CRhinoCommand::result CCommandSampleTriangulatePolygon::RunCommand( const CRhinoCommandContext& context )
{
  CRhinoGetObject go;
  go.SetCommandPrompt( L"Select closed planar polygon to triangulate" );
  go.SetGeometryFilter( CRhinoGetObject::curve_object );
  go.SetGeometryFilter( CRhinoGetObject::closed_curve );
  go.EnableSubObjectSelect( FALSE );
  go.GetObjects( 1, 1 );
  if( go.CommandResult() != CRhinoCommand::success )
    return go.CommandResult();

  const CRhinoObjRef& ref = go.Object(0);

  ON_3dPointArray vertices;

  const ON_PolylineCurve* pc = ON_PolylineCurve::Cast( ref.Curve() );
  if( pc )
  {
    vertices = pc->m_pline;
  }
  else
  {
    const ON_NurbsCurve* nc = ON_NurbsCurve::Cast( ref.Curve() );
    if( nc )
      nc->IsPolyline( &vertices );
  }

  if( vertices.Count() < 5 )
  {
    RhinoApp().Print( L"Curve not polygon with at least four sides.\n" );
    return CRhinoCommand::nothing;
  }

  int* triangles = (int*)onmalloc( (vertices.Count()-3) * sizeof(int) * 3 );
  if( 0 == triangles )
    return CRhinoCommand::failure; // out of memory
  
  memset( triangles, 0, (vertices.Count()-3) * sizeof(int) * 3 );

  int rc = RhinoTriangulate3dPolygon( vertices.Count()-1, 3, (const double*)vertices.Array(), 3, triangles);
  if( 0 == rc )
  {
    int i;
    for( i = 0; i < vertices.Count()-3; i++ )
    {
      ON_Polyline pline;
      pline.Append( vertices[triangles[i * 3]] );
      pline.Append( vertices[triangles[i * 3 + 1]] );
      pline.Append( vertices[triangles[i * 3 + 2]] );
      pline.Append( pline[0] );
      context.m_doc.AddCurveObject( pline );
    }
    context.m_doc.Redraw();
  }

  onfree( triangles );

  return CRhinoCommand::success;
}
Ejemplo n.º 2
0
RH_C_FUNCTION ON_SimpleArray<ON_Polyline*>* ON_Intersect_MeshMesh1(const ON_Mesh* pConstMeshA, const ON_Mesh* pConstMeshB, int* polyline_count, double tolerance)
{
  ON_SimpleArray<ON_Polyline*>* rc = NULL;
  if( polyline_count ) *polyline_count = 0;
  if( pConstMeshA && pConstMeshB && polyline_count )
  {
    ON_ClassArray<ON_MMX_Polyline> plines;
    ON_ClassArray<ON_MMX_Polyline> overlapplines;
    if(::ON_MeshMeshIntersect(pConstMeshA, pConstMeshB, plines, overlapplines, tolerance, tolerance))
    {
      rc = new ON_SimpleArray<ON_Polyline*>();
      for( int i=0; i<plines.Count(); i++ )
      {
        ON_Polyline* pl = new ON_Polyline();
        const ON_MMX_Polyline& mmxpoly = plines[i];
        int c = mmxpoly.Count();
        for( int j=0; j<c; j++ )
          pl->Append(mmxpoly[j].m_A.m_P);
        pl->Clean(ON_ZERO_TOLERANCE);
        if( !pl->IsValid() )
        {
          delete pl;
          continue;
        }
        rc->Append(pl);
      }
      for( int i=0; i<overlapplines.Count(); i++ )
      {
        ON_Polyline* pl = new ON_Polyline();
        const ON_MMX_Polyline& mmxpoly = overlapplines[i];
        int c = mmxpoly.Count();
        for( int j=0; i<c; i++ )
          pl->Append(mmxpoly[j].m_A.m_P);
        pl->Clean(ON_ZERO_TOLERANCE);
        if( !pl->IsValid() )
        {
          delete pl;
          continue;
        }
        rc->Append(pl);
      }
      *polyline_count = rc->Count();
    }
  }
  return rc;
}
Ejemplo n.º 3
0
int TriIntersections::Faces(
    ON_ClassArray<ON_3dPoint[3]> UNUSED(faces)
    )
{
    if (intersections.Count() == 0) {
	return 0;
    }

    /* first we get an array of all the segments we can use to make
     * our faces.
     */
    ON_SimpleArray<ON_Line> segments; /*the segments we have to make faces */
    ON_SimpleArray<bool> flippable; /* whether or not the segment has direction */
    ON_SimpleArray<bool> segexternal; /* whether or not the segment is from the edge */
    for (int i = 0; i < intersections.Count(); i++) {
	segments.Append(intersections[i]);
	segments.Append(intersections[i]);
	flippable.Append(false);
	flippable.Append(false);
	segexternal.Append(false);
	segexternal.Append(false);
    }

    for (int i = 0; i < 3; i++) {
	if (edges[i].Count() == 2) { /* the edge was never intersected */
	    segments.Append(ON_Line(edges[i][0], edges[i][0]));
	    flippable.Append(true);
	    segexternal.Append(true);
	} else {
	    for (int j = 0; j < (edges[i].Count() - 1); j++) {
		if (dir[i][j] == dir[i][j + 1]) {
		    /* this indicates an error in the intersection data */
		    return -1;
		} else if (dir[i][j] == 0 || dir[i][j+1] == 1) {
		    segments.Append(ON_Line(edges[i][j], edges[i][j+1]));
		    flippable.Append(false);
		    segexternal.Append(true);
		} else {
		    segments.Append(ON_Line(edges[i][j+1], edges[i][j]));
		    flippable.Append(false);
		    segexternal.Append(true);
		}
	    }
	}
    }

    /* Now that the segments are all set up it's time to make them
     * into faces.
     */
    ON_ClassArray<ON_Polyline> outlines;
    ON_SimpleArray<bool> line_external; /* stores whether each polyline is internal */
    ON_Polyline outline;
    while (segments.Count() != 0) {
	outline.Append(segments[0].from);
	outline.Append(segments[0].to);
	segments.Remove(0);

	int i = 0;
	bool ext = false; /* keeps track of the ternality of the path we're assembling */
	while (!outline.IsClosed(tol)) {
	    if (i >= segments.Count()) {
		return -1;
	    } else if (VNEAR_EQUAL(segments[i].from, outline[outline.Count() - 1], tol)) {
		outline.Append(segments[i].to);
	    } else if (VNEAR_EQUAL(segments[i].to, outline[0], tol)) {
		outline.Insert(0, segments[i].from);
	    } else if (VNEAR_EQUAL(segments[i].from, outline[0], tol) && flippable[i]) {
		outline.Insert(0, segments[i].to);
	    } else if (VNEAR_EQUAL(segments[i].to, outline[outline.Count() - 1], tol) && flippable[i]) {
		outline.Append(segments[i].from);
	    } else {
		i++;
		continue;
	    }

	    /* only executed when we append edge i */
	    segments.Remove(i);
	    flippable.Remove(i);
	    ext &= segexternal[i];
	    segexternal.Remove(i);
	    i = 0;
	}
	outlines.Append(outline);
	line_external.Append(ext);
    }
    /* XXX - now we need to setup the ternality tree for the paths */

    return 0;
}