bool PointGFp::operator==(const PointGFp& other) const { if(m_curve != other.m_curve) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); }
PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, const PointGFp& p2, const BigInt& z2) { const PointGFp p3 = p1 + p2; PointGFp H(p1.get_curve()); // create as zero size_t bits_left = std::max(z1.bits(), z2.bits()); std::vector<BigInt> ws(9); while(bits_left) { H.mult2(ws); const bool z1_b = z1.get_bit(bits_left - 1); const bool z2_b = z2.get_bit(bits_left - 1); if(z1_b == true && z2_b == true) H.add(p3, ws); else if(z1_b) H.add(p1, ws); else if(z2_b) H.add(p2, ws); --bits_left; } if(z1.is_negative() != z2.is_negative()) H.negate(); return H; }
PointGFp operator*(const BigInt& scalar, const PointGFp& point) { //BOTAN_ASSERT(point.on_the_curve(), "Input is on the curve"); const CurveGFp& curve = point.get_curve(); const size_t scalar_bits = scalar.bits(); std::vector<BigInt> ws(9); PointGFp R[2] = { PointGFp(curve), point }; for(size_t i = scalar_bits; i > 0; i--) { const size_t b = scalar.get_bit(i - 1); R[b ^ 1].add(R[b], ws); R[b].mult2(ws); } if(scalar.is_negative()) R[0].negate(); //BOTAN_ASSERT(R[0].on_the_curve(), "Output is on the curve"); return R[0]; }
// encoding and decoding secure_vector<uint8_t> EC2OSP(const PointGFp& point, uint8_t format) { if(point.is_zero()) return secure_vector<uint8_t>(1); // single 0 byte const size_t p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); secure_vector<uint8_t> bX = BigInt::encode_1363(x, p_bytes); secure_vector<uint8_t> bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { secure_vector<uint8_t> result; result.push_back(0x04); result += bX; result += bY; return result; } else if(format == PointGFp::COMPRESSED) { secure_vector<uint8_t> result; result.push_back(0x02 | static_cast<uint8_t>(y.get_bit(0))); result += bX; return result; } else if(format == PointGFp::HYBRID) { secure_vector<uint8_t> result; result.push_back(0x06 | static_cast<uint8_t>(y.get_bit(0))); result += bX; result += bY; return result; } else throw Invalid_Argument("EC2OSP illegal point encoding"); }
PointGFp operator*(const BigInt& scalar, const PointGFp& point) { //BOTAN_ASSERT(point.on_the_curve(), "Input is on the curve"); const CurveGFp& curve = point.get_curve(); const size_t scalar_bits = scalar.bits(); std::vector<BigInt> ws(9); if(scalar_bits <= 2) { const byte abs_val = scalar.byte_at(0); if(abs_val == 0) return PointGFp::zero_of(curve); PointGFp result = point; if(abs_val == 2) result.mult2(ws); if(scalar.is_negative()) result.negate(); return result; } PointGFp R[2] = { PointGFp(curve), point }; for(size_t i = scalar_bits; i > 0; i--) { const size_t b = scalar.get_bit(i - 1); R[b ^ 1].add(R[b], ws); R[b].mult2(ws); } if(scalar.is_negative()) R[0].negate(); //BOTAN_ASSERT(R[0].on_the_curve(), "Output is on the curve"); return R[0]; }
bool ECDSA_Verification_Operation::verify(const byte msg[], size_t msg_len, const byte sig[], size_t sig_len) { if(sig_len != order.bytes()*2) return false; BigInt e(msg, msg_len); BigInt r(sig, sig_len / 2); BigInt s(sig + sig_len / 2, sig_len / 2); if(r <= 0 || r >= order || s <= 0 || s >= order) return false; BigInt w = inverse_mod(s, order); PointGFp R = w * multi_exponentiate(base_point, e, public_point, r); if(R.is_zero()) return false; return (R.get_affine_x() % order == r); }
