Ejemplo n.º 1
0
/// @copydoc ResourceHandler::CacheResource()
bool FontResourceHandler::CacheResource(
    ObjectPreprocessor* pObjectPreprocessor,
    Resource* pResource,
    const String& rSourceFilePath )
{
    HELIUM_ASSERT( pObjectPreprocessor );
    HELIUM_ASSERT( pResource );

    Font* pFont = Reflect::AssertCast< Font >( pResource );

    // Load the font into memory ourselves in order to make sure we properly support Unicode file names.
    FileStream* pFileStream = File::Open( rSourceFilePath, FileStream::MODE_READ );
    if( !pFileStream )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            TXT( "FontResourceHandler: Source file for font resource \"%s\" failed to open properly.\n" ),
            *rSourceFilePath );

        return false;
    }

    uint64_t fileSize64 = static_cast< uint64_t >( pFileStream->GetSize() );
    if( fileSize64 > SIZE_MAX )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "FontResourceHandler: Font file \"%s\" exceeds the maximum addressable size of data in memory for " )
              TXT( "this platform and will not be cached.\n" ) ),
            *rSourceFilePath );

        delete pFileStream;

        return false;
    }

    size_t fileSize = static_cast< size_t >( fileSize64 );

    uint8_t* pFileData = new uint8_t [ fileSize ];
    if( !pFileData )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "FontResourceHandler: Failed to allocate %" ) TPRIuSZ TXT( " bytes for resource data for font " )
              TXT( "\"%s\".\n" ) ),
            fileSize,
            *rSourceFilePath );

        delete pFileStream;

        return false;
    }

    size_t bytesRead = pFileStream->Read( pFileData, 1, fileSize );
    delete pFileStream;

    if( bytesRead != fileSize )
    {
        HELIUM_TRACE(
            TRACE_WARNING,
            ( TXT( "FontResourceHandler: Attempted to read %" ) TPRIuSZ TXT( " bytes from font resource file \"%s\", " )
              TXT( "but only %" ) TPRIuSZ TXT( " bytes were read successfully.\n" ) ),
            fileSize,
            *rSourceFilePath,
            bytesRead );
    }

    // Create the font face.
    FT_Library pLibrary = GetStaticLibrary();
    HELIUM_ASSERT( pLibrary );

    FT_Face pFace = NULL;
    FT_Error error = FT_New_Memory_Face( pLibrary, pFileData, static_cast< FT_Long >( bytesRead ), 0, &pFace );
    if( error != 0 )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            TXT( "FontResourceHandler: Failed to create font face from resource file \"%s\".\n" ),
            *rSourceFilePath );

        delete [] pFileData;

        return false;
    }

    // Set the appropriate font size.
    int32_t pointSize = Font::Float32ToFixed26x6( pFont->GetPointSize() );
    uint32_t dpi = pFont->GetDpi();

    error = FT_Set_Char_Size( pFace, pointSize, pointSize, dpi, dpi );
    if( error != 0 )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            TXT( "FontResourceHandler: Failed to set size of font resource \"%s\".\n" ),
            *rSourceFilePath );

        FT_Done_Face( pFace );
        delete [] pFileData;

        return false;
    }

    // Get the general font size information.
    FT_Size pSize = pFace->size;
    HELIUM_ASSERT( pSize );

    int32_t ascender = pSize->metrics.ascender;
    int32_t descender = pSize->metrics.descender;
    int32_t height = pSize->metrics.height;
    int32_t maxAdvance = pSize->metrics.max_advance;

    // Make sure that all characters in the font will fit on a single texture sheet (note that we also need at least a
    // pixel on each side in order to pad each glyph).
    uint16_t textureSheetWidth = Max< uint16_t >( pFont->GetTextureSheetWidth(), 1 );
    uint16_t textureSheetHeight = Max< uint16_t >( pFont->GetTextureSheetHeight(), 1 );

    int32_t integerHeight = ( height + ( 1 << 6 ) - 1 ) >> 6;
    if( integerHeight + 2 > textureSheetHeight )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "FontResourceHandler: Font height (%" ) TPRId32 TXT( ") exceeds the texture sheet height (%" )
              TPRIu16 TXT( ") for font resource \"%s\".\n" ) ),
            integerHeight,
            textureSheetHeight,
            *pResource->GetPath().ToString() );

        FT_Done_Face( pFace );
        delete [] pFileData;

        return false;
    }

    int32_t integerMaxAdvance = ( maxAdvance + ( 1 << 6 ) - 1 ) >> 6;
    if( integerMaxAdvance + 2 > textureSheetWidth )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "FontResourceHandler: Maximum character advance (%" ) TPRId32 TXT( ") exceeds the texture sheet " )
              TXT( "width (%" ) TPRIu16 TXT( ") for font resource \"%s\".\n" ) ),
            integerMaxAdvance,
            textureSheetWidth,
            *pResource->GetPath().ToString() );

        FT_Done_Face( pFace );
        delete [] pFileData;

        return false;
    }

    // Allocate a buffer for building our texture sheets.
    uint_fast32_t texturePixelCount =
        static_cast< uint_fast32_t >( textureSheetWidth ) * static_cast< uint_fast32_t >( textureSheetHeight );
    uint8_t* pTextureBuffer = new uint8_t [ texturePixelCount ];
    HELIUM_ASSERT( pTextureBuffer );
    if( !pTextureBuffer )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "FontResourceHandler: Failed to allocate %" ) TPRIuFAST32 TXT( " bytes for texture resource " )
              TXT( "buffer data while caching font resource \"%s\".\n" ) ),
            texturePixelCount,
            *pResource->GetPath().ToString() );

        FT_Done_Face( pFace );
        delete [] pFileData;

        return false;
    }

    MemoryZero( pTextureBuffer, texturePixelCount );

    // Build the texture sheets for our glyphs.
    Font::ECompression textureCompression = pFont->GetTextureCompression();
    bool bAntialiased = pFont->GetAntialiased();

    DynArray< DynArray< uint8_t > > textureSheets;
    DynArray< Font::Character > characters;

    uint16_t penX = 1;
    uint16_t penY = 1;
    uint16_t lineHeight = 0;

