int main(int argc, char *argv[]) { fprintf(stderr, "Syntakticky analyzator\n"); if (argc == 1) { fprintf(stderr, "Vstup z klavesnice, zadejte zdrojovy text\n"); jmeno = NULL; } else { jmeno = argv[1]; fprintf(stderr, "Vstupni soubor %s\n", jmeno); } InitLexan(jmeno); CtiSymb(); Prog *prog = Program(); prog->printNode(); fprintf(stderr, "\n\n"); if (argc > 2) { if (strncmp(argv[2], "-O", 2) == 0) { prog = (Prog*)(prog->Optimize()); } } fprintf(stderr, "\nlast version:\n"); prog->printNode(); fprintf(stderr, "\n\n"); prog->Translate(); }
/*============================================================================== * FUNCTION: CfgTest::testRenameVars * OVERVIEW: Test the renaming of variables *============================================================================*/ void CfgTest::testRenameVars () { BinaryFileFactory bff; BinaryFile* pBF = bff.Load(FRONTIER_PENTIUM); CPPUNIT_ASSERT(pBF != 0); Prog* prog = new Prog; FrontEnd* pFE = new PentiumFrontEnd(pBF, prog, &bff); Type::clearNamedTypes(); prog->setFrontEnd(pFE); pFE->decode(prog); UserProc* pProc = (UserProc*) prog->getProc(0); Cfg* cfg = pProc->getCFG(); DataFlow* df = pProc->getDataFlow(); // Simplify expressions (e.g. m[ebp + -8] -> m[ebp - 8] prog->finishDecode(); df->dominators(cfg); df->placePhiFunctions(pProc); pProc->numberStatements(); // After placing phi functions! df->renameBlockVars(pProc, 0, 1); // Block 0, mem depth 1 // MIKE: something missing here? delete pFE; }
/*============================================================================== * FUNCTION: ProcTest::testName * OVERVIEW: Test setting and reading name, constructor, native address *============================================================================*/ void ProcTest::testName () { Prog* prog = new Prog(); BinaryFile *pBF = new BinaryFileStub(); CPPUNIT_ASSERT(pBF != 0); std::string nm("default name"); BinaryFileFactory bff; pBF = bff.Load(HELLO_PENTIUM); FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); CPPUNIT_ASSERT(pFE != 0); prog->setFrontEnd(pFE); CPPUNIT_ASSERT(prog); pFE->readLibraryCatalog(); // Since we are not decoding m_proc = new UserProc(prog, nm, 20000); // Will print in decimal if error std::string actual(m_proc->getName()); CPPUNIT_ASSERT_EQUAL(std::string("default name"), actual); std::string name("printf"); LibProc lp(prog, name, 30000); actual = lp.getName(); CPPUNIT_ASSERT_EQUAL(name, actual); ADDRESS a = lp.getNativeAddress(); ADDRESS expected = 30000; CPPUNIT_ASSERT_EQUAL(expected, a); a = m_proc->getNativeAddress(); expected = 20000; CPPUNIT_ASSERT_EQUAL(expected, a); delete prog; delete m_proc; // delete pFE; // No! Deleting the prog deletes the pFE already (which deletes the BinaryFileFactory) }
Prog* Parser::prog(){ Prog* myProg = new Prog(); myProg->addNode(decls()); if (!error) { myProg->addNode(statements()); } return myProg; }
/*============================================================================== * FUNCTION: CfgTest::testPlacePhi2 * OVERVIEW: Test a case where a phi function is not needed *============================================================================*/ void CfgTest::testPlacePhi2 () { BinaryFileFactory bff; BinaryFile* pBF = bff.Load(IFTHEN_PENTIUM); CPPUNIT_ASSERT(pBF != 0); Prog* prog = new Prog; FrontEnd* pFE = new PentiumFrontEnd(pBF, prog, &bff); Type::clearNamedTypes(); prog->setFrontEnd(pFE); pFE->decode(prog); UserProc* pProc = (UserProc*) prog->getProc(0); Cfg* cfg = pProc->getCFG(); DataFlow* df = pProc->getDataFlow(); // Simplify expressions (e.g. m[ebp + -8] -> m[ebp - 8] prog->finishDecode(); df->dominators(cfg); df->placePhiFunctions(pProc); // In this program, x is allocated at [ebp-4], a at [ebp-8], and // b at [ebp-12] // We check that A_phi[ m[ebp-8] ] is 4, and that // A_phi A_phi[ m[ebp-8] ] is null // (block 4 comes out with n=4) std::string expected = "4 "; std::ostringstream actual; // m[r29 - 8] Exp* e = new Unary(opMemOf, new Binary(opMinus, Location::regOf(29), new Const(8))); std::set<int>& s = df->getA_phi(e); std::set<int>::iterator pp; for (pp = s.begin(); pp != s.end(); pp++) actual << *pp << " "; CPPUNIT_ASSERT_EQUAL(expected, actual.str()); delete e; expected = ""; std::ostringstream actual2; // m[r29 - 12] e = new Unary(opMemOf, new Binary(opMinus, Location::regOf(29), new Const(12))); std::set<int>& s2 = df->getA_phi(e); for (pp = s2.begin(); pp != s2.end(); pp++) actual2 << *pp << " "; CPPUNIT_ASSERT_EQUAL(expected, actual2.str()); delete e; delete pFE; }