Blinded_Point_Multiply::Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h) : m_h(h > 0 ? h : 4), m_order(order), m_ws(9) { // Upper bound is a sanity check rather than hard limit if(m_h < 1 || m_h > 8) throw std::invalid_argument("Blinded_Point_Multiply invalid h param"); const CurveGFp& curve = base.get_curve(); #if BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER const PointGFp inv = -base; m_U.resize(6*m_h + 3); m_U[3*m_h+0] = inv; m_U[3*m_h+1] = PointGFp::zero_of(curve); m_U[3*m_h+2] = base; for(size_t i = 1; i <= 3 * m_h + 1; ++i) { m_U[3*m_h+1+i] = m_U[3*m_h+i]; m_U[3*m_h+1+i].add(base, m_ws); m_U[3*m_h+1-i] = m_U[3*m_h+2-i]; m_U[3*m_h+1-i].add(inv, m_ws); } #else m_U.resize(1 << m_h); m_U[0] = PointGFp::zero_of(curve); m_U[1] = base; for(size_t i = 2; i < m_U.size(); ++i) { m_U[i] = m_U[i-1]; m_U[i].add(base, m_ws); } #endif }
// Point addition void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) { if(is_zero()) { m_coord_x = rhs.m_coord_x; m_coord_y = rhs.m_coord_y; m_coord_z = rhs.m_coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = m_curve.get_p(); const size_t cap_size = 2*m_curve.get_p_words() + 2; for(size_t i = 0; i != ws_bn.size(); ++i) ws_bn[i].ensure_capacity(cap_size); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; BigInt& tmp = ws_bn[9]; secure_vector<word>& monty_ws = ws_bn[8].get_word_vector(); /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ m_curve.sqr(rhs_z2, rhs.m_coord_z, monty_ws); m_curve.mul(U1, m_coord_x, rhs_z2, monty_ws); m_curve.mul(tmp, rhs.m_coord_z, rhs_z2, monty_ws); // z^3 m_curve.mul(S1, m_coord_y, tmp, monty_ws); m_curve.sqr(lhs_z2, m_coord_z, monty_ws); m_curve.mul(U2, rhs.m_coord_x, lhs_z2, monty_ws); m_curve.mul(tmp, m_coord_z, lhs_z2, monty_ws); m_curve.mul(S2, rhs.m_coord_y, tmp, monty_ws); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x = 0; m_coord_y = 1; m_coord_z = 0; return; } m_curve.sqr(U2, H, monty_ws); m_curve.mul(S2, U2, H, monty_ws); m_curve.mul(tmp, U1, U2, monty_ws); U2 = tmp; m_curve.sqr(m_coord_x, r, monty_ws); m_coord_x -= S2; m_coord_x -= (U2 << 1); while(m_coord_x.is_negative()) m_coord_x += p; U2 -= m_coord_x; if(U2.is_negative()) U2 += p; m_curve.mul(m_coord_y, r, U2, monty_ws); m_curve.mul(tmp, S1, S2, monty_ws); m_coord_y -= tmp; if(m_coord_y.is_negative()) m_coord_y += p; m_curve.mul(tmp, m_coord_z, rhs.m_coord_z, monty_ws); m_curve.mul(m_coord_z, tmp, H, monty_ws); }
