Ejemplo n.º 1
0
/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
///
void InstrEmitter::EmitRegSequence(SDNode *Node,
                                   DenseMap<SDValue, unsigned> &VRBaseMap,
                                   bool IsClone, bool IsCloned) {
    unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
    unsigned NewVReg = MRI->createVirtualRegister(RC);
    MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
                               TII->get(TargetOpcode::REG_SEQUENCE), NewVReg);
    unsigned NumOps = Node->getNumOperands();
    assert((NumOps & 1) == 1 &&
           "REG_SEQUENCE must have an odd number of operands!");
    const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
    for (unsigned i = 1; i != NumOps; ++i) {
        SDValue Op = Node->getOperand(i);
        if ((i & 1) == 0) {
            RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
            // Skip physical registers as they don't have a vreg to get and we'll
            // insert copies for them in TwoAddressInstructionPass anyway.
            if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
                unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
                unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
                const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
                const TargetRegisterClass *SRC =
                    TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
                if (SRC && SRC != RC) {
                    MRI->setRegClass(NewVReg, SRC);
                    RC = SRC;
                }
            }
        }
        AddOperand(MI, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
                   IsClone, IsCloned);
    }

    MBB->insert(InsertPos, MI);
    SDValue Op(Node, 0);
    bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
    (void)isNew; // Silence compiler warning.
    assert(isNew && "Node emitted out of order - early");
}
Ejemplo n.º 2
0
/// EmitSubregNode - Generate machine code for subreg nodes.
///
void InstrEmitter::EmitSubregNode(SDNode *Node,
                                  DenseMap<SDValue, unsigned> &VRBaseMap,
                                  bool IsClone, bool IsCloned) {
  unsigned VRBase = 0;
  unsigned Opc = Node->getMachineOpcode();

  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
  // the CopyToReg'd destination register instead of creating a new vreg.
  for (SDNode *User : Node->uses()) {
    if (User->getOpcode() == ISD::CopyToReg &&
        User->getOperand(2).getNode() == Node) {
      unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
      if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
        VRBase = DestReg;
        break;
      }
    }
  }

  if (Opc == TargetOpcode::EXTRACT_SUBREG) {
    // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
    // constraints on the %dst register, COPY can target all legal register
    // classes.
    unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    const TargetRegisterClass *TRC =
      TLI->getRegClassFor(Node->getSimpleValueType(0));

    unsigned Reg;
    MachineInstr *DefMI;
    RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
    if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
      Reg = R->getReg();
      DefMI = nullptr;
    } else {
      Reg = getVR(Node->getOperand(0), VRBaseMap);
      DefMI = MRI->getVRegDef(Reg);
    }

    unsigned SrcReg, DstReg, DefSubIdx;
    if (DefMI &&
        TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
        SubIdx == DefSubIdx &&
        TRC == MRI->getRegClass(SrcReg)) {
      // Optimize these:
      // r1025 = s/zext r1024, 4
      // r1026 = extract_subreg r1025, 4
      // to a copy
      // r1026 = copy r1024
      VRBase = MRI->createVirtualRegister(TRC);
      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
              TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
      MRI->clearKillFlags(SrcReg);
    } else {
      // Reg may not support a SubIdx sub-register, and we may need to
      // constrain its register class or issue a COPY to a compatible register
      // class.
      if (TargetRegisterInfo::isVirtualRegister(Reg))
        Reg = ConstrainForSubReg(Reg, SubIdx,
                                 Node->getOperand(0).getSimpleValueType(),
                                 Node->getDebugLoc());

      // Create the destreg if it is missing.
      if (VRBase == 0)
        VRBase = MRI->createVirtualRegister(TRC);

      // Create the extract_subreg machine instruction.
      MachineInstrBuilder CopyMI =
          BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
                  TII->get(TargetOpcode::COPY), VRBase);
      if (TargetRegisterInfo::isVirtualRegister(Reg))
        CopyMI.addReg(Reg, 0, SubIdx);
      else
        CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
    }
  } else if (Opc == TargetOpcode::INSERT_SUBREG ||
             Opc == TargetOpcode::SUBREG_TO_REG) {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);
    SDValue N2 = Node->getOperand(2);
    unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();

    // Figure out the register class to create for the destreg.  It should be
    // the largest legal register class supporting SubIdx sub-registers.
    // RegisterCoalescer will constrain it further if it decides to eliminate
    // the INSERT_SUBREG instruction.
    //
    //   %dst = INSERT_SUBREG %src, %sub, SubIdx
    //
    // is lowered by TwoAddressInstructionPass to:
    //
    //   %dst = COPY %src
    //   %dst:SubIdx = COPY %sub
    //
    // There is no constraint on the %src register class.
    //
    const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
    SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
    assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");

    if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
      VRBase = MRI->createVirtualRegister(SRC);

    // Create the insert_subreg or subreg_to_reg machine instruction.
    MachineInstrBuilder MIB =
      BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);

