).assign(timeBinning.begin(),timeBinning.end());

	Progress progress(this, 0, 1, m_numberOfTubes * m_numberOfPixelsPerTube);
	size_t spec = 0;
	for (size_t i = 0; i < m_numberOfTubes; ++i) {
		for (size_t j = 0; j < m_numberOfPixelsPerTube; ++j) {
			if (spec > 0) {
				// just copy the time binning axis to every spectra
				m_localWorkspace->dataX(spec) = m_localWorkspace->readX(0);
			}
			// Assign Y
			int* data_p = &data(static_cast<int>(i), static_cast<int>(j));
			m_localWorkspace->dataY(spec).assign(data_p,
					data_p + m_numberOfChannels);
			// Assign Error
			MantidVec& E = m_localWorkspace->dataE(spec);
			std::transform(data_p, data_p + m_numberOfChannels, E.begin(),
					LoadSINQFocus::calculateError);
			++spec;
			progress.report();
		}
	}
	g_log.debug() << "Data loading into WS done...." << std::endl;
}
Ejemplo n.º 6
0
/**
 * Load single monitor
 *
 * @param entry :: The Nexus entry
 * @param monitor_data :: A std::string containing the Nexus path to the monitor
 *data
 * @return monitor :: A std::vector containing monitor values
 */
std::vector<int>
LoadILLReflectometry::loadSingleMonitor(NeXus::NXEntry &entry,
                                        const std::string &monitor_data) {
  NXData dataGroup = entry.openNXData(monitor_data);
  NXInt data = dataGroup.openIntData();
  // load counts
  data.load();
  return std::vector<int>(data(), data() + data.size());
}
/**
 * Load Data details (number of tubes, channels, etc)
 * @param entry First entry of nexus file
 */
void LoadILLReflectometry::loadDataDetails(NeXus::NXEntry &entry) {
  // read in the data
  NXData dataGroup = entry.openNXData("data");
  NXInt data = dataGroup.openIntData();

  m_numberOfTubes = static_cast<size_t>(data.dim0());
  m_numberOfPixelsPerTube = static_cast<size_t>(data.dim1());
  m_numberOfChannels = static_cast<size_t>(data.dim2());
}
Ejemplo n.º 8
0
/**
  * Init names of sample logs based on instrument specific NeXus file
  * entries
  *
  * @param entry :: the NeXus file entry
  */
void LoadILLReflectometry::initNames(NeXus::NXEntry &entry) {
  std::string instrumentNamePath = m_loader.findInstrumentNexusPath(entry);
  std::string instrumentName =
      entry.getString(instrumentNamePath.append("/name"));
  if (instrumentName.empty())
    throw std::runtime_error(
        "Cannot set the instrument name from the Nexus file!");
  boost::to_lower(instrumentName);
  if (instrumentName == "d17") {
    m_instrument = Supported::D17;
  } else if (instrumentName == "figaro") {
    m_instrument = Supported::Figaro;
  } else {
    std::ostringstream str;
    str << "Unsupported instrument: " << instrumentName << '.';
    throw std::runtime_error(str.str());
  }
  g_log.debug() << "Instrument name: " << instrumentName << '\n';
  if (m_instrument == Supported::D17) {
    m_detectorDistanceName = "det";
    m_detectorAngleName = "dan.value";
    m_sampleAngleName = "san.value";
    m_offsetFrom = "VirtualChopper";
    m_offsetName = "open_offset";
    m_chopper1Name = "Chopper1";
    m_chopper2Name = "Chopper2";
  } else if (m_instrument == Supported::Figaro) {
    // For Figaro, the DTR field contains the sample-to-detector distance
    // when the detector is at the horizontal position (angle = 0).
    m_detectorDistanceName = "DTR";
    m_detectorAngleName = "VirtualAxis.DAN_actual_angle";
    m_sampleAngleName = "CollAngle.actual_coll_angle";
    m_offsetFrom = "CollAngle";
    m_offsetName = "openOffset";
    // Figaro: find out which of the four choppers are used
    NXFloat firstChopper =
        entry.openNXFloat("instrument/ChopperSetting/firstChopper");
    firstChopper.load();
    NXFloat secondChopper =
        entry.openNXFloat("instrument/ChopperSetting/secondChopper");
    secondChopper.load();
    m_chopper1Name = "CH" + std::to_string(int(firstChopper[0]));
    m_chopper2Name = "CH" + std::to_string(int(secondChopper[0]));
  }
  // get acquisition mode
  NXInt acqMode = entry.openNXInt("acquisition_mode");
  acqMode.load();
  m_acqMode = acqMode[0];
  m_acqMode ? g_log.debug("TOF mode") : g_log.debug("Monochromatic Mode");
}
Ejemplo n.º 9
0
size_t
LoadILLSANS::loadDataIntoWorkspaceFromMonitors(NeXus::NXEntry &firstEntry,
                                               size_t firstIndex) {