    FT_Int32 glyphLoadFlags = FT_LOAD_RENDER;
    if( !bAntialiased )
    {
        glyphLoadFlags |= FT_LOAD_TARGET_MONO;
    }

    for( uint_fast32_t codePoint = 0; codePoint <= UNICODE_CODE_POINT_MAX; ++codePoint )
    {
        // Check whether the current code point is contained within the font.
        FT_UInt characterIndex = FT_Get_Char_Index( pFace, static_cast< FT_ULong >( codePoint ) );
        if( characterIndex == 0 )
        {
            continue;
        }

        // Load and render the glyph for the current character.
        HELIUM_VERIFY( FT_Load_Glyph( pFace, characterIndex, glyphLoadFlags ) == 0 );

        FT_GlyphSlot pGlyph = pFace->glyph;
        HELIUM_ASSERT( pGlyph );

        // Proceed to the next line in the texture sheet or the next sheet itself if we don't have enough room in the
        // current line/sheet.
        HELIUM_ASSERT( pGlyph->bitmap.rows >= 0 );
        HELIUM_ASSERT( pGlyph->bitmap.width >= 0 );
        uint_fast32_t glyphRowCount = static_cast< uint32_t >( pGlyph->bitmap.rows );
        uint_fast32_t glyphWidth = static_cast< uint32_t >( pGlyph->bitmap.width );

        if( penX + glyphWidth + 1 >= textureSheetWidth )
        {
            penX = 1;

            if( penY + glyphRowCount + 1 >= textureSheetHeight )
            {
                CompressTexture(
                    pTextureBuffer,
                    textureSheetWidth,
                    textureSheetHeight,
                    textureCompression,
                    textureSheets );
                MemoryZero( pTextureBuffer, texturePixelCount );

                penY = 1;
            }
            else
            {
                penY += lineHeight + 1;
            }

            lineHeight = 0;
        }

        // Copy the character data from the glyph bitmap to the texture sheet.
        int_fast32_t glyphPitch = pGlyph->bitmap.pitch;

        const uint8_t* pGlyphBuffer = pGlyph->bitmap.buffer;
        HELIUM_ASSERT( pGlyphBuffer || glyphRowCount == 0 );

        uint8_t* pTexturePixel =
            pTextureBuffer + static_cast< size_t >( penY ) * static_cast< size_t >( textureSheetWidth ) + penX;

        if( bAntialiased )
        {
            // Anti-aliased fonts are rendered as 8-bit grayscale images, so just copy the data as-is.
            for( uint_fast32_t rowIndex = 0; rowIndex < glyphRowCount; ++rowIndex )
            {
                MemoryCopy( pTexturePixel, pGlyphBuffer, glyphWidth );
                pGlyphBuffer += glyphPitch;
                pTexturePixel += textureSheetWidth;
            }
        }
        else
        {
            // Fonts without anti-aliasing are rendered as 1-bit monochrome images, so we need to manually convert each
            // row to 8-bit grayscale.
            for( uint_fast32_t rowIndex = 0; rowIndex < glyphRowCount; ++rowIndex )
            {
                const uint8_t* pGlyphPixelBlock = pGlyphBuffer;
                pGlyphBuffer += glyphPitch;

                uint8_t* pCurrentTexturePixel = pTexturePixel;
                pTexturePixel += textureSheetWidth;

                uint_fast32_t remainingPixelCount = glyphWidth;
                while( remainingPixelCount >= 8 )
                {
                    remainingPixelCount -= 8;

                    uint8_t pixelBlock = *pGlyphPixelBlock;
                    ++pGlyphPixelBlock;

                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 7 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 6 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 5 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 4 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 3 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 2 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 1 ) ) ? 255 : 0 );
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & ( 1 << 0 ) ) ? 255 : 0 );
                }

                uint8_t pixelBlock = *pGlyphPixelBlock;
                uint8_t mask = ( 1 << 7 );
                while( remainingPixelCount != 0 )
                {
                    *( pCurrentTexturePixel++ ) = ( ( pixelBlock & mask ) ? 255 : 0 );
                    mask >>= 1;
                    --remainingPixelCount;
                }
            }
        }

        // Store the character information in our character array.
        Font::Character* pCharacter = characters.New();
        HELIUM_ASSERT( pCharacter );
        pCharacter->codePoint = static_cast< uint32_t >( codePoint );

        pCharacter->imageX = penX;
        pCharacter->imageY = penY;
        pCharacter->imageWidth = static_cast< uint16_t >( glyphWidth );
        pCharacter->imageHeight = static_cast< uint16_t >( glyphRowCount );

        pCharacter->width = pGlyph->metrics.width;
        pCharacter->height = pGlyph->metrics.height;
        pCharacter->bearingX = pGlyph->metrics.horiBearingX;
        pCharacter->bearingY = pGlyph->metrics.horiBearingY;
        pCharacter->advance = pGlyph->metrics.horiAdvance;

        HELIUM_ASSERT( textureSheets.GetSize() < UINT8_MAX );
        pCharacter->texture = static_cast< uint8_t >( static_cast< uint8_t >( textureSheets.GetSize() ) );

        // Update the pen location as well as the maximum line height as appropriate based on the current line height.
        penX += static_cast< uint16_t >( glyphWidth ) + 1;

        HELIUM_ASSERT( glyphRowCount <= UINT16_MAX );
        lineHeight = Max< uint16_t >( lineHeight, static_cast< uint16_t >( glyphRowCount ) );
    }

    // Compress and store the last texture in the sheet.
    if( !characters.IsEmpty() )
    {
        CompressTexture( pTextureBuffer, textureSheetWidth, textureSheetHeight, textureCompression, textureSheets );
    }

    // Done processing the font itself, so free some resources.
    delete [] pTextureBuffer;

    FT_Done_Face( pFace );
    delete [] pFileData;

    // Cache the font data.
    size_t characterCountActual = characters.GetSize();
    HELIUM_ASSERT( characterCountActual <= UINT32_MAX );
    uint32_t characterCount = static_cast< uint32_t >( characterCountActual );

    size_t textureCountActual = textureSheets.GetSize();
    HELIUM_ASSERT( textureCountActual < UINT8_MAX );
    uint8_t textureCount = static_cast< uint8_t >( textureCountActual );