/*============================================================================== * FUNCTION: RtlTest::testIsCompare * OVERVIEW: Test the isCompare function *============================================================================*/ void RtlTest::testIsCompare () { BinaryFileFactory bff; BinaryFile *pBF = bff.Load(SWITCH_SPARC); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); // Decode second instruction: "sub %i0, 2, %o1" int iReg; Exp* eOperand = NULL; DecodeResult inst = pFE->decodeInstruction(0x10910); CPPUNIT_ASSERT(inst.rtl != NULL); CPPUNIT_ASSERT(inst.rtl->isCompare(iReg, eOperand) == false); // Decode fifth instruction: "cmp %o1, 5" inst = pFE->decodeInstruction(0x1091c); CPPUNIT_ASSERT(inst.rtl != NULL); CPPUNIT_ASSERT(inst.rtl->isCompare(iReg, eOperand) == true); CPPUNIT_ASSERT_EQUAL(9, iReg); std::string expected("5"); std::ostringstream ost1; eOperand->print(ost1); std::string actual(ost1.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); pBF->UnLoad(); delete pBF; delete pFE; pBF = bff.Load(SWITCH_PENT); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_PENTIUM); pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); // Decode fifth instruction: "cmp $0x5,%eax" inst = pFE->decodeInstruction(0x80488fb); CPPUNIT_ASSERT(inst.rtl != NULL); CPPUNIT_ASSERT(inst.rtl->isCompare(iReg, eOperand) == true); CPPUNIT_ASSERT_EQUAL(24, iReg); std::ostringstream ost2; eOperand->print(ost2); actual = ost2.str(); CPPUNIT_ASSERT_EQUAL(expected, actual); // Decode instruction: "add $0x4,%esp" inst = pFE->decodeInstruction(0x804890c); CPPUNIT_ASSERT(inst.rtl != NULL); CPPUNIT_ASSERT(inst.rtl->isCompare(iReg, eOperand) == false); pBF->UnLoad(); delete pFE; }
samplv1_programs::Prog *samplv1_programs::Bank::add_prog ( uint16_t prog_id, const QString& prog_name ) { Prog *prog = find_prog(prog_id); if (prog) { prog->set_name(prog_name); } else { prog = new Prog(prog_id, prog_name); m_progs.insert(prog_id, prog); } return prog; }
void CfgTest::testSemiDominators () { BinaryFileFactory bff; BinaryFile* pBF = bff.Load(SEMI_PENTIUM); CPPUNIT_ASSERT(pBF != 0); Prog* prog = new Prog; FrontEnd* pFE = new PentiumFrontEnd(pBF, prog, &bff); Type::clearNamedTypes(); prog->setFrontEnd(pFE); pFE->decode(prog); bool gotMain; ADDRESS addr = pFE->getMainEntryPoint(gotMain); CPPUNIT_ASSERT (addr != NO_ADDRESS); UserProc* pProc = (UserProc*) prog->getProc(0); Cfg* cfg = pProc->getCFG(); DataFlow* df = pProc->getDataFlow(); df->dominators(cfg); // Find BB "L (6)" (as per Appel, Figure 19.8). BB_IT it; PBB bb = cfg->getFirstBB(it); while (bb && bb->getLowAddr() != SEMI_L) { bb = cfg->getNextBB(it); } CPPUNIT_ASSERT(bb); int nL = df->pbbToNode(bb); // The dominator for L should be B, where the semi dominator is D // (book says F) unsigned actual_dom = (unsigned)df->nodeToBB(df->getIdom(nL))->getLowAddr(); unsigned actual_semi = (unsigned)df->nodeToBB(df->getSemi(nL))->getLowAddr(); CPPUNIT_ASSERT_EQUAL((unsigned)SEMI_B, actual_dom); CPPUNIT_ASSERT_EQUAL((unsigned)SEMI_D, actual_semi); // Check the final dominator frontier as well; should be M and B std::ostringstream expected, actual; //expected << std::hex << SEMI_M << " " << SEMI_B << " "; expected << std::hex << SEMI_B << " " << SEMI_M << " "; std::set<int>::iterator ii; std::set<int>& DFset = df->getDF(nL); for (ii=DFset.begin(); ii != DFset.end(); ii++) actual << std::hex << (unsigned)df->nodeToBB(*ii)->getLowAddr() << " "; CPPUNIT_ASSERT_EQUAL(expected.str(), actual.str()); delete pFE; }