  // let's find the monitors
  // For D33 should be monitor1 and monitor2
  for (std::vector<NXClassInfo>::const_iterator it =
           firstEntry.groups().begin();
       it != firstEntry.groups().end(); ++it) {
    if (it->nxclass == "NXmonitor") {
      NXData dataGroup = firstEntry.openNXData(it->nxname);
      NXInt data = dataGroup.openIntData();
      data.load();
      g_log.debug() << "Monitor: " << it->nxname << " dims = " << data.dim0()
                    << "x" << data.dim1() << "x" << data.dim2() << '\n';

      const size_t vectorSize = data.dim2() + 1;
      std::vector<double> positionsBinning;
      positionsBinning.reserve(vectorSize);

      for (size_t i = 0; i < vectorSize; i++)
        positionsBinning.push_back(static_cast<double>(i));

      // Assign X
      m_localWorkspace->dataX(firstIndex)
          .assign(positionsBinning.begin(), positionsBinning.end());
      // Assign Y
      m_localWorkspace->dataY(firstIndex).assign(data(), data() + data.dim2());
      // Assign Error
      MantidVec &E = m_localWorkspace->dataE(firstIndex);
      std::transform(data(), data() + data.dim2(), E.begin(),
                     LoadHelper::calculateStandardError);

      // Add average monitor counts to a property:
      double averageMonitorCounts =
          std::accumulate(data(), data() + data.dim2(), 0) /
          static_cast<double>(data.dim2());
      // make sure the monitor has values!
      if (averageMonitorCounts > 0) {
        API::Run &runDetails = m_localWorkspace->mutableRun();
        runDetails.addProperty("monitor", averageMonitorCounts, true);
      }

      firstIndex++;
    }
  }
  return firstIndex;
}
Ejemplo n.º 10
0
/**
   * Load monitors data found in nexus file
   *
   * @param entry :: The Nexus entry
   *
   */
std::vector<std::vector<int>>
LoadILLIndirect::loadMonitors(NeXus::NXEntry &entry) {
  // read in the data
  g_log.debug("Fetching monitor data...");

  NXData dataGroup = entry.openNXData("monitor/data");
  NXInt data = dataGroup.openIntData();
  // load the counts from the file into memory
  data.load();

  // For the moment, we are aware of only one monitor entry, but we keep the
  // generalized case of n monitors

  std::vector<std::vector<int>> monitors(1);
  std::vector<int> monitor(data(), data() + data.size());
  monitors[0].swap(monitor);
  return monitors;
}
Ejemplo n.º 11
0
    /**
    * Load data about the sample
    *   @param local_workspace :: The workspace to load the logs to.
    *   @param entry :: The Nexus entry
    */
    void LoadISISNexus2::loadSampleData(DataObjects::Workspace2D_sptr local_workspace, NXEntry & entry)
    {
      /// Sample geometry
      NXInt spb = entry.openNXInt("isis_vms_compat/SPB");
      // Just load the index we need, not the whole block. The flag is the third value in
      spb.load(1, 2);
      int geom_id = spb[0];
      local_workspace->mutableSample().setGeometryFlag(spb[0]);