    BinarySerializer persistentDataSerializer;
    for( size_t platformIndex = 0; platformIndex < static_cast< size_t >( Cache::PLATFORM_MAX ); ++platformIndex )
    {
        PlatformPreprocessor* pPreprocessor = pObjectPreprocessor->GetPlatformPreprocessor(
            static_cast< Cache::EPlatform >( platformIndex ) );
        if( !pPreprocessor )
        {
            continue;
        }

        persistentDataSerializer.SetByteSwapping( pPreprocessor->SwapBytes() );
        persistentDataSerializer.BeginSerialize();

        persistentDataSerializer << ascender;
        persistentDataSerializer << descender;
        persistentDataSerializer << height;
        persistentDataSerializer << maxAdvance;
        persistentDataSerializer << characterCount;
        persistentDataSerializer << textureCount;

        for( size_t characterIndex = 0; characterIndex < characterCountActual; ++characterIndex )
        {
            characters[ characterIndex ].Serialize( persistentDataSerializer );
        }

        persistentDataSerializer.EndSerialize();

        Resource::PreprocessedData& rPreprocessedData = pResource->GetPreprocessedData(
            static_cast< Cache::EPlatform >( platformIndex ) );
        rPreprocessedData.persistentDataBuffer = persistentDataSerializer.GetPropertyStreamBuffer();
        rPreprocessedData.subDataBuffers = textureSheets;
        rPreprocessedData.bLoaded = true;
    }

    return true;
}
Ejemplo n.º 2
0
/// @copydoc ResourceHandler::CacheResource()
bool ShaderVariantResourceHandler::CacheResource(
    ObjectPreprocessor* pObjectPreprocessor,
    Resource* pResource,
    const String& rSourceFilePath )
{
    HELIUM_ASSERT( pObjectPreprocessor );
    HELIUM_ASSERT( pResource );

    ShaderVariant* pVariant = Reflect::AssertCast< ShaderVariant >( pResource );

    // Parse the shader type and user option index from the variant name.
    Name variantName = pVariant->GetName();
    const tchar_t* pVariantNameString = *variantName;
    HELIUM_ASSERT( pVariantNameString );

    tchar_t shaderTypeCharacter = pVariantNameString[ 0 ];
    HELIUM_ASSERT( shaderTypeCharacter != TXT( '\0' ) );

    RShader::EType shaderType;
    switch( shaderTypeCharacter )
    {
    case TXT( 'v' ):
    {
        shaderType = RShader::TYPE_VERTEX;
        break;
    }

    case TXT( 'p' ):
    {
        shaderType = RShader::TYPE_PIXEL;
        break;
    }

    default:
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: Failed to determine shader type from the name of object " )
              TXT( "\"%s\".\n" ) ),
            *pVariant->GetPath().ToString() );

        return false;
    }
    }

    uint32_t userOptionIndex = 0;
    ++pVariantNameString;
    int parseResult;
#if HELIUM_UNICODE
#if HELIUM_CC_CL
    parseResult = swscanf_s( pVariantNameString, TXT( "%" ) TSCNu32, &userOptionIndex );
#else
    parseResult = swscanf( pVariantNameString, TXT( "%" ) TSCNu32, &userOptionIndex );
#endif
#else
#if HELIUM_CC_CL
    parseResult = sscanf_s( pVariantNameString, TXT( "%" ) TSCNu32, &userOptionIndex );
#else
    parseResult = sscanf( pVariantNameString, TXT( "%" ) TSCNu32, &userOptionIndex );
#endif
#endif
    if( parseResult != 1 )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: Failed to parse user shader option set index from the name of " )
              TXT( "option \"%s\".\n" ) ),
            *pVariant->GetPath().ToString() );

        return false;
    }

    // Get the parent shader.
    Shader* pShader = Reflect::AssertCast< Shader >( pVariant->GetOwner() );
    HELIUM_ASSERT( pShader );
    HELIUM_ASSERT( pShader->GetAnyFlagSet( GameObject::FLAG_PRECACHED ) );

    // Acquire the user preprocessor option set associated with the target shader type and user option set index.
    const Shader::Options& rUserOptions = pShader->GetUserOptions();

    DynArray< Name > toggleNames;
    DynArray< Shader::SelectPair > selectPairs;
    rUserOptions.GetOptionSetFromIndex( shaderType, userOptionIndex, toggleNames, selectPairs );

    DynArray< PlatformPreprocessor::ShaderToken > shaderTokens;

    size_t userToggleNameCount = toggleNames.GetSize();
    for( size_t toggleNameIndex = 0; toggleNameIndex < userToggleNameCount; ++toggleNameIndex )
    {
        PlatformPreprocessor::ShaderToken* pToken = shaderTokens.New();
        HELIUM_ASSERT( pToken );
        StringConverter< tchar_t, char >::Convert( pToken->name, *toggleNames[ toggleNameIndex ] );
        pToken->definition = "1";
    }

    size_t userSelectPairCount = selectPairs.GetSize();
    for( size_t selectPairIndex = 0; selectPairIndex < userSelectPairCount; ++selectPairIndex )
    {
        const Shader::SelectPair& rPair = selectPairs[ selectPairIndex ];

        PlatformPreprocessor::ShaderToken* pToken = shaderTokens.New();
        HELIUM_ASSERT( pToken );
        StringConverter< tchar_t, char >::Convert( pToken->name, *rPair.name );
        pToken->definition = "1";

        pToken = shaderTokens.New();
        HELIUM_ASSERT( pToken );
        StringConverter< tchar_t, char >::Convert( pToken->name, *rPair.choice );
        pToken->definition = "1";
    }

    size_t userShaderTokenCount = shaderTokens.GetSize();

    // Load the entire shader resource into memory.
    FileStream* pSourceFileStream = File::Open( rSourceFilePath, FileStream::MODE_READ );
    if( !pSourceFileStream )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: Source file for shader variant resource \"%s\" failed to open " )
              TXT( "properly.\n" ) ),
            *pVariant->GetPath().ToString() );

        return false;
    }

    int64_t size64 = pSourceFileStream->GetSize();
    HELIUM_ASSERT( size64 != -1 );

