Ejemplo n.º 1
0
    void generateConstraints(vector<Node*>& nodes, vector<Edge*>& edges,vector<SimpleConstraint*>& cs,Dim dim) {
        unsigned nevents=2*nodes.size()+2*edges.size();
        events=new Event*[nevents];
        unsigned ctr=0;
        if(dim==HORIZONTAL) {
            //cout << "Scanning top to bottom..." << endl;
            for(unsigned i=0;i<nodes.size();i++) {
                Node *v=nodes[i];
                v->scanpos=v->x;
                events[ctr++]=new Event(Open,v,v->ymin+0.01);
                events[ctr++]=new Event(Close,v,v->ymax-0.01);
            }
            for(unsigned i=0;i<edges.size();i++) {
                Edge *e=edges[i];
                events[ctr++]=new Event(Open,e,e->ymin-1);
                events[ctr++]=new Event(Close,e,e->ymax+1);
            }
        } else {
            //cout << "Scanning left to right..." << endl;
            for(unsigned i=0;i<nodes.size();i++) {
                Node *v=nodes[i];
                v->scanpos=v->y;
                events[ctr++]=new Event(Open,v,v->xmin+0.01);
                events[ctr++]=new Event(Close,v,v->xmax-0.01);
            }
            for(unsigned i=0;i<edges.size();i++) {
                Edge *e=edges[i];
                events[ctr++]=new Event(Open,e,e->xmin-1);
                events[ctr++]=new Event(Close,e,e->xmax+1);
            }
        }
        qsort((Event*)events, (size_t)nevents, sizeof(Event*), compare_events );

        NodeSet openNodes;
        vector<Edge*> openEdges;
        for(unsigned i=0;i<nevents;i++) {
            Event *e=events[i];
            Node *v=e->v;
            if(v!=NULL) {
                v->open = true;
                //printf("NEvent@%f,nid=%d,(%f,%f),w=%f,h=%f,openn=%d,opene=%d\n",e->pos,v->id,v->x,v->y,v->width,v->height,(int)openNodes.size(),(int)openEdges.size());
                Node *l=NULL, *r=NULL;
                if(!openNodes.empty()) {
                    // it points to the first node to the right of v
                    NodeSet::iterator it=openNodes.lower_bound(v);
                    // step left to find the first node to the left of v
                    if(it--!=openNodes.begin()) {
                        l=*it;
                        //printf("l=%d\n",l->id);
                    }
                    it=openNodes.upper_bound(v);
                    if(it!=openNodes.end()) {
                        r=*it;
                    }
                }
                vector<Node*> L;
                sortNeighbours(v,l,r,e->pos,openEdges,L,nodes,dim);
                //printf("L=[");
                for(unsigned i=0;i<L.size();i++) {
                    //printf("%d ",L[i]->id);
                }
                //printf("]\n");
                
                // Case A: create constraints between adjacent edges skipping edges joined
                // to l,v or r.
                Node* lastNode=NULL;
                for(vector<Node*>::iterator i=L.begin();i!=L.end();i++) {
                    if((*i)->dummy) {
                        // node is on an edge
                        Edge *edge=(*i)->edge;
                        if(!edge->isEnd(v->id)
                                &&((l!=NULL&&!edge->isEnd(l->id))||l==NULL)
                                &&((r!=NULL&&!edge->isEnd(r->id))||r==NULL)) {
                            if(lastNode!=NULL) {
                                //printf("  Rule A: Constraint: v%d +g <= v%d\n",lastNode->id,(*i)->id);
                                cs.push_back(createConstraint(lastNode,*i,dim));
                            }
                            lastNode=*i;
                        }
                    } else {
                        // is an actual node
                        lastNode=NULL;
                    }
                }
                // Case B: create constraints for all the edges connected to the right of
                // their own end, also in the scan line
                vector<Node*> skipList;
                lastNode=NULL;
                for(vector<Node*>::iterator i=L.begin();i!=L.end();i++) {
                    if((*i)->dummy) {
                        // node is on an edge
                        if(lastNode!=NULL) {
                            if((*i)->edge->isEnd(lastNode->id)) {
                                skipList.push_back(*i);
                            } else {
                                for(vector<Node*>::iterator j=skipList.begin();
                                        j!=skipList.end();j++) {
                                    //printf("  Rule B: Constraint: v%d +g <= v%d\n",(*j)->id,(*i)->id);
                                    cs.push_back(createConstraint(*j,*i,dim));
                                }
                                skipList.clear();
                            }
                        }
                    } else {
                        // is an actual node
                        skipList.clear();
                        skipList.push_back(*i);
                        lastNode=*i;
                    }
                }
                skipList.clear();
                // Case C: reverse of B
                lastNode=NULL;
                for(vector<Node*>::reverse_iterator i=L.rbegin();i!=L.rend();i++) {
                    if((*i)->dummy) {
                        // node is on an edge
                        if(lastNode!=NULL) {
                            if((*i)->edge->isEnd(lastNode->id)) {
                                skipList.push_back(*i);
                            } else {
                                for(vector<Node*>::iterator j=skipList.begin();
                                        j!=skipList.end();j++) {
                                    //printf("  Rule C: Constraint: v%d +g <= v%d\n",(*i)->id,(*j)->id);
                                    cs.push_back(createConstraint(*i,*j,dim));
                                }
                                skipList.clear();
                            }
                        }
                    } else {
                        // is an actual node
                        skipList.clear();
                        skipList.push_back(*i);
                        lastNode=*i;
                    }
                }
                if(e->type==Close) {
                    if(l!=NULL) cs.push_back(createConstraint(l,v,dim));
                    if(r!=NULL) cs.push_back(createConstraint(v,r,dim));
                }
            }
            if(e->type==Open) {
                if(v!=NULL) {
                    openNodes.insert(v);
                } else {
                    //printf("EdgeOpen@%f,eid=%d,(u,v)=(%d,%d)\n", e->pos,e->e->id,e->e->startNode,e->e->endNode);
                    e->e->openInd=openEdges.size();
                    openEdges.push_back(e->e);
                }
            } else {
                // Close
                if(v!=NULL) {
                    openNodes.erase(v);
                    v->open=false;
                } else {
                    //printf("EdgeClose@%f,eid=%d,(u,v)=(%d,%d)\n", e->pos,e->e->id,e->e->startNode,e->e->endNode);
                    unsigned i=e->e->openInd;
                    openEdges[i]=openEdges[openEdges.size()-1];
                    openEdges[i]->openInd=i;
                    openEdges.resize(openEdges.size()-1);
                }
            }
            delete e;
        }
        delete [] events;
    }