      NXFloat rspb = entry.openNXFloat("isis_vms_compat/RSPB");
      // Just load the indices we need, not the whole block. The values start from the 4th onward
      rspb.load(3, 3);
      double thick(rspb[0]), height(rspb[1]), width(rspb[2]);
      local_workspace->mutableSample().setThickness(thick);
      local_workspace->mutableSample().setHeight(height);
      local_workspace->mutableSample().setWidth(width);

      g_log.debug() << "Sample geometry -  ID: " << geom_id << ", thickness: " << thick << ", height: " << height << ", width: " << width << "\n";
    }
Ejemplo n.º 12
0
/**
 * Read the bin masking information from the mantid_workspace_i/workspace group.
 * @param wksp_cls :: The data group
 * @param local_workspace :: The workspace to read into
 */
void LoadNexusProcessed::readBinMasking(NXData & wksp_cls, API::MatrixWorkspace_sptr local_workspace)
{
  if (wksp_cls.getDataSetInfo("masked_spectra").stat == NX_ERROR)
  {
    return;
  }
  NXInt spec = wksp_cls.openNXInt("masked_spectra");
  spec.load();
  NXInt bins = wksp_cls.openNXInt("masked_bins");
  bins.load();
  NXDouble weights = wksp_cls.openNXDouble("mask_weights");
  weights.load();
  const int n = spec.dim0();
  const int n1 = n - 1;
  for(int i = 0; i < n; ++i)
  {
    int si = spec(i,0);
    int j0 = spec(i,1);
    int j1 = i < n1 ? spec(i+1,1) : bins.dim0();
    for(int j = j0; j < j1; ++j)
    {
      local_workspace->flagMasked(si,bins[j],weights[j]);
    }
  }
}
Ejemplo n.º 13
0
    /**
    * Load a given period into the workspace
    * @param period :: The period number to load (starting from 1) 
    * @param entry :: The opened root entry node for accessing the monitor and data nodes
    * @param local_workspace :: The workspace to place the data in
    */
    void LoadISISNexus2::loadPeriodData(int64_t period, NXEntry & entry, DataObjects::Workspace2D_sptr local_workspace)
    {
      int64_t hist_index = 0;
      int64_t period_index(period - 1);
      int64_t first_monitor_spectrum = 0;

      if( !m_monitors.empty() )
      {
        first_monitor_spectrum = m_monitors.begin()->first;
        hist_index = first_monitor_spectrum - 1;
        for(std::map<int64_t,std::string>::const_iterator it = m_monitors.begin();
          it != m_monitors.end(); ++it)
        {
          NXData monitor = entry.openNXData(it->second);
          NXInt mondata = monitor.openIntData();
          m_progress->report("Loading monitor");
          mondata.load(1,static_cast<int>(period-1)); // TODO this is just wrong
          MantidVec& Y = local_workspace->dataY(hist_index);
          Y.assign(mondata(),mondata() + m_numberOfChannels);
          MantidVec& E = local_workspace->dataE(hist_index);
          std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
          local_workspace->getAxis(1)->spectraNo(hist_index) = static_cast<specid_t>(it->first);

          NXFloat timeBins = monitor.openNXFloat("time_of_flight");
          timeBins.load();
          local_workspace->dataX(hist_index).assign(timeBins(),timeBins() + timeBins.dim0());
          hist_index++;
        }

        if (first_monitor_spectrum > 1)
        {
          hist_index = 0;
        }
      }
      
      if( m_have_detector )
      {
        NXData nxdata = entry.openNXData("detector_1");
        NXDataSetTyped<int> data = nxdata.openIntData();
        data.open();
        //Start with thelist members that are lower than the required spectrum
        const int * const spec_begin = m_spec.get();
        std::vector<int64_t>::iterator min_end = m_spec_list.end();
        if( !m_spec_list.empty() )
        {
          // If we have a list, by now it is ordered so first pull in the range below the starting block range
          // Note the reverse iteration as we want the last one
          if( m_range_supplied )
          {
            min_end = std::find_if(m_spec_list.begin(), m_spec_list.end(), std::bind2nd(std::greater<int>(), m_spec_min));
          }