    // If creating a subreg_to_reg, then the first input operand
    // is an implicit value immediate, otherwise it's a register
    if (Opc == TargetOpcode::SUBREG_TO_REG) {
      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
      MIB.addImm(SD->getZExtValue());
    } else
      AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
                 IsClone, IsCloned);
    // Add the subregister being inserted
    AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
               IsClone, IsCloned);
    MIB.addImm(SubIdx);
    MBB->insert(InsertPos, MIB);
  } else
    llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");

  SDValue Op(Node, 0);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
  (void)isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}
Ejemplo n.º 3
0
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
                                                   char ConstraintCode,
                                                   std::vector<SDValue> &OutOps)
{
  // Yes hardcoded 'm' symbol. Just because it also has been hardcoded in
  // SelectionDAGISel (callee for this method).
  assert(ConstraintCode == 'm' && "Unexpected asm memory constraint");

  //MachineFunction& MF = CurDAG->getMachineFunction();
  MachineRegisterInfo &RI = MF->getRegInfo();
  const TargetLowering* TL = MF->getTarget().getTargetLowering();

  const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);

  // If address operand is of PTRDISPREGS class, all is OK, then.

  if (RegNode && RI.getRegClass(RegNode->getReg()) ==
      &AVR::PTRDISPREGSRegClass)
  {
    OutOps.push_back(Op);
    return false;
  }

  if (Op->getOpcode() == ISD::FrameIndex)
  {
    SDValue Base, Disp;
    if (SelectAddr(Op.getNode(), Op, Base, Disp))
    {
      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }

    return true;
  }

  // If Op is add reg, imm and
  // reg is either virtual register or register of PTRDISPREGSRegClass
  if (Op->getOpcode() == ISD::ADD ||
      Op->getOpcode() == ISD::SUB)
  {
    SDValue CopyFromRegOp = Op->getOperand(0);
    SDValue ImmOp = Op->getOperand(1);
    ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);

    unsigned Reg;

    bool CanHandleRegImmOpt = true;

    CanHandleRegImmOpt &= ImmNode != 0;
    CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;

    if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg)
    {
      RegisterSDNode *RegNode =
          cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
      Reg = RegNode->getReg();
      CanHandleRegImmOpt &= (TargetRegisterInfo::isVirtualRegister(Reg) ||
                             AVR::PTRDISPREGSRegClass.contains(Reg));
    }
    else
    {
      CanHandleRegImmOpt = false;
    }

    if (CanHandleRegImmOpt)
    {
      // If we detect proper case - correct virtual register class
      // if needed and go to another inlineasm operand.

      SDValue Base, Disp;

      if (RI.getRegClass(Reg)
          != &AVR::PTRDISPREGSRegClass)
      {
        SDLoc dl(CopyFromRegOp);

        unsigned VReg = RI.createVirtualRegister(
            &AVR::PTRDISPREGSRegClass);

        SDValue CopyToReg = CurDAG->getCopyToReg(CopyFromRegOp, dl,
                                                 VReg, CopyFromRegOp);

        SDValue NewCopyFromRegOp =
            CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL->getPointerTy());

        Base = NewCopyFromRegOp;
      }
      else
      {
        Base = CopyFromRegOp;
      }

      if (ImmNode->getValueType(0) != MVT::i8)
      {
        Disp = CurDAG->getTargetConstant(
            ImmNode->getAPIntValue().getZExtValue(), MVT::i8);
      }
      else
      {
        Disp = ImmOp;
      }

      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }
  }

  // More generic case.
  // Create chain that puts Op into pointer register
  // and return that register.

  SDLoc dl(Op);

  unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

  SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
  SDValue CopyFromReg =
      CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL->getPointerTy());

  OutOps.push_back(CopyFromReg);

  return false;
}
Ejemplo n.º 4
0
bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
                                                   unsigned ConstraintCode,
                                                   std::vector<SDValue> &OutOps) {
  assert((ConstraintCode == InlineAsm::Constraint_m ||
         ConstraintCode == InlineAsm::Constraint_Q) &&
      "Unexpected asm memory constraint");

  MachineRegisterInfo &RI = MF->getRegInfo();
  const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
  const TargetLowering &TL = *STI.getTargetLowering();
  SDLoc dl(Op);
  auto DL = CurDAG->getDataLayout();

  const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);

  // If address operand is of PTRDISPREGS class, all is OK, then.
  if (RegNode &&
      RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) {
    OutOps.push_back(Op);
    return false;
  }

  if (Op->getOpcode() == ISD::FrameIndex) {
    SDValue Base, Disp;

    if (SelectAddr(Op.getNode(), Op, Base, Disp)) {
      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }

    return true;
  }

  // If Op is add 'register, immediate' and
  // register is either virtual register or register of PTRDISPREGSRegClass
  if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) {
    SDValue CopyFromRegOp = Op->getOperand(0);
    SDValue ImmOp = Op->getOperand(1);
    ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);

    unsigned Reg;
    bool CanHandleRegImmOpt = true;