    HELIUM_ASSERT( static_cast< uint64_t >( size64 ) <= static_cast< size_t >( -1 ) );
    if( size64 > static_cast< uint64_t >( static_cast< size_t >( -1 ) ) )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: Source file for shader resource \"%s\" is too large to fit " )
              TXT( "into memory for preprocessing.\n" ) ),
            *pShader->GetPath().ToString() );

        delete pSourceFileStream;

        return false;
    }

    size_t size = static_cast< size_t >( size64 );

    DefaultAllocator allocator;
    void* pShaderSource = allocator.Allocate( size );
    HELIUM_ASSERT( pShaderSource );
    if( !pShaderSource )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: Failed to allocate %" ) TPRIuSZ TXT( " bytes for loading the " )
              TXT( "source data of \"%s\" for preprocessing.\n" ) ),
            size,
            *pShader->GetPath().ToString() );

        delete pSourceFileStream;

        return false;
    }

    BufferedStream( pSourceFileStream ).Read( pShaderSource, 1, size );

    delete pSourceFileStream;

    // Compile each variant of system options for each shader profile in each supported target platform.
    const Shader::Options& rSystemOptions = pShader->GetSystemOptions();
    size_t systemOptionSetCount = rSystemOptions.ComputeOptionSetCount( shaderType );
    if( systemOptionSetCount > UINT32_MAX )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            ( TXT( "ShaderVariantResourceHandler: System option set count (%" ) TPRIuSZ TXT( ") in shader \"%s\" " )
              TXT( "exceeds the maximum supported (%" ) TPRIuSZ TXT( ").\n" ) ),
            systemOptionSetCount,
            *pShader->GetPath().ToString(),
            static_cast< size_t >( UINT32_MAX ) );

        allocator.Free( pShaderSource );

        return false;
    }

    uint32_t systemOptionSetCount32 = static_cast< uint32_t >( systemOptionSetCount );

    for( size_t platformIndex = 0; platformIndex < static_cast< size_t >( Cache::PLATFORM_MAX ); ++platformIndex )
    {
        PlatformPreprocessor* pPreprocessor = pObjectPreprocessor->GetPlatformPreprocessor(
                static_cast< Cache::EPlatform >( platformIndex ) );
        if( !pPreprocessor )
        {
            continue;
        }

        Resource::PreprocessedData& rPreprocessedData = pVariant->GetPreprocessedData(
                    static_cast< Cache::EPlatform >( platformIndex ) );

        ShaderVariant::PersistentResourceData persistentResourceData;
        persistentResourceData.m_resourceCount = systemOptionSetCount32;
        SaveObjectToPersistentDataBuffer(&persistentResourceData, rPreprocessedData.persistentDataBuffer);

        size_t shaderProfileCount = pPreprocessor->GetShaderProfileCount();
        size_t shaderCount = shaderProfileCount * systemOptionSetCount;

        DynArray< DynArray< uint8_t > >& rSubDataBuffers = rPreprocessedData.subDataBuffers;
        rSubDataBuffers.Reserve( shaderCount );
        rSubDataBuffers.Resize( 0 );
        rSubDataBuffers.Resize( shaderCount );
        rSubDataBuffers.Trim();

        rPreprocessedData.bLoaded = true;
    }

//     DynArray< uint8_t > compiledCodeBuffer;
//     DynArray< ShaderConstantBufferInfo > constantBuffers, pcSm4ConstantBuffers;
//     DynArray< ShaderSamplerInfo > samplerInputs;
//     DynArray< ShaderTextureInfo > textureInputs;

    CompiledShaderData csd_pc_sm4;

    for( size_t systemOptionSetIndex = 0; systemOptionSetIndex < systemOptionSetCount; ++systemOptionSetIndex )
    {
        rSystemOptions.GetOptionSetFromIndex( shaderType, systemOptionSetIndex, toggleNames, selectPairs );

        size_t systemToggleNameCount = toggleNames.GetSize();
        for( size_t toggleNameIndex = 0; toggleNameIndex < systemToggleNameCount; ++toggleNameIndex )
        {
            PlatformPreprocessor::ShaderToken* pToken = shaderTokens.New();
            HELIUM_ASSERT( pToken );
            StringConverter< tchar_t, char >::Convert( pToken->name, *toggleNames[ toggleNameIndex ] );
            pToken->definition = "1";
        }

        size_t systemSelectPairCount = selectPairs.GetSize();
        for( size_t selectPairIndex = 0; selectPairIndex < systemSelectPairCount; ++selectPairIndex )
        {
            const Shader::SelectPair& rPair = selectPairs[ selectPairIndex ];

            PlatformPreprocessor::ShaderToken* pToken = shaderTokens.New();
            HELIUM_ASSERT( pToken );
            StringConverter< tchar_t, char >::Convert( pToken->name, *rPair.name );
            pToken->definition = "1";

            pToken = shaderTokens.New();
            HELIUM_ASSERT( pToken );
            StringConverter< tchar_t, char >::Convert( pToken->name, *rPair.choice );
            pToken->definition = "1";
        }

        // Compile for PC shader model 4 first so that we can get the constant buffer information.
        PlatformPreprocessor* pPreprocessor = pObjectPreprocessor->GetPlatformPreprocessor( Cache::PLATFORM_PC );
        HELIUM_ASSERT( pPreprocessor );