          for( std::vector<int64_t>::iterator itr = m_spec_list.begin(); itr < min_end; ++itr )
          {
            // Load each
            int64_t spectra_no = (*itr);
            // For this to work correctly, we assume that the spectrum list increases monotonically
            int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
            m_progress->report("Loading data");
            loadBlock(data, static_cast<int64_t>(1), period_index, filestart, hist_index, spectra_no, local_workspace);
          }
        }    

        if( m_range_supplied )
        {
          // When reading in blocks we need to be careful that the range is exactly divisible by the blocksize
          // and if not have an extra read of the left overs
          const int64_t blocksize = 8;
          const int64_t rangesize = (m_spec_max - m_spec_min + 1) - m_monitors.size();
          const int64_t fullblocks = rangesize / blocksize;
          int64_t read_stop = 0;
          int64_t spectra_no = m_spec_min;
          if (first_monitor_spectrum == 1)
          {// this if crudely checks whether the monitors are at the begining or end of the spectra
            spectra_no += static_cast<int>(m_monitors.size());
          }
          // For this to work correctly, we assume that the spectrum list increases monotonically
          int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
          if( fullblocks > 0 )
          {
            read_stop = (fullblocks * blocksize);// + m_monitors.size(); //RNT: I think monitors are excluded from the data
            //for( ; hist_index < read_stop; )
            for(int64_t i = 0; i < fullblocks; ++i)
            {
              loadBlock(data, blocksize, period_index, filestart, hist_index, spectra_no, local_workspace);
              filestart += blocksize;
            }
          }
          int64_t finalblock = rangesize - (fullblocks * blocksize);
          if( finalblock > 0 )
          {
            loadBlock(data, finalblock, period_index, filestart, hist_index, spectra_no,  local_workspace);
          }
        }

        //Load in the last of the list indices
        for( std::vector<int64_t>::iterator itr = min_end; itr < m_spec_list.end(); ++itr )
        {
          // Load each
          int64_t spectra_no = (*itr);
          // For this to work correctly, we assume that the spectrum list increases monotonically
          int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
          loadBlock(data, 1, period_index, filestart, hist_index, spectra_no, local_workspace);
        }
      }

      try
      {
        const std::string title = entry.getString("title");
        local_workspace->setTitle(title);
        // write the title into the log file (run object)
        local_workspace->mutableRun().addProperty("run_title", title, true);
      }
      catch (std::runtime_error &)
      {
        g_log.debug() << "No title was found in the input file, " << getPropertyValue("Filename") << std::endl;
      }
    }
Ejemplo n.º 14
0
void LoadILLSANS::initWorkSpace(NeXus::NXEntry &firstEntry,
                                const std::string &instrumentPath) {

  g_log.debug("Fetching data...");

  NXData dataGroup1 = firstEntry.openNXData("data1");
  NXInt dataRear = dataGroup1.openIntData();
  dataRear.load();
  NXData dataGroup2 = firstEntry.openNXData("data2");
  NXInt dataRight = dataGroup2.openIntData();
  dataRight.load();
  NXData dataGroup3 = firstEntry.openNXData("data3");
  NXInt dataLeft = dataGroup3.openIntData();
  dataLeft.load();
  NXData dataGroup4 = firstEntry.openNXData("data4");
  NXInt dataDown = dataGroup4.openIntData();
  dataDown.load();
  NXData dataGroup5 = firstEntry.openNXData("data5");
  NXInt dataUp = dataGroup5.openIntData();
  dataUp.load();
  g_log.debug("Checking channel numbers...");