float GetRoomTemp (long int day, float t_comf, float t_eco) { switch (day_prog[day-1]) // 0 index refer to MON, 1 to TU, etc { case PROG1: return P1.SetRoomTempr(t_comf, t_eco); break; case PROG2: return P2.SetRoomTempr(t_comf, t_eco); break; case PROG3: return P3.SetRoomTempr(t_comf, t_eco); break; case PROG4: return P4.SetRoomTempr(t_comf, t_eco); break; case PROG5: return P5.SetRoomTempr(t_comf, t_eco); break; case PROG6: return P6.SetRoomTempr(t_comf, t_eco); break; case PROG7: return P7.SetRoomTempr(t_comf, t_eco); break; case PROG8: return P8.SetRoomTempr(t_comf, t_eco); break; case PROG9: return P9.SetRoomTempr(t_comf, t_eco); break; default: return P1.SetRoomTempr(t_comf, t_eco); } }
/*============================================================================== * FUNCTION: ProgTest::testName * OVERVIEW: Test setting and reading name *============================================================================*/ void ProgTest::testName () { BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_PENTIUM); // Don't actually use it Prog* prog = new Prog(); FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); // We need a Prog object with a pBF (for getEarlyParamExp()) prog->setFrontEnd(pFE); std::string actual(prog->getName()); std::string expected(HELLO_PENTIUM); CPPUNIT_ASSERT_EQUAL(expected, actual); std::string name("Happy prog"); prog->setName(name.c_str()); actual = prog->getName(); CPPUNIT_ASSERT_EQUAL(name, actual); delete pFE; }
/*============================================================================== * FUNCTION: FrontPentTest::test1 * OVERVIEW: Test decoding some pentium instructions *============================================================================*/ void FrontPentTest::test1 () { std::ostringstream ost; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_PENT); if (pBF == NULL) pBF = new BinaryFileStub(); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_PENTIUM); Prog* prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); bool gotMain; ADDRESS addr = pFE->getMainEntryPoint(gotMain); CPPUNIT_ASSERT (addr != NO_ADDRESS); // Decode first instruction DecodeResult inst = pFE->decodeInstruction(addr); inst.rtl->print(ost); std::string expected( "08048328 0 *32* m[r28 - 4] := r29\n" " 0 *32* r28 := r28 - 4\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(ost.str())); std::ostringstream o2; addr += inst.numBytes; inst = pFE->decodeInstruction(addr); inst.rtl->print(o2); expected = std::string("08048329 0 *32* r29 := r28\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); std::ostringstream o3; addr = 0x804833b; inst = pFE->decodeInstruction(addr); inst.rtl->print(o3); expected = std::string( "0804833b 0 *32* m[r28 - 4] := 0x80483fc\n" " 0 *32* r28 := r28 - 4\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; // delete pBF; }
void FrontSparcTest::test2() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_SPARC); if (pBF == NULL) pBF = new BinaryFileStub(); // fallback on stub CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); std::ostringstream o1; inst = pFE->decodeInstruction(0x10690); inst.rtl->print(o1); // This call is to out of range of the program's text limits (to the Program Linkage Table (PLT), calling printf) // This is quite normal. expected = std::string("00010690 0 CALL printf(\n" " )\n" " Reaching definitions: \n" " Live variables: \n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o1.str())); std::ostringstream o2; inst = pFE->decodeInstruction(0x10694); inst.rtl->print(o2); expected = std::string("00010694\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); std::ostringstream o3; inst = pFE->decodeInstruction(0x10698); inst.rtl->print(o3); expected = std::string("00010698 0 *32* r8 := 0\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); std::ostringstream o4; inst = pFE->decodeInstruction(0x1069c); inst.rtl->print(o4); expected = std::string("0001069c 0 *32* r24 := r8\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o4.str())); delete pFE; // delete pBF; }