        csd_pc_sm4.compiledCodeBuffer.Resize( 0 );
        bool bCompiled = CompileShader(
                             pVariant,
                             pPreprocessor,
                             Cache::PLATFORM_PC,
                             ShaderProfile::PC_SM4,
                             shaderType,
                             pShaderSource,
                             size,
                             shaderTokens,
                             csd_pc_sm4.compiledCodeBuffer );
        if( !bCompiled )
        {
            HELIUM_TRACE(
                TRACE_ERROR,
                ( TXT( "ShaderVariantResourceHandler: Failed to compile shader for PC shader model 4, which is " )
                  TXT( "needed for reflection purposes.  Additional shader targets will not be built.\n" ) ) );
        }
        else
        {
            csd_pc_sm4.constantBuffers.Resize( 0 );
            csd_pc_sm4.samplerInputs.Resize( 0 );
            csd_pc_sm4.textureInputs.Resize( 0 );
            bool bReadConstantBuffers = pPreprocessor->FillShaderReflectionData(
                                            ShaderProfile::PC_SM4,
                                            csd_pc_sm4.compiledCodeBuffer.GetData(),
                                            csd_pc_sm4.compiledCodeBuffer.GetSize(),
                                            csd_pc_sm4.constantBuffers,
                                            csd_pc_sm4.samplerInputs,
                                            csd_pc_sm4.textureInputs );
            if( !bReadConstantBuffers )
            {
                HELIUM_TRACE(
                    TRACE_ERROR,
                    ( TXT( "ShaderVariantResourceHandler: Failed to read reflection information for PC shader " )
                      TXT( "model 4.  Additional shader targets will not be built.\n" ) ) );
            }
            else
            {
                Resource::PreprocessedData& rPcPreprocessedData = pVariant->GetPreprocessedData(
                            Cache::PLATFORM_PC );
                DynArray< DynArray< uint8_t > >& rPcSubDataBuffers = rPcPreprocessedData.subDataBuffers;
                DynArray< uint8_t >& rPcSm4SubDataBuffer =
                    rPcSubDataBuffers[ ShaderProfile::PC_SM4 * systemOptionSetCount + systemOptionSetIndex ];

                Cache::WriteCacheObjectToBuffer(csd_pc_sm4, rPcSm4SubDataBuffer);

                // FOR EACH PLATFORM
                for( size_t platformIndex = 0;
                        platformIndex < static_cast< size_t >( Cache::PLATFORM_MAX );
                        ++platformIndex )
                {
                    PlatformPreprocessor* pPreprocessor = pObjectPreprocessor->GetPlatformPreprocessor(
                            static_cast< Cache::EPlatform >( platformIndex ) );
                    if( !pPreprocessor )
                    {
                        continue;
                    }

                    // GET PLATFORM'S SUBDATA BUFFER
                    Resource::PreprocessedData& rPreprocessedData = pVariant->GetPreprocessedData(
                                static_cast< Cache::EPlatform >( platformIndex ) );
                    DynArray< DynArray< uint8_t > >& rSubDataBuffers = rPreprocessedData.subDataBuffers;

                    size_t shaderProfileCount = pPreprocessor->GetShaderProfileCount();
                    for( size_t shaderProfileIndex = 0;
                            shaderProfileIndex < shaderProfileCount;
                            ++shaderProfileIndex )
                    {
                        CompiledShaderData csd;

                        // Already cached PC shader model 4...
                        if( shaderProfileIndex == ShaderProfile::PC_SM4 && platformIndex == Cache::PLATFORM_PC )
                        {
                            continue;
                        }

                        bCompiled = CompileShader(
                                        pVariant,
                                        pPreprocessor,
                                        platformIndex,
                                        shaderProfileIndex,
                                        shaderType,
                                        pShaderSource,
                                        size,
                                        shaderTokens,
                                        csd.compiledCodeBuffer );
                        if( !bCompiled )
                        {
                            continue;
                        }

                        csd.constantBuffers = csd_pc_sm4.constantBuffers;
                        csd.samplerInputs.Resize( 0 );
                        csd.textureInputs.Resize( 0 );
                        bReadConstantBuffers = pPreprocessor->FillShaderReflectionData(
                                                   shaderProfileIndex,
                                                   csd.compiledCodeBuffer.GetData(),
                                                   csd.compiledCodeBuffer.GetSize(),
                                                   csd.constantBuffers,
                                                   csd.samplerInputs,
                                                   csd.textureInputs );
                        if( !bReadConstantBuffers )
                        {
                            continue;
                        }

                        DynArray< uint8_t >& rTargetSubDataBuffer =
                            rSubDataBuffers[ shaderProfileIndex * systemOptionSetCount + systemOptionSetIndex ];
                        Cache::WriteCacheObjectToBuffer(csd, rTargetSubDataBuffer);
                    }
                }
            }
        }

        // Trim the system tokens off the shader token list for the next pass.
        shaderTokens.Resize( userShaderTokenCount );
    }

    allocator.Free( pShaderSource );

    return true;
}
/// @copydoc ResourceHandler::CacheResource()
bool MaterialResourceHandler::CacheResource(
    AssetPreprocessor* pAssetPreprocessor,
    Resource* pResource,
    const String& /*rSourceFilePath*/ )
{
    HELIUM_ASSERT( pAssetPreprocessor );
    HELIUM_ASSERT( pResource );

    Material* pMaterial = Reflect::AssertCast< Material >( pResource );
    Shader* pShader = pMaterial->GetShader();
    bool failedToWriteASubdata = false;
    
    StrongPtr< Material::PersistentResourceData > resource_data( new Material::PersistentResourceData() );

    // Compute the shader variant indices from the user options selected in the material, as the array of indices in
    // the material is not yet initialized.
    //uint32_t shaderVariantIndices[ RShader::TYPE_MAX ];
    if( pShader )
    {
        const Shader::Options& rShaderUserOptions = pShader->GetUserOptions();
        const DynamicArray< Shader::SelectPair >& rMaterialUserOptions = pMaterial->GetUserOptions();

        for( size_t shaderTypeIndex = 0; shaderTypeIndex < RShader::TYPE_MAX; ++shaderTypeIndex )
        {
            size_t optionSetIndex = rShaderUserOptions.GetOptionSetIndex(
                static_cast< RShader::EType >( shaderTypeIndex ),
                rMaterialUserOptions.GetData(),
                rMaterialUserOptions.GetSize() );
            resource_data->m_shaderVariantIndices[ shaderTypeIndex ] = static_cast< uint32_t >( optionSetIndex );
        }
    }
    else
    {
        MemoryZero( resource_data->m_shaderVariantIndices, sizeof( resource_data->m_shaderVariantIndices ) );
    }

    size_t float1ParameterCount = pMaterial->GetFloat1ParameterCount();
    size_t float2ParameterCount = pMaterial->GetFloat2ParameterCount();
    size_t float3ParameterCount = pMaterial->GetFloat3ParameterCount();
    size_t float4ParameterCount = pMaterial->GetFloat4ParameterCount();