  // check number of channels
  if (dataRear.dim2() != dataRight.dim2() &&
      dataRight.dim2() != dataLeft.dim2() &&
      dataLeft.dim2() != dataDown.dim2() && dataDown.dim2() != dataUp.dim2()) {
    throw std::runtime_error(
        "The time bins have not the same dimension for all the 5 detectors!");
  }
  int numberOfHistograms =
      dataRear.dim0() * dataRear.dim1() + dataRight.dim0() * dataRight.dim1() +
      dataLeft.dim0() * dataLeft.dim1() + dataDown.dim0() * dataDown.dim1() +
      dataUp.dim0() * dataUp.dim1();

  g_log.debug("Creating empty workspace...");
  // TODO : Must put this 2 somewhere else: number of monitors!
  createEmptyWorkspace(numberOfHistograms + 2, dataRear.dim2());

  loadMetaData(firstEntry, instrumentPath);

  std::vector<double> binningRear, binningRight, binningLeft, binningDown,
      binningUp;

  if (firstEntry.getFloat("mode") == 0.0) { // Not TOF
    g_log.debug("Getting default wavelength bins...");
    binningRear = m_defaultBinning;
    binningRight = m_defaultBinning;
    binningLeft = m_defaultBinning;
    binningDown = m_defaultBinning;
    binningUp = m_defaultBinning;

  } else {
    g_log.debug("Getting wavelength bins from the nexus file...");
    std::string binPathPrefix(instrumentPath + "/tof/tof_wavelength_detector");

    binningRear =
        m_loader.getTimeBinningFromNexusPath(firstEntry, binPathPrefix + "1");
    binningRight =
        m_loader.getTimeBinningFromNexusPath(firstEntry, binPathPrefix + "2");
    binningLeft =
        m_loader.getTimeBinningFromNexusPath(firstEntry, binPathPrefix + "3");
    binningDown =
        m_loader.getTimeBinningFromNexusPath(firstEntry, binPathPrefix + "4");
    binningUp =
        m_loader.getTimeBinningFromNexusPath(firstEntry, binPathPrefix + "5");
  }
  g_log.debug("Loading the data into the workspace...");
  size_t nextIndex = loadDataIntoWorkspaceFromMonitors(firstEntry, 0);
  nextIndex = loadDataIntoWorkspaceFromHorizontalTubes(dataRear, binningRear,
                                                       nextIndex);
  nextIndex = loadDataIntoWorkspaceFromVerticalTubes(dataRight, binningRight,
                                                     nextIndex);
  nextIndex =
      loadDataIntoWorkspaceFromVerticalTubes(dataLeft, binningLeft, nextIndex);
  nextIndex = loadDataIntoWorkspaceFromHorizontalTubes(dataDown, binningDown,
                                                       nextIndex);
  nextIndex =
      loadDataIntoWorkspaceFromHorizontalTubes(dataUp, binningUp, nextIndex);
}
/**
 * Load data found in nexus file
 *
 * @param entry :: The Nexus entry
 * @param monitorsData :: Monitors data already loaded
 *
 */
void LoadILLReflectometry::loadDataIntoTheWorkSpace(
    NeXus::NXEntry &entry, std::vector<std::vector<int>> monitorsData) {

  m_wavelength = entry.getFloat("wavelength");
  double ei = m_loader.calculateEnergy(m_wavelength);
  m_localWorkspace->mutableRun().addProperty<double>("Ei", ei,
                                                     true); // overwrite

  // read in the data
  NXData dataGroup = entry.openNXData("data");
  NXInt data = dataGroup.openIntData();
  // load the counts from the file into memory
  data.load();

  // Assign calculated bins to first X axis
  ////  m_localWorkspace->dataX(0).assign(detectorTofBins.begin(),
  /// detectorTofBins.end());

  size_t spec = 0;
  size_t nb_monitors = monitorsData.size();

  Progress progress(this, 0, 1,
                    m_numberOfTubes * m_numberOfPixelsPerTube + nb_monitors);