void FrontPentTest::testBranch() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(BRANCH_PENT); if (pBF == NULL) pBF = new BinaryFileStub(); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_PENTIUM); Prog* prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); // jne std::ostringstream o1; inst = pFE->decodeInstruction(0x8048979); inst.rtl->print(o1); expected = std::string("08048979 0 BRANCH 0x8048988, condition " "not equals\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, o1.str()); // jg std::ostringstream o2; inst = pFE->decodeInstruction(0x80489c1); inst.rtl->print(o2); expected = std::string( "080489c1 0 BRANCH 0x80489d5, condition signed greater\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); // jbe std::ostringstream o3; inst = pFE->decodeInstruction(0x8048a1b); inst.rtl->print(o3); expected = std::string( "08048a1b 0 BRANCH 0x8048a2a, condition unsigned less or equals\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; // delete pBF; }
void FrontSparcTest::testBranch() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(BRANCH_SPARC); if (pBF == NULL) pBF = new BinaryFileStub(); // fallback on stub CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); // bne std::ostringstream o1; inst = pFE->decodeInstruction(0x10ab0); inst.rtl->print(o1); expected = std::string( "00010ab0 0 BRANCH 0x10ac8, condition not equals\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o1.str())); // bg std::ostringstream o2; inst = pFE->decodeInstruction(0x10af8); inst.rtl->print(o2); expected = std::string("00010af8 0 BRANCH 0x10b10, condition " "signed greater\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); // bleu std::ostringstream o3; inst = pFE->decodeInstruction(0x10b44); inst.rtl->print(o3); expected = std::string( "00010b44 0 BRANCH 0x10b54, condition unsigned less or equals\n" "High level: %flags\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; // delete pBF; }
void CfgTest::testDominators () { BinaryFileFactory bff; BinaryFile *pBF = bff.Load(FRONTIER_PENTIUM); CPPUNIT_ASSERT(pBF != 0); Prog* prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); Type::clearNamedTypes(); prog->setFrontEnd(pFE); pFE->decode(prog); bool gotMain; ADDRESS addr = pFE->getMainEntryPoint(gotMain); CPPUNIT_ASSERT (addr != NO_ADDRESS); UserProc* pProc = (UserProc*) prog->getProc(0); Cfg* cfg = pProc->getCFG(); DataFlow* df = pProc->getDataFlow(); df->dominators(cfg); // Find BB "5" (as per Appel, Figure 19.5). BB_IT it; PBB bb = cfg->getFirstBB(it); while (bb && bb->getLowAddr() != FRONTIER_FIVE) { bb = cfg->getNextBB(it); } CPPUNIT_ASSERT(bb); std::ostringstream expected, actual; //expected << std::hex << FRONTIER_FIVE << " " << FRONTIER_THIRTEEN << " " << FRONTIER_TWELVE << " " << // FRONTIER_FOUR << " "; expected << std::hex << FRONTIER_THIRTEEN << " " << FRONTIER_FOUR << " " << FRONTIER_TWELVE << " " << FRONTIER_FIVE << " "; int n5 = df->pbbToNode(bb); std::set<int>::iterator ii; std::set<int>& DFset = df->getDF(n5); for (ii=DFset.begin(); ii != DFset.end(); ii++) actual << std::hex << (unsigned)df->nodeToBB(*ii)->getLowAddr() << " "; CPPUNIT_ASSERT_EQUAL(expected.str(), actual.str()); pBF->UnLoad(); delete pFE; }
void FrontPentTest::testFindMain() { // Test the algorithm for finding main, when there is a call to __libc_start_main // Also tests the loader hack BinaryFileFactory bff; BinaryFile *pBF = bff.Load(FEDORA2_TRUE); CPPUNIT_ASSERT(pBF != NULL); Prog *prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); CPPUNIT_ASSERT(pFE != NULL); bool found; ADDRESS addr = pFE->getMainEntryPoint(found); ADDRESS expected = 0x8048b10; CPPUNIT_ASSERT_EQUAL(expected, addr); pBF->Close(); bff.UnLoad(); pBF = bff.Load(FEDORA3_TRUE); CPPUNIT_ASSERT(pBF != NULL); pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); CPPUNIT_ASSERT(pFE != NULL); addr = pFE->getMainEntryPoint(found); expected = 0x8048c4a; CPPUNIT_ASSERT_EQUAL(expected, addr); pBF->Close(); bff.UnLoad(); pBF = bff.Load(SUSE_TRUE); CPPUNIT_ASSERT(pBF != NULL); pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); CPPUNIT_ASSERT(pFE != NULL); addr = pFE->getMainEntryPoint(found); expected = 0x8048b60; CPPUNIT_ASSERT_EQUAL(expected, addr); pBF->Close(); delete pFE; }