    Name parameterConstantBufferName = Material::GetParameterConstantBufferName();
    
    for( size_t platformIndex = 0; platformIndex < static_cast< size_t >( Cache::PLATFORM_MAX ); ++platformIndex )
    {
        PlatformPreprocessor* pPreprocessor = pAssetPreprocessor->GetPlatformPreprocessor(
            static_cast< Cache::EPlatform >( platformIndex ) );

        if( !pPreprocessor )
        {
            continue;
        }

        Resource::PreprocessedData& rPreprocessedData = pResource->GetPreprocessedData(
            static_cast< Cache::EPlatform >( platformIndex ) );
        SaveObjectToPersistentDataBuffer(resource_data.Get(), rPreprocessedData.persistentDataBuffer);
        rPreprocessedData.bLoaded = true;

        // Write out the parameter constant buffer data as the resource sub-data.
        size_t shaderProfileCount = pPreprocessor->GetShaderProfileCount();

        DynamicArray< DynamicArray< uint8_t > >& rSubDataBuffers = rPreprocessedData.subDataBuffers;
        rSubDataBuffers.Clear();
        rSubDataBuffers.Reserve( shaderProfileCount * RShader::TYPE_MAX );
        rSubDataBuffers.Resize( shaderProfileCount * RShader::TYPE_MAX );

        if( pShader )
        {
    //        deserializer.SetByteSwapping( bSwapBytes );

            for( size_t shaderTypeIndex = 0; shaderTypeIndex < RShader::TYPE_MAX; ++shaderTypeIndex )
            {
                RShader::EType shaderType = static_cast< RShader::EType >( shaderTypeIndex );
                size_t variantLoadId = pShader->BeginLoadVariant(
                    shaderType,
                    resource_data->m_shaderVariantIndices[ shaderTypeIndex ] );
                if( IsInvalid( variantLoadId ) )
                {
                    continue;
                }

                ShaderVariantPtr spVariant;
                while( !pShader->TryFinishLoadVariant( variantLoadId, spVariant ) )
                {
                }

                ShaderVariant* pVariant = spVariant;
                if( !pVariant )
                {
                    continue;
                }

                const Resource::PreprocessedData& rVariantData = pVariant->GetPreprocessedData(
                    static_cast< Cache::EPlatform >( platformIndex ) );
                HELIUM_ASSERT( rVariantData.bLoaded );

                const DynamicArray< DynamicArray< uint8_t > >& rVariantSubDataBuffers = rVariantData.subDataBuffers;
                size_t variantSubDataCount = rVariantSubDataBuffers.GetSize();
                HELIUM_ASSERT( variantSubDataCount != 0 );
                HELIUM_ASSERT( variantSubDataCount % shaderProfileCount == 0 );
                size_t systemOptionSetCount = variantSubDataCount / shaderProfileCount;

                for( size_t profileIndex = 0; profileIndex < shaderProfileCount; ++profileIndex )
                {
                    // Get the first option set of each profile
                    const DynamicArray< uint8_t >& rVariantSubData =
                        rVariantSubDataBuffers[ profileIndex * systemOptionSetCount ];

                    Reflect::ObjectPtr variantSubDataObjectPtr = 
                        Cache::ReadCacheObjectFromBuffer(rVariantSubData);

                    if (!variantSubDataObjectPtr.ReferencesObject())
                    {
                        HELIUM_TRACE(
                            TraceLevels::Error,
                            "MaterialResourceHandler: A shader variant subdata could not be read. (Option Set: %d Profile: %d)",
                            0,
                            profileIndex );

                        failedToWriteASubdata = true;
                    }
                    else if (!variantSubDataObjectPtr->IsA(Reflect::GetMetaClass<CompiledShaderData>()))
                    {
                        HELIUM_TRACE(
                            TraceLevels::Error,
                            "MaterialResourceHandler: A shader variant subdata was of an unexpected type. (Option Set: %d Profile: %d)\n",
                            0,
                            profileIndex );

                        failedToWriteASubdata = true;

                    }
                    else
                    {
                        CompiledShaderData &csd = *Reflect::AssertCast<CompiledShaderData>(variantSubDataObjectPtr.Get());
                        

                        size_t bufferCount = csd.constantBuffers.GetSize();
                        for( size_t bufferIndex = 0; bufferIndex < bufferCount; ++bufferIndex )
                        {
                            const ShaderConstantBufferInfo& rBufferInfo = csd.constantBuffers[ bufferIndex ];
                            if( rBufferInfo.name != parameterConstantBufferName )
                            {
                                continue;
                            }

                            size_t bufferSize = rBufferInfo.size;

                            DynamicArray< uint8_t >& rMaterialSubData =
                                rSubDataBuffers[ profileIndex * RShader::TYPE_MAX + shaderTypeIndex ];
                            rMaterialSubData.Clear();
                            rMaterialSubData.Reserve( bufferSize );
                            rMaterialSubData.Add( 0, bufferSize );

                            DynamicMemoryStream memoryStream( &rMaterialSubData );
                            ByteSwappingStream byteSwapStream( &memoryStream );
                            Stream& rOutputStream = memoryStream;
                            //Stream& rOutputStream =
                            //    ( bSwapBytes
                            //    ? static_cast< Stream& >( byteSwapStream )
                            //    : static_cast< Stream& >( memoryStream ) );

                            const DynamicArray< ShaderConstantInfo >& rConstants = rBufferInfo.constants;
                            size_t constantCount = rConstants.GetSize();
                            for( size_t constantIndex = 0; constantIndex < constantCount; ++constantIndex )
                            {
                                const ShaderConstantInfo& rConstantInfo = rConstants[ constantIndex ];
                                Name constantName = rConstantInfo.name;

                                size_t parameterIndex;
                                for( parameterIndex = 0; parameterIndex < float1ParameterCount; ++parameterIndex )
                                {
                                    const Material::Float1Parameter& rParameter = pMaterial->GetFloat1Parameter(
                                        parameterIndex );
                                    if( rParameter.name == constantName )
                                    {
                                        rOutputStream.Seek( rConstantInfo.offset, SeekOrigins::Begin );
                                        rOutputStream.Write(
                                            &rParameter.value,
                                            sizeof( float32_t ),
                                            Min< size_t >( 1, rConstantInfo.size / sizeof( float32_t ) ) );