  // Assign tof values to first X axis

  // 1) Get some parameters from nexus file and properties
  //    Note : This should be changed following future D17/ILL nexus file
  //    improvement.
  const std::string propTOF0 = "monitor1.time_of_flight_0";
  auto tof_channel_width_prop = dynamic_cast<PropertyWithValue<double> *>(
      m_localWorkspace->run().getProperty(propTOF0));
  if (!tof_channel_width_prop)
    throw std::runtime_error("Could not cast (interpret) the property " +
                             propTOF0 + " (channel width) as a floating point "
                                        "value.");
  m_channelWidth = *tof_channel_width_prop; /* PAR1[95] */

  const std::string propTOF2 = "monitor1.time_of_flight_2";
  auto tof_delay_prop = dynamic_cast<PropertyWithValue<double> *>(
      m_localWorkspace->run().getProperty(propTOF2));
  if (!tof_delay_prop)
    throw std::runtime_error("Could not cast (interpret) the property " +
                             propTOF2 +
                             " (ToF delay) as a floating point value.");
  double tof_delay = *tof_delay_prop; /* PAR1[96] */

  double POFF = entry.getFloat("instrument/VirtualChopper/poff"); /* par1[54] */
  double open_offset =
      entry.getFloat("instrument/VirtualChopper/open_offset"); /* par1[56] */
  double mean_chop_1_phase = 0.0;
  double mean_chop_2_phase = 0.0;
  // [30/09/14] Test on availability of VirtualChopper data
  double chop1_speed = entry.getFloat(
      "instrument/VirtualChopper/chopper1_speed_average"); /* PAR2[109] */
  if (chop1_speed != 0.0) {
    // Virtual Chopper entries are valid

    // double mean_chop_1_phase =
    // entry.getFloat("instrument/VirtualChopper/chopper1_phase_average"); /*
    // PAR2[110] */
    // this entry seems to be wrong for now, we use the old one instead [YR
    // 5/06/2014]
    mean_chop_1_phase = entry.getFloat("instrument/Chopper1/phase");
    mean_chop_2_phase = entry.getFloat(
        "instrument/VirtualChopper/chopper2_phase_average"); /* PAR2[114] */

  } else {
    // Use Chopper values instead
    chop1_speed =
        entry.getFloat("instrument/Chopper1/rotation_speed"); /* PAR2[109] */

    mean_chop_1_phase = entry.getFloat("instrument/Chopper1/phase");
    mean_chop_2_phase = entry.getFloat("instrument/Chopper2/phase");
  }

  g_log.debug() << "m_numberOfChannels: " << m_numberOfChannels << std::endl;
  g_log.debug() << "m_channelWidth: " << m_channelWidth << std::endl;
  g_log.debug() << "tof_delay: " << tof_delay << std::endl;
  g_log.debug() << "POFF: " << POFF << std::endl;
  g_log.debug() << "open_offset: " << open_offset << std::endl;
  g_log.debug() << "mean_chop_2_phase: " << mean_chop_2_phase << std::endl;
  g_log.debug() << "mean_chop_1_phase: " << mean_chop_1_phase << std::endl;
  g_log.debug() << "chop1_speed: " << chop1_speed << std::endl;

  double t_TOF2 = 0.0;
  if (chop1_speed == 0.0) {
    g_log.debug() << "Warning: chop1_speed is null." << std::endl;
    // stay with t_TOF2 to O.0
  } else {
    // Thanks to Miguel Gonzales/ILL for this TOF formula
    t_TOF2 = -1.e6 * 60.0 * (POFF - 45.0 + mean_chop_2_phase -
                             mean_chop_1_phase + open_offset) /
             (2.0 * 360 * chop1_speed);
  }
  g_log.debug() << "t_TOF2: " << t_TOF2 << std::endl;

  // 2) Compute tof values
  for (size_t timechannelnumber = 0; timechannelnumber <= m_numberOfChannels;
       ++timechannelnumber) {
    double t_TOF1 =
        (static_cast<int>(timechannelnumber) + 0.5) * m_channelWidth +
        tof_delay;
    m_localWorkspace->dataX(0)[timechannelnumber] = t_TOF1 + t_TOF2;
  }

  // Load monitors
  for (size_t im = 0; im < nb_monitors; im++) {
    if (im > 0) {
      m_localWorkspace->dataX(im) = m_localWorkspace->readX(0);
    }