void FrontPentTest::test2() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_PENT); if (pBF == NULL) pBF = new BinaryFileStub(); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_PENTIUM); Prog* prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); std::ostringstream o1; inst = pFE->decodeInstruction(0x8048345); inst.rtl->print(o1); expected = std::string( "08048345 0 *32* tmp1 := r28\n" " 0 *32* r28 := r28 + 16\n" " 0 *v* %flags := ADDFLAGS32( tmp1, 16, r28 )\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o1.str())); std::ostringstream o2; inst = pFE->decodeInstruction(0x8048348); inst.rtl->print(o2); expected = std::string( "08048348 0 *32* r24 := 0\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); std::ostringstream o3; inst = pFE->decodeInstruction(0x8048329); inst.rtl->print(o3); expected = std::string("08048329 0 *32* r29 := r28\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; // delete pBF; }
void FrontPentTest::test3() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_PENT); if (pBF == NULL) pBF = new BinaryFileStub(); CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_PENTIUM); Prog* prog = new Prog; FrontEnd *pFE = new PentiumFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); std::ostringstream o1; inst = pFE->decodeInstruction(0x804834d); inst.rtl->print(o1); expected = std::string( "0804834d 0 *32* r28 := r29\n" " 0 *32* r29 := m[r28]\n" " 0 *32* r28 := r28 + 4\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o1.str())); std::ostringstream o2; inst = pFE->decodeInstruction(0x804834e); inst.rtl->print(o2); expected = std::string( "0804834e 0 *32* %pc := m[r28]\n" " 0 *32* r28 := r28 + 4\n" " 0 RET\n" " Modifieds: \n" " Reaching definitions: \n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); delete pFE; // delete pBF; }
/*============================================================================== * FUNCTION: CfgTest::testPlacePhi * OVERVIEW: Test the placing of phi functions *============================================================================*/ void CfgTest::testPlacePhi () { BinaryFileFactory bff; BinaryFile* pBF = bff.Load(FRONTIER_PENTIUM); CPPUNIT_ASSERT(pBF != 0); Prog* prog = new Prog; FrontEnd* pFE = new PentiumFrontEnd(pBF, prog, &bff); Type::clearNamedTypes(); prog->setFrontEnd(pFE); pFE->decode(prog); UserProc* pProc = (UserProc*) prog->getProc(0); Cfg* cfg = pProc->getCFG(); // Simplify expressions (e.g. m[ebp + -8] -> m[ebp - 8] prog->finishDecode(); DataFlow* df = pProc->getDataFlow(); df->dominators(cfg); df->placePhiFunctions(pProc); // m[r29 - 8] (x for this program) Exp* e = new Unary(opMemOf, new Binary(opMinus, Location::regOf(29), new Const(4))); // A_phi[x] should be the set {7 8 10 15 20 21} (all the join points) std::ostringstream ost; std::set<int>::iterator ii; std::set<int>& A_phi = df->getA_phi(e); for (ii = A_phi.begin(); ii != A_phi.end(); ++ii) ost << *ii << " "; std::string expected("7 8 10 15 20 21 "); CPPUNIT_ASSERT_EQUAL(expected, ost.str()); delete pFE; }
int main(int argc, char **argv) { Prog prog; prog.init(); prog.add_sample("data/haiku/air_0.ogg"); prog.add_sample("data/haiku/air_1.ogg"); prog.add_sample("data/haiku/earth_0.ogg"); prog.add_sample("data/haiku/earth_1.ogg"); prog.add_sample("data/haiku/earth_2.ogg"); prog.add_sample("data/haiku/fire_0.ogg"); prog.add_sample("data/haiku/fire_1.ogg"); prog.add_sample("data/haiku/water_0.ogg"); prog.add_sample("data/haiku/water_1.ogg"); prog.add_stream_path("../demos/cosmic_protector/data/sfx/game_music.ogg"); prog.add_stream_path("../demos/cosmic_protector/data/sfx/title_music.ogg"); prog.initial_config(); prog.run(); /* Let Allegro handle the cleanup. */ return 0; (void)argc; (void)argv; }