PointGFp multi_exponentiate(const PointGFp& x, const BigInt& z1, const PointGFp& y, const BigInt& z2) { const size_t z_bits = round_up(std::max(z1.bits(), z2.bits()), 2); std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE); PointGFp x2 = x; x2.mult2(ws); const PointGFp x3(x2.plus(x, ws)); PointGFp y2 = y; y2.mult2(ws); const PointGFp y3(y2.plus(y, ws)); const PointGFp M[16] = { x.zero(), // 0000 x, // 0001 x2, // 0010 x3, // 0011 y, // 0100 y.plus(x, ws), // 0101 y.plus(x2, ws), // 0110 y.plus(x3, ws), // 0111 y2, // 1000 y2.plus(x, ws), // 1001 y2.plus(x2, ws), // 1010 y2.plus(x3, ws), // 1011 y3, // 1100 y3.plus(x, ws), // 1101 y3.plus(x2, ws), // 1110 y3.plus(x3, ws), // 1111 }; PointGFp H = x.zero(); for(size_t i = 0; i != z_bits; i += 2) { if(i > 0) { H.mult2(ws); H.mult2(ws); } const uint8_t z1_b = z1.get_substring(z_bits - i - 2, 2); const uint8_t z2_b = z2.get_substring(z_bits - i - 2, 2); const uint8_t z12 = (4*z2_b) + z1_b; H.add(M[z12], ws); } if(z1.is_negative() != z2.is_negative()) H.negate(); return H; }
// Point addition void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) { if(is_zero()) { coord_x = rhs.coord_x; coord_y = rhs.coord_y; coord_z = rhs.coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = curve.get_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; monty_sqr(rhs_z2, rhs.coord_z); monty_mult(U1, coord_x, rhs_z2); monty_mult(S1, coord_y, monty_mult(rhs.coord_z, rhs_z2)); monty_sqr(lhs_z2, coord_z); monty_mult(U2, rhs.coord_x, lhs_z2); monty_mult(S2, rhs.coord_y, monty_mult(coord_z, lhs_z2)); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } *this = PointGFp(curve); // setting myself to zero return; } monty_sqr(U2, H); monty_mult(S2, U2, H); U2 = monty_mult(U1, U2); monty_sqr(coord_x, r); coord_x -= S2; coord_x -= (U2 << 1); while(coord_x.is_negative()) coord_x += p; U2 -= coord_x; if(U2.is_negative()) U2 += p; monty_mult(coord_y, r, U2); coord_y -= monty_mult(S1, S2); if(coord_y.is_negative()) coord_y += p; monty_mult(coord_z, monty_mult(coord_z, rhs.coord_z), H); }
PointGFp operator*(const BigInt& scalar, const PointGFp& point) { const CurveGFp& curve = point.get_curve(); if(scalar.is_zero()) return PointGFp(curve); // zero point std::vector<BigInt> ws(9); if(scalar.abs() <= 2) // special cases for small values { byte value = scalar.abs().byte_at(0); PointGFp result = point; if(value == 2) result.mult2(ws); if(scalar.is_negative()) result.negate(); return result; } const size_t scalar_bits = scalar.bits(); #if 0 PointGFp x1 = PointGFp(curve); PointGFp x2 = point; size_t bits_left = scalar_bits; // Montgomery Ladder while(bits_left) { const bool bit_set = scalar.get_bit(bits_left - 1); if(bit_set) { x1.add(x2, ws); x2.mult2(ws); } else { x2.add(x1, ws); x1.mult2(ws); } --bits_left; } if(scalar.is_negative()) x1.negate(); return x1; #else const size_t window_size = 4; std::vector<PointGFp> Ps(1 << window_size); Ps[0] = PointGFp(curve); Ps[1] = point; for(size_t i = 2; i != Ps.size(); ++i) { Ps[i] = Ps[i-1]; Ps[i].add(point, ws); } PointGFp H(curve); // create as zero size_t bits_left = scalar_bits; while(bits_left >= window_size) { for(size_t i = 0; i != window_size; ++i) H.mult2(ws); const u32bit nibble = scalar.get_substring(bits_left - window_size, window_size); H.add(Ps[nibble], ws); bits_left -= window_size; } while(bits_left) { H.mult2(ws); if(scalar.get_bit(bits_left-1)) H.add(point, ws); --bits_left; } if(scalar.is_negative()) H.negate(); return H; #endif }