    // Assign Y
    int *monitor_p = monitorsData[im].data();
    m_localWorkspace->dataY(im)
        .assign(monitor_p, monitor_p + m_numberOfChannels);

    progress.report();
  }

  // Then Tubes
  for (size_t i = 0; i < m_numberOfTubes; ++i) {
    for (size_t j = 0; j < m_numberOfPixelsPerTube; ++j) {

      // just copy the time binning axis to every spectra
      m_localWorkspace->dataX(spec + nb_monitors) = m_localWorkspace->readX(0);

      //// Assign Y
      int *data_p = &data(static_cast<int>(i), static_cast<int>(j), 0);
      m_localWorkspace->dataY(spec + nb_monitors)
          .assign(data_p, data_p + m_numberOfChannels);

      // Assign Error
      MantidVec &E = m_localWorkspace->dataE(spec + nb_monitors);
      std::transform(data_p, data_p + m_numberOfChannels, E.begin(),
                     LoadHelper::calculateStandardError);

      ++spec;
      progress.report();
    }
  } // for m_numberOfTubes

} // LoadILLIndirect::loadDataIntoTheWorkSpace
Ejemplo n.º 16
0
/**
   * Load data found in nexus file
   *
   * @param entry :: The Nexus entry
   * @param monitorsData :: Monitors data already loaded
   *
   */
void LoadILLIndirect::loadDataIntoTheWorkSpace(
    NeXus::NXEntry &entry, std::vector<std::vector<int>> monitorsData) {

  // read in the data
  NXData dataGroup = entry.openNXData("data");
  NXInt data = dataGroup.openIntData();
  // load the counts from the file into memory
  data.load();

  // Same for Simple Detectors
  NXData dataSDGroup = entry.openNXData("dataSD");
  NXInt dataSD = dataSDGroup.openIntData();
  // load the counts from the file into memory
  dataSD.load();

  // Assign calculated bins to first X axis
  ////  m_localWorkspace->dataX(0).assign(detectorTofBins.begin(),
  /// detectorTofBins.end());

  size_t spec = 0;
  size_t nb_monitors = monitorsData.size();
  size_t nb_SD_detectors = dataSD.dim0();

  Progress progress(this, 0, 1, m_numberOfTubes * m_numberOfPixelsPerTube +
                                    nb_monitors + nb_SD_detectors);

  // Assign fake values to first X axis <<to be completed>>
  for (size_t i = 0; i <= m_numberOfChannels; ++i) {
    m_localWorkspace->dataX(0)[i] = double(i);
  }

  // First, Monitor
  for (size_t im = 0; im < nb_monitors; im++) {

    if (im > 0) {
      m_localWorkspace->dataX(im) = m_localWorkspace->readX(0);
    }

    // Assign Y
    int *monitor_p = monitorsData[im].data();
    m_localWorkspace->dataY(im)
        .assign(monitor_p, monitor_p + m_numberOfChannels);

    progress.report();
  }

  // Then Tubes
  for (size_t i = 0; i < m_numberOfTubes; ++i) {
    for (size_t j = 0; j < m_numberOfPixelsPerTube; ++j) {

      // just copy the time binning axis to every spectra
      m_localWorkspace->dataX(spec + nb_monitors) = m_localWorkspace->readX(0);

      // Assign Y
      int *data_p = &data(static_cast<int>(i), static_cast<int>(j), 0);
      m_localWorkspace->dataY(spec + nb_monitors)
          .assign(data_p, data_p + m_numberOfChannels);

      // Assign Error
      MantidVec &E = m_localWorkspace->dataE(spec + nb_monitors);
      std::transform(data_p, data_p + m_numberOfChannels, E.begin(),
                     LoadILLIndirect::calculateError);

      ++spec;
      progress.report();
    }
  } // for m_numberOfTubes

  // Then add Simple Detector (SD)
  for (int i = 0; i < dataSD.dim0(); ++i) {

    // just copy again the time binning axis to every spectra
    m_localWorkspace->dataX(spec + nb_monitors + i) =
        m_localWorkspace->readX(0);