/*============================================================================== * FUNCTION: TypeTest::testDataIntervalOverlaps * OVERVIEW: Test the DataIntervalMap class with overlapping addItems *============================================================================*/ void TypeTest::testDataIntervalOverlaps() { DataIntervalMap dim; Prog* prog = new Prog; UserProc* proc = (UserProc*) prog->newProc("test", 0x123); std::string name("test"); proc->setSignature(Signature::instantiate(PLAT_PENTIUM, CONV_C, name.c_str())); dim.setProc(proc); dim.addItem(0x1000, "firstInt", new IntegerType(32, 1)); dim.addItem(0x1004, "firstFloat", new FloatType(32)); dim.addItem(0x1008, "secondInt", new IntegerType(32, 1)); dim.addItem(0x100C, "secondFloat", new FloatType(32)); CompoundType ct; ct.addType(new IntegerType(32, 1), "int3"); ct.addType(new FloatType(32), "float3"); dim.addItem(0x1010, "existingStruct", &ct); // First insert a new struct over the top of the existing middle pair CompoundType ctu; ctu.addType(new IntegerType(32, 0), "newInt"); // This int has UNKNOWN sign ctu.addType(new FloatType(32), "newFloat"); dim.addItem(0x1008, "replacementStruct", &ctu); DataIntervalEntry* pdie = dim.find(0x1008); std::string expected = "struct { int newInt; float newFloat; }"; std::string actual = pdie->second.type->getCtype(); CPPUNIT_ASSERT_EQUAL(expected, actual); // Attempt a weave; should fail CompoundType ct3; ct3.addType(new FloatType(32), "newFloat3"); ct3.addType(new IntegerType(32, 0), "newInt3"); dim.addItem(0x1004, "weaveStruct1", &ct3); pdie = dim.find(0x1004); expected = "firstFloat"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); // Totally unaligned dim.addItem(0x1001, "weaveStruct2", &ct3); pdie = dim.find(0x1001); expected = "firstInt"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); dim.addItem(0x1004, "firstInt", new IntegerType(32, 1)); // Should fail pdie = dim.find(0x1004); expected = "firstFloat"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); // Set up three ints dim.deleteItem(0x1004); dim.addItem(0x1004, "firstInt", new IntegerType(32, 1)); // Definately signed dim.deleteItem(0x1008); dim.addItem(0x1008, "firstInt", new IntegerType(32, 0)); // Unknown signedess // then, add an array over the three integers ArrayType at(new IntegerType(32, 0), 3); dim.addItem(0x1000, "newArray", &at); pdie = dim.find(0x1005); // Check middle element expected = "newArray"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0x1000); // Check first actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0x100B); // Check last actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); // Already have an array of 3 ints at 0x1000. Put a new array completely before, then with only one word overlap dim.addItem(0xF00, "newArray2", &at); pdie = dim.find(0x1000); // Shouyld still be newArray at 0x1000 actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0xF00); expected = "newArray2"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); dim.addItem(0xFF8, "newArray3", &at); // Should fail pdie = dim.find(0xFF8); unsigned ue = 0; // Expect NULL unsigned ua = (unsigned)pdie; CPPUNIT_ASSERT_EQUAL(ue, ua); }
/*============================================================================== * FUNCTION: TypeTest::testDataInterval * OVERVIEW: Test the DataIntervalMap class *============================================================================*/ void TypeTest::testDataInterval() { DataIntervalMap dim; Prog* prog = new Prog; UserProc* proc = (UserProc*) prog->newProc("test", 0x123); std::string name("test"); proc->setSignature(Signature::instantiate(PLAT_PENTIUM, CONV_C, name.c_str())); dim.setProc(proc); dim.addItem(0x1000, "first", new IntegerType(32, 1)); dim.addItem(0x1004, "second", new FloatType(64)); std::string actual(dim.prints()); std::string expected("0x1000 first int\n" "0x1004 second double\n"); CPPUNIT_ASSERT_EQUAL(expected, actual); DataIntervalEntry* pdie = dim.find(0x1000); expected = "first"; CPPUNIT_ASSERT(pdie); actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0x1003); CPPUNIT_ASSERT(pdie); actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0x1004); CPPUNIT_ASSERT(pdie); expected = "second"; actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); pdie = dim.find(0x1007); CPPUNIT_ASSERT(pdie); actual = pdie->second.name; CPPUNIT_ASSERT_EQUAL(expected, actual); CompoundType ct; ct.addType(new IntegerType(16, 1), "short1"); ct.addType(new IntegerType(16, 1), "short2"); ct.addType(new IntegerType(32, 1), "int1"); ct.addType(new FloatType(32), "float1"); dim.addItem(0x1010, "struct1", &ct); ComplexTypeCompList& ctcl = ct.compForAddress(0x1012, dim); unsigned ua = ctcl.size(); unsigned ue = 1; CPPUNIT_ASSERT_EQUAL(ue, ua); ComplexTypeComp& ctc = ctcl.front(); ue = 0; ua = ctc.isArray; CPPUNIT_ASSERT_EQUAL(ue, ua); expected = "short2"; actual = ctc.u.memberName; CPPUNIT_ASSERT_EQUAL(expected, actual); // An array of 10 struct1's ArrayType at(&ct, 10); dim.addItem(0x1020, "array1", &at); ComplexTypeCompList& ctcl2 = at.compForAddress(0x1020+0x3C+8, dim); // Should be 2 components: [5] and .float1 ue = 2; ua = ctcl2.size(); CPPUNIT_ASSERT_EQUAL(ue, ua); ComplexTypeComp& ctc0 = ctcl2.front(); ComplexTypeComp& ctc1 = ctcl2.back(); ue = 1; ua = ctc0.isArray; CPPUNIT_ASSERT_EQUAL(ue, ua); ue = 5; ua = ctc0.u.index; CPPUNIT_ASSERT_EQUAL(ue, ua); ue = 0; ua = ctc1.isArray; CPPUNIT_ASSERT_EQUAL(ue, ua); expected = "float1"; actual = ctc1.u.memberName; CPPUNIT_ASSERT_EQUAL(expected, actual); }
/*============================================================================== * FUNCTION: FrontSparcTest::test1 * OVERVIEW: Test decoding some sparc instructions *============================================================================*/ void FrontSparcTest::test1 () { std::ostringstream ost; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_SPARC); if (pBF == NULL) pBF = new BinaryFileStub(); // fallback on stub CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); bool gotMain; ADDRESS addr = pFE->getMainEntryPoint(gotMain); CPPUNIT_ASSERT (addr != NO_ADDRESS); // Decode first instruction DecodeResult inst = pFE->decodeInstruction(addr); CPPUNIT_ASSERT(inst.rtl != NULL); inst.rtl->print(ost); std::string expected( "00010684 0 *32* tmp := r14 - 112\n" " 0 *32* m[r14] := r16\n" " 0 *32* m[r14 + 4] := r17\n" " 0 *32* m[r14 + 8] := r18\n" " 0 *32* m[r14 + 12] := r19\n" " 0 *32* m[r14 + 16] := r20\n" " 0 *32* m[r14 + 20] := r21\n" " 0 *32* m[r14 + 24] := r22\n" " 0 *32* m[r14 + 28] := r23\n" " 0 *32* m[r14 + 32] := r24\n" " 0 *32* m[r14 + 36] := r25\n" " 0 *32* m[r14 + 40] := r26\n" " 0 *32* m[r14 + 44] := r27\n" " 0 *32* m[r14 + 48] := r28\n" " 0 *32* m[r14 + 52] := r29\n" " 0 *32* m[r14 + 56] := r30\n" " 0 *32* m[r14 + 60] := r31\n" " 0 *32* r24 := r8\n" " 0 *32* r25 := r9\n" " 0 *32* r26 := r10\n" " 0 *32* r27 := r11\n" " 0 *32* r28 := r12\n" " 0 *32* r29 := r13\n" " 0 *32* r30 := r14\n" " 0 *32* r31 := r15\n" " 0 *32* r14 := tmp\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(ost.str())); std::ostringstream o2; addr += inst.numBytes; inst = pFE->decodeInstruction(addr); inst.rtl->print(o2); expected = std::string("00010688 0 *32* r8 := 0x10400\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); std::ostringstream o3; addr += inst.numBytes; inst = pFE->decodeInstruction(addr); inst.rtl->print(o3); expected = std::string("0001068c 0 *32* r8 := r8 | 848\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; //delete pBF; }
void FrontSparcTest::testDelaySlot() { BinaryFileFactory bff; BinaryFile *pBF = bff.Load(BRANCH_SPARC); if (pBF == NULL) pBF = new BinaryFileStub(); // fallback on stub CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); // decode calls readLibraryCatalog(), which needs to have definitions for non-sparc architectures cleared Type::clearNamedTypes(); pFE->decode(prog); bool gotMain; ADDRESS addr = pFE->getMainEntryPoint(gotMain); CPPUNIT_ASSERT (addr != NO_ADDRESS); std::string name("testDelaySlot"); UserProc* pProc = new UserProc(prog, name, addr); std::ofstream dummy; bool res = pFE->processProc(addr, pProc, dummy, false); CPPUNIT_ASSERT(res == 1); Cfg* cfg = pProc->getCFG(); BB_IT it; PBB bb = cfg->getFirstBB(it); std::ostringstream o1; bb->print(o1); std::string expected("Call BB:\n" "in edges: \n" "out edges: 10a98 \n" "00010a80 0 *32* tmp := r14 - 120\n" " 0 *32* m[r14] := r16\n" " 0 *32* m[r14 + 4] := r17\n" " 0 *32* m[r14 + 8] := r18\n" " 0 *32* m[r14 + 12] := r19\n" " 0 *32* m[r14 + 16] := r20\n" " 0 *32* m[r14 + 20] := r21\n" " 0 *32* m[r14 + 24] := r22\n" " 0 *32* m[r14 + 28] := r23\n" " 0 *32* m[r14 + 32] := r24\n" " 0 *32* m[r14 + 36] := r25\n" " 0 *32* m[r14 + 40] := r26\n" " 0 *32* m[r14 + 44] := r27\n" " 0 *32* m[r14 + 48] := r28\n" " 0 *32* m[r14 + 52] := r29\n" " 0 *32* m[r14 + 56] := r30\n" " 0 *32* m[r14 + 60] := r31\n" " 0 *32* r24 := r8\n" " 0 *32* r25 := r9\n" " 0 *32* r26 := r10\n" " 0 *32* r27 := r11\n" " 0 *32* r28 := r12\n" " 0 *32* r29 := r13\n" " 0 *32* r30 := r14\n" " 0 *32* r31 := r15\n" " 0 *32* r14 := tmp\n" "00010a84 0 *32* r16 := 0x11400\n" "00010a88 0 *32* r16 := r16 | 808\n" "00010a8c 0 *32* r8 := r16\n" "00010a90 0 *32* tmp := r30\n" " 0 *32* r9 := r30 - 20\n" "00010a90 0 CALL scanf(\n" " )\n" " Reaching definitions: \n" " Live variables: \n"); std::string actual(o1.