                                        break;
                                    }
                                }

                                if( parameterIndex >= float1ParameterCount )
                                {
                                    for( parameterIndex = 0; parameterIndex < float2ParameterCount; ++parameterIndex )
                                    {
                                        const Material::Float2Parameter& rParameter = pMaterial->GetFloat2Parameter(
                                            parameterIndex );
                                        if( rParameter.name == constantName )
                                        {
                                            rOutputStream.Seek( rConstantInfo.offset, SeekOrigins::Begin );
                                            rOutputStream.Write(
                                                &rParameter.value,
                                                sizeof( float32_t ),
                                                Min< size_t >( 2, rConstantInfo.size / sizeof( float32_t ) ) );

                                            break;
                                        }
                                    }

                                    if( parameterIndex >= float2ParameterCount )
                                    {
                                        for( parameterIndex = 0;
                                            parameterIndex < float3ParameterCount;
                                            ++parameterIndex )
                                        {
                                            const Material::Float3Parameter& rParameter = pMaterial->GetFloat3Parameter(
                                                parameterIndex );
                                            if( rParameter.name == constantName )
                                            {
                                                rOutputStream.Seek( rConstantInfo.offset, SeekOrigins::Begin );
                                                rOutputStream.Write(
                                                    &rParameter.value,
                                                    sizeof( float32_t ),
                                                    Min< size_t >( 3, rConstantInfo.size / sizeof( float32_t ) ) );

                                                break;
                                            }
                                        }

                                        if( parameterIndex >= float3ParameterCount )
                                        {
                                            for( parameterIndex = 0;
                                                parameterIndex < float4ParameterCount;
                                                ++parameterIndex )
                                            {
                                                const Material::Float4Parameter& rParameter =
                                                    pMaterial->GetFloat4Parameter( parameterIndex );
                                                if( rParameter.name == constantName )
                                                {
                                                    rOutputStream.Seek(
                                                        rConstantInfo.offset,
                                                        SeekOrigins::Begin );
                                                    rOutputStream.Write(
                                                        &rParameter.value,
                                                        sizeof( float32_t ),
                                                        Min< size_t >( 4, rConstantInfo.size / sizeof( float32_t ) ) );

                                                    break;
                                                }
                                            }
                                        }
                                    }
                                }
                            }

                            break;
                        }
                    }
                }
            }
        }
    }


    return !failedToWriteASubdata;
}
Ejemplo n.º 4
0
/// @copydoc ResourceHandler::CacheResource()
bool MeshResourceHandler::CacheResource(
                                        ObjectPreprocessor* pObjectPreprocessor,
                                        Resource* pResource,
                                        const String& rSourceFilePath )
{
    HELIUM_ASSERT( pObjectPreprocessor );
    HELIUM_ASSERT( pResource );

    // Load and parse the mesh data.
    DynArray< StaticMeshVertex< 1 > > vertices;
    DynArray< uint16_t > indices;
    DynArray< uint16_t > sectionVertexCounts;
    DynArray< uint32_t > sectionTriangleCounts;
    DynArray< FbxSupport::BoneData > bones;
    DynArray< FbxSupport::BlendData > vertexBlendData;
    DynArray< uint8_t > skinningPaletteMap;
    bool bLoadSuccess = m_rFbxSupport.LoadMesh(
        rSourceFilePath,
        vertices,
        indices,
        sectionVertexCounts,
        sectionTriangleCounts,
        bones,
        vertexBlendData,
        skinningPaletteMap );
    if( !bLoadSuccess )
    {
        HELIUM_TRACE(
            TRACE_ERROR,
            TXT( "MeshResourceHandler::CacheResource(): Failed to build mesh from source file \"%s\".\n" ),
            *rSourceFilePath );

        return false;
    }

    size_t vertexCountActual = vertices.GetSize();
    HELIUM_ASSERT( vertexCountActual <= UINT32_MAX );
    uint32_t vertexCount = static_cast< uint32_t >( vertexCountActual );

    size_t indexCount = indices.GetSize();
    size_t triangleCountActual = indexCount;
    HELIUM_ASSERT( triangleCountActual % 3 == 0 );
    triangleCountActual /= 3;
    HELIUM_ASSERT( triangleCountActual <= UINT32_MAX );
    uint32_t triangleCount = static_cast< uint32_t >( triangleCountActual );

    size_t boneCountActual = bones.GetSize();
    HELIUM_ASSERT( boneCountActual <= UINT8_MAX );
#if !HELIUM_USE_GRANNY_ANIMATION
    uint8_t boneCount = static_cast< uint8_t >( boneCountActual );
#endif

    // Compute the mesh bounding box.
    Simd::AaBox bounds;
    if( vertexCountActual != 0 )
    {
        const float32_t* pPosition = vertices[ 0 ].position;
        Simd::Vector3 position( pPosition[ 0 ], pPosition[ 1 ], pPosition[ 2 ] );
        bounds.Set( position, position );
        for( size_t vertexIndex = 1; vertexIndex < vertexCountActual; ++vertexIndex )
        {
            pPosition = vertices[ vertexIndex ].position;
            bounds.Expand( Simd::Vector3( pPosition[ 0 ], pPosition[ 1 ], pPosition[ 2 ] ) );
        }
    }

#if HELIUM_USE_GRANNY_ANIMATION
    Granny::MeshCachingData grannyMeshCachingData;
    grannyMeshCachingData.BuildResourceData( bones );
#endif  // HELIUM_USE_GRANNY_ANIMATION

    // Cache the data for each supported platform.
    BinarySerializer serializer;
    for( size_t platformIndex = 0; platformIndex < static_cast< size_t >( Cache::PLATFORM_MAX ); ++platformIndex )
    {
        PlatformPreprocessor* pPreprocessor = pObjectPreprocessor->GetPlatformPreprocessor(
            static_cast< Cache::EPlatform >( platformIndex ) );
        if( !pPreprocessor )
        {
            continue;
        }

        Resource::PreprocessedData& rPreprocessedData = pResource->GetPreprocessedData(
            static_cast< Cache::EPlatform >( platformIndex ) );