    // Assign Y
    int *dataSD_p = &dataSD(i, 0, 0);
    m_localWorkspace->dataY(spec + nb_monitors + i)
        .assign(dataSD_p, dataSD_p + m_numberOfChannels);

    progress.report();
  }

} // LoadILLIndirect::loadDataIntoTheWorkSpace
Ejemplo n.º 17
0
/**
* Load a given period into the workspace
* @param period :: The period number to load (starting from 1)
* @param entry :: The opened root entry node for accessing the monitor and data
* nodes
* @param local_workspace :: The workspace to place the data in
* @param update_spectra2det_mapping :: reset spectra-detector map to the one
* calculated earlier. (Warning! -- this map has to be calculated correctly!)
*/
void
LoadISISNexus2::loadPeriodData(int64_t period, NXEntry &entry,
                               DataObjects::Workspace2D_sptr &local_workspace,
                               bool update_spectra2det_mapping) {
  int64_t hist_index = 0;
  int64_t period_index(period - 1);
  // int64_t first_monitor_spectrum = 0;

  for (auto block = m_spectraBlocks.begin(); block != m_spectraBlocks.end();
       ++block) {
    if (block->isMonitor) {
      NXData monitor = entry.openNXData(block->monName);
      NXInt mondata = monitor.openIntData();
      m_progress->report("Loading monitor");
      mondata.load(1, static_cast<int>(period - 1)); // TODO this is just wrong
      MantidVec &Y = local_workspace->dataY(hist_index);
      Y.assign(mondata(), mondata() + m_monBlockInfo.numberOfChannels);
      MantidVec &E = local_workspace->dataE(hist_index);
      std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);

      if (update_spectra2det_mapping) {
        // local_workspace->getAxis(1)->setValue(hist_index,
        // static_cast<specid_t>(it->first));
        auto spec = local_workspace->getSpectrum(hist_index);
        specid_t specID = m_specInd2specNum_map.at(hist_index);
        spec->setDetectorIDs(
            m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
        spec->setSpectrumNo(specID);
      }

      NXFloat timeBins = monitor.openNXFloat("time_of_flight");
      timeBins.load();
      local_workspace->dataX(hist_index)
          .assign(timeBins(), timeBins() + timeBins.dim0());
      hist_index++;
    } else if (m_have_detector) {
      NXData nxdata = entry.openNXData("detector_1");
      NXDataSetTyped<int> data = nxdata.openIntData();
      data.open();
      // Start with the list members that are lower than the required spectrum
      const int *const spec_begin = m_spec.get();
      // When reading in blocks we need to be careful that the range is exactly
      // divisible by the block-size
      // and if not have an extra read of the left overs
      const int64_t blocksize = 8;
      const int64_t rangesize = block->last - block->first + 1;
      const int64_t fullblocks = rangesize / blocksize;
      int64_t spectra_no = block->first;

      // For this to work correctly, we assume that the spectrum list increases
      // monotonically
      int64_t filestart =
          std::lower_bound(spec_begin, m_spec_end, spectra_no) - spec_begin;
      if (fullblocks > 0) {
        for (int64_t i = 0; i < fullblocks; ++i) {
          loadBlock(data, blocksize, period_index, filestart, hist_index,
                    spectra_no, local_workspace);
          filestart += blocksize;
        }
      }
      int64_t finalblock = rangesize - (fullblocks * blocksize);
      if (finalblock > 0) {
        loadBlock(data, finalblock, period_index, filestart, hist_index,
                  spectra_no, local_workspace);
      }
    }
  }

  try {
    const std::string title = entry.getString("title");
    local_workspace->setTitle(title);
    // write the title into the log file (run object)
    local_workspace->mutableRun().addProperty("run_title", title, true);
  } catch (std::runtime_error &) {
    g_log.debug() << "No title was found in the input file, "
                  << getPropertyValue("Filename") << std::endl;
  }
}