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); bb = cfg->getNextBB(it); CPPUNIT_ASSERT(bb); std::ostringstream o2; bb->print(o2); expected = std::string("Call BB:\n" "in edges: 10a90 \n" "out edges: 10aa4 \n" "00010a98 0 *32* r8 := r16\n" "00010a9c 0 *32* tmp := r30\n" " 0 *32* r9 := r30 - 24\n" "00010a9c 0 CALL scanf(\n" " )\n" " Reaching definitions: \n" " Live variables: \n"); actual = std::string(o2.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); bb = cfg->getNextBB(it); CPPUNIT_ASSERT(bb); std::ostringstream o3; bb->print(o3); expected = std::string("Twoway BB:\n" "in edges: 10a9c \n" "out edges: 10ac8 10ab8 \n" "00010aa4 0 *32* r8 := m[r30 - 20]\n" "00010aa8 0 *32* r16 := 5\n" "00010aac 0 *32* tmp := r16\n" " 0 *32* r0 := r16 - r8\n" " 0 *v* %flags := SUBFLAGS( tmp, r8, r0 )\n" "00010ab0 0 *32* r8 := 0x11400\n" "00010ab0 0 BRANCH 0x10ac8, condition not equals\n" "High level: %flags\n"); actual = std::string(o3.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); bb = cfg->getNextBB(it); CPPUNIT_ASSERT(bb); std::ostringstream o4; bb->print(o4); expected = std::string("L1: Twoway BB:\n" "in edges: 10ab0 10ac4 \n" "out edges: 10ad8 10ad0 \n" "00010ac8 0 *32* r8 := 0x11400\n" "00010ac8 0 BRANCH 0x10ad8, condition equals\n" "High level: %flags\n"); actual = std::string(o4.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); bb = cfg->getNextBB(it); CPPUNIT_ASSERT(bb); std::ostringstream o5; bb->print(o5); expected = std::string("Call BB:\n" "in edges: 10ab0 \n" "out edges: 10ac0 \n" "00010ab8 0 *32* r8 := r8 | 816\n" "00010ab8 0 CALL printf(\n" " )\n" " Reaching definitions: \n" " Live variables: \n"); actual = std::string(o5.str()); CPPUNIT_ASSERT_EQUAL(expected, actual); delete prog; }
void FrontSparcTest::test3() { DecodeResult inst; std::string expected; BinaryFileFactory bff; BinaryFile *pBF = bff.Load(HELLO_SPARC); if (pBF == NULL) pBF = new BinaryFileStub(); // fallback on stub CPPUNIT_ASSERT(pBF != 0); CPPUNIT_ASSERT(pBF->GetMachine() == MACHINE_SPARC); Prog* prog = new Prog; FrontEnd *pFE = new SparcFrontEnd(pBF, prog, &bff); prog->setFrontEnd(pFE); std::ostringstream o1; inst = pFE->decodeInstruction(0x106a0); inst.rtl->print(o1); expected = std::string("000106a0\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o1.str())); std::ostringstream o2; inst = pFE->decodeInstruction(0x106a4); inst.rtl->print(o2); expected = std::string("000106a4 0 RET\n" " Modifieds: \n" " Reaching definitions: \n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o2.str())); std::ostringstream o3; inst = pFE->decodeInstruction(0x106a8); inst.rtl->print(o3); expected = std::string( "000106a8 0 *32* tmp := 0\n" " 0 *32* r8 := r24\n" " 0 *32* r9 := r25\n" " 0 *32* r10 := r26\n" " 0 *32* r11 := r27\n" " 0 *32* r12 := r28\n" " 0 *32* r13 := r29\n" " 0 *32* r14 := r30\n" " 0 *32* r15 := r31\n" " 0 *32* r0 := tmp\n" " 0 *32* r16 := m[r14]\n" " 0 *32* r17 := m[r14 + 4]\n" " 0 *32* r18 := m[r14 + 8]\n" " 0 *32* r19 := m[r14 + 12]\n" " 0 *32* r20 := m[r14 + 16]\n" " 0 *32* r21 := m[r14 + 20]\n" " 0 *32* r22 := m[r14 + 24]\n" " 0 *32* r23 := m[r14 + 28]\n" " 0 *32* r24 := m[r14 + 32]\n" " 0 *32* r25 := m[r14 + 36]\n" " 0 *32* r26 := m[r14 + 40]\n" " 0 *32* r27 := m[r14 + 44]\n" " 0 *32* r28 := m[r14 + 48]\n" " 0 *32* r29 := m[r14 + 52]\n" " 0 *32* r30 := m[r14 + 56]\n" " 0 *32* r31 := m[r14 + 60]\n" " 0 *32* r0 := tmp\n"); CPPUNIT_ASSERT_EQUAL(expected, std::string(o3.str())); delete pFE; // delete pBF; }
void draw(void) { p.run(); }