        DynArray< DynArray< uint8_t > >& rSubDataBuffers = rPreprocessedData.subDataBuffers;
        rSubDataBuffers.Reserve( 2 );
        rSubDataBuffers.Resize( 2 );
        rSubDataBuffers.Trim();

        serializer.SetByteSwapping( pPreprocessor->SwapBytes() );

        // Serialize the buffer sizes and mesh bounds first.
        serializer.BeginSerialize();
        serializer << Serializer::WrapDynArray( sectionVertexCounts );
        serializer << Serializer::WrapDynArray( sectionTriangleCounts );
        serializer << Serializer::WrapDynArray( skinningPaletteMap );
        serializer << vertexCount;
        serializer << triangleCount;
        serializer << bounds;

#if HELIUM_USE_GRANNY_ANIMATION
        grannyMeshCachingData.CachePlatformResourceData( pPreprocessor, serializer );
#else
        serializer << boneCount;

        for( size_t boneIndex = 0; boneIndex < boneCount; ++boneIndex )
        {
            FbxSupport::BoneData& rBoneData = bones[ boneIndex ];
            serializer << rBoneData.name;
            serializer << rBoneData.parentIndex;
            serializer << rBoneData.referenceTransform;
        }
#endif

        serializer.EndSerialize();

        rPreprocessedData.persistentDataBuffer = serializer.GetPropertyStreamBuffer();

        // Serialize the vertex buffer.  If the mesh is a skinned mesh, the vertices will need to be converted to
        // and serialized as an array of SkinnedMeshVertex structs.
        serializer.BeginSerialize();

        if( boneCountActual == 0 )
        {
            for( size_t vertexIndex = 0; vertexIndex < vertexCountActual; ++vertexIndex )
            {
                vertices[ vertexIndex ].Serialize( serializer );
            }
        }
        else
        {
            HELIUM_ASSERT( vertexBlendData.GetSize() == vertexCountActual );

            SkinnedMeshVertex vertex;
            for( size_t vertexIndex = 0; vertexIndex < vertexCountActual; ++vertexIndex )
            {
                const StaticMeshVertex< 1 >& rStaticVertex = vertices[ vertexIndex ];
                const FbxSupport::BlendData& rBlendData = vertexBlendData[ vertexIndex ];

                MemoryCopy( vertex.position, rStaticVertex.position, sizeof( vertex.position ) );

                vertex.blendWeights[ 0 ] = static_cast< uint8_t >( Clamp(
                    rBlendData.weights[ 0 ] * 255.0f + 0.5f,
                    0.0f,
                    255.0f ) );
                vertex.blendWeights[ 1 ] = static_cast< uint8_t >( Clamp(
                    rBlendData.weights[ 1 ] * 255.0f + 0.5f,
                    0.0f,
                    255.0f ) );
                vertex.blendWeights[ 2 ] = static_cast< uint8_t >( Clamp(
                    rBlendData.weights[ 2 ] * 255.0f + 0.5f,
                    0.0f,
                    255.0f ) );
                vertex.blendWeights[ 3 ] = static_cast< uint8_t >( Clamp(
                    rBlendData.weights[ 3 ] * 255.0f + 0.5f,
                    0.0f,
                    255.0f ) );

                // Tweak the blend weights to ensure they still add up to 255 (1.0 when normalized by the GPU).
                size_t blendWeightTotal =
                    static_cast< size_t >( vertex.blendWeights[ 0 ] ) +
                    static_cast< size_t >( vertex.blendWeights[ 1 ] ) +
                    static_cast< size_t >( vertex.blendWeights[ 2 ] ) +
                    static_cast< size_t >( vertex.blendWeights[ 3 ] );
                if( blendWeightTotal != 0 && blendWeightTotal != 255 )
                {
                    if( blendWeightTotal > 255 )
                    {
                        // Total blend weight is too large, so decrease blend weights, starting from the lowest
                        // non-zero weight.
                        size_t weightAdjustIndex = 0;
                        do
                        {
                            do
                            {
                                weightAdjustIndex = ( weightAdjustIndex + 3 ) % 4;
                            } while( vertex.blendWeights[ weightAdjustIndex ] == 0 );

                            --vertex.blendWeights[ weightAdjustIndex ];
                            --blendWeightTotal;
                        } while( blendWeightTotal > 255 );
                    }
                    else
                    {
                        // Total blend weight is too small, so increase blend weights, starting from the highest
                        // non-zero blend weight.  Note that we should not have to check whether the blend weight is
                        // already at its max, as that would mean our total blend weight would have to already be at
                        // least 255.
                        size_t weightAdjustIndex = 3;
                        do
                        {
                            do
                            {
                                weightAdjustIndex = ( weightAdjustIndex + 1 ) % 4;
                            } while( vertex.blendWeights[ weightAdjustIndex ] == 0 );

                            HELIUM_ASSERT( vertex.blendWeights[ weightAdjustIndex ] != 255 );

                            ++vertex.blendWeights[ weightAdjustIndex ];
                            ++blendWeightTotal;
                        } while( blendWeightTotal < 255 );
                    }

                    HELIUM_ASSERT( blendWeightTotal == 255 );
                }

                MemoryCopy( vertex.blendIndices, rBlendData.indices, sizeof( vertex.blendIndices ) );

                MemoryCopy( vertex.normal, rStaticVertex.normal, sizeof( vertex.normal ) );
                MemoryCopy( vertex.tangent, rStaticVertex.tangent, sizeof( vertex.tangent ) );
                MemoryCopy( vertex.texCoords, rStaticVertex.texCoords[ 0 ], sizeof( vertex.texCoords ) );

                vertex.Serialize( serializer );
            }
        }

        serializer.EndSerialize();

        rSubDataBuffers[ 0 ] = serializer.GetPropertyStreamBuffer();

        // Serialize the index buffer.
        serializer.BeginSerialize();
        for( size_t indexIndex = 0; indexIndex < indexCount; ++indexIndex )
        {
            serializer << indices[ indexIndex ];
        }

        serializer.EndSerialize();

        rSubDataBuffers[ 1 ] = serializer.GetPropertyStreamBuffer();

        // Platform data is now loaded.
        rPreprocessedData.bLoaded = true;
    }

    return true;
}