// Point addition void PointGFp::add(const PointGFp& rhs, std::vector<BigInt>& ws_bn) { if(is_zero()) { m_coord_x = rhs.m_coord_x; m_coord_y = rhs.m_coord_y; m_coord_z = rhs.m_coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = m_curve.get_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; /* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ curve_sqr(rhs_z2, rhs.m_coord_z); curve_mult(U1, m_coord_x, rhs_z2); curve_mult(S1, m_coord_y, curve_mult(rhs.m_coord_z, rhs_z2)); curve_sqr(lhs_z2, m_coord_z); curve_mult(U2, rhs.m_coord_x, lhs_z2); curve_mult(S2, rhs.m_coord_y, curve_mult(m_coord_z, lhs_z2)); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x = 0; m_coord_y = 1; m_coord_z = 0; return; } curve_sqr(U2, H); curve_mult(S2, U2, H); U2 = curve_mult(U1, U2); curve_sqr(m_coord_x, r); m_coord_x -= S2; m_coord_x -= (U2 << 1); while(m_coord_x.is_negative()) m_coord_x += p; U2 -= m_coord_x; if(U2.is_negative()) U2 += p; curve_mult(m_coord_y, r, U2); m_coord_y -= curve_mult(S1, S2); if(m_coord_y.is_negative()) m_coord_y += p; curve_mult(m_coord_z, curve_mult(m_coord_z, rhs.m_coord_z), H); }
PointGFp Blinded_Point_Multiply::blinded_multiply(const BigInt& scalar_in, RandomNumberGenerator& rng) { if(scalar_in.is_negative()) throw std::invalid_argument("Blinded_Point_Multiply scalar must be positive"); #if BOTAN_POINTGFP_SCALAR_BLINDING_BITS > 0 // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure) const BigInt mask(rng, BOTAN_POINTGFP_SCALAR_BLINDING_BITS, false); const BigInt scalar = scalar_in + m_order * mask; #else const BigInt& scalar = scalar_in; #endif const size_t scalar_bits = scalar.bits(); // Randomize each point representation (Coron's 3rd countermeasure) for(size_t i = 0; i != m_U.size(); ++i) m_U[i].randomize_repr(rng); #if BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER PointGFp R = m_U.at(3*m_h + 2); // base point int32_t alpha = 0; R.randomize_repr(rng); /* Algorithm 7 from "Randomizing the Montgomery Powering Ladder" Duc-Phong Le, Chik How Tan and Michael Tunstall http://eprint.iacr.org/2015/657 It takes a random walk through (a subset of) the set of addition chains that end in k. */ for(size_t i = scalar_bits; i > 0; i--) { const int32_t ki = scalar.get_bit(i); // choose gamma from -h,...,h const int32_t gamma = static_cast<int32_t>((rng.next_byte() % (2*m_h))) - m_h; const int32_t l = gamma - 2*alpha + ki - (ki ^ 1); R.mult2(m_ws); R.add(m_U.at(3*m_h + 1 + l), m_ws); alpha = gamma; } const int32_t k0 = scalar.get_bit(0); R.add(m_U[3*m_h + 1 - alpha - (k0 ^ 1)], m_ws); #else // N-bit windowing exponentiation: size_t windows = round_up(scalar_bits, m_h) / m_h; PointGFp R = m_U[0]; if(windows > 0) { windows--; const u32bit nibble = scalar.get_substring(windows*m_h, m_h); R.add(m_U[nibble], m_ws); /* Randomize after adding the first nibble as before the addition R is zero, and we cannot effectively randomize the point representation of the zero point. */ R.randomize_repr(rng); while(windows) { for(size_t i = 0; i != m_h; ++i) R.mult2(m_ws); const u32bit nibble = scalar.get_substring((windows-1)*m_h, m_h); R.add(m_U[nibble], m_ws); windows--; } } #endif //BOTAN_ASSERT(R.on_the_curve(), "Output is on the curve"); return R; }