    CanHandleRegImmOpt &= ImmNode != 0;
    CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;

    if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) {
      RegisterSDNode *RegNode =
          cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
      Reg = RegNode->getReg();
      CanHandleRegImmOpt &= (TargetRegisterInfo::isVirtualRegister(Reg) ||
                             AVR::PTRDISPREGSRegClass.contains(Reg));
    } else {
      CanHandleRegImmOpt = false;
    }

    // If we detect proper case - correct virtual register class
    // if needed and go to another inlineasm operand.
    if (CanHandleRegImmOpt) {
      SDValue Base, Disp;

      if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) {
        SDLoc dl(CopyFromRegOp);

        unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

        SDValue CopyToReg =
            CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp);

        SDValue NewCopyFromRegOp =
            CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

        Base = NewCopyFromRegOp;
      } else {
        Base = CopyFromRegOp;
      }

      if (ImmNode->getValueType(0) != MVT::i8) {
        Disp = CurDAG->getTargetConstant(ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8);
      } else {
        Disp = ImmOp;
      }

      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }
  }

  // More generic case.
  // Create chain that puts Op into pointer register
  // and return that register.
  unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

  SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
  SDValue CopyFromReg =
      CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

  OutOps.push_back(CopyFromReg);

  return false;
}
Ejemplo n.º 5
0
/*!
 */
SDNode *
SPUDAGToDAGISel::Select(SDNode *N) {
  unsigned Opc = N->getOpcode();
  int n_ops = -1;
  unsigned NewOpc = 0;
  EVT OpVT = N->getValueType(0);
  SDValue Ops[8];
  DebugLoc dl = N->getDebugLoc();

  if (N->isMachineOpcode())
    return NULL;   // Already selected.

  if (Opc == ISD::FrameIndex) {
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
    SDValue Imm0 = CurDAG->getTargetConstant(0, N->getValueType(0));

    if (FI < 128) {
      NewOpc = SPU::AIr32;
      Ops[0] = TFI;
      Ops[1] = Imm0;
      n_ops = 2;
    } else {
      NewOpc = SPU::Ar32;
      Ops[0] = CurDAG->getRegister(SPU::R1, N->getValueType(0));
      Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILAr32, dl,
                                              N->getValueType(0), TFI),
                       0);
      n_ops = 2;
    }
  } else if (Opc == ISD::Constant && OpVT == MVT::i64) {
    // Catch the i64 constants that end up here. Note: The backend doesn't
    // attempt to legalize the constant (it's useless because DAGCombiner
    // will insert 64-bit constants and we can't stop it).
    return SelectI64Constant(N, OpVT, N->getDebugLoc());
  } else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
             && OpVT == MVT::i64) {
    SDValue Op0 = N->getOperand(0);
    EVT Op0VT = Op0.getValueType();
    EVT Op0VecVT = EVT::getVectorVT(*CurDAG->getContext(),
                                    Op0VT, (128 / Op0VT.getSizeInBits()));
    EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(),
                                   OpVT, (128 / OpVT.getSizeInBits()));
    SDValue shufMask;

    switch (Op0VT.getSimpleVT().SimpleTy) {
    default:
      report_fatal_error("CellSPU Select: Unhandled zero/any extend EVT");
      /*NOTREACHED*/
    case MVT::i32:
      shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x00010203, MVT::i32),
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x08090a0b, MVT::i32));
      break;

    case MVT::i16:
      shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x80800203, MVT::i32),
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x80800a0b, MVT::i32));
      break;

    case MVT::i8:
      shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x80808003, MVT::i32),
                                 CurDAG->getConstant(0x80808080, MVT::i32),
                                 CurDAG->getConstant(0x8080800b, MVT::i32));
      break;
    }

    SDNode *shufMaskLoad = emitBuildVector(shufMask.getNode());

    HandleSDNode PromoteScalar(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl,
                                               Op0VecVT, Op0));

    SDValue PromScalar;
    if (SDNode *N = SelectCode(PromoteScalar.getValue().getNode()))
      PromScalar = SDValue(N, 0);
    else
      PromScalar = PromoteScalar.getValue();

    SDValue zextShuffle =
            CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
                            PromScalar, PromScalar,
                            SDValue(shufMaskLoad, 0));

    HandleSDNode Dummy2(zextShuffle);
    if (SDNode *N = SelectCode(Dummy2.getValue().getNode()))
      zextShuffle = SDValue(N, 0);
    else
      zextShuffle = Dummy2.getValue();
    HandleSDNode Dummy(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
                                       zextShuffle));

    CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
    SelectCode(Dummy.getValue().getNode());
    return Dummy.getValue().getNode();
  } else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
    SDNode *CGLoad =
            emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());

    HandleSDNode Dummy(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
                                       N->getOperand(0), N->getOperand(1),
                                       SDValue(CGLoad, 0)));

    CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
    if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
      return N;
    return Dummy.getValue().getNode();
  } else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
    SDNode *CGLoad =
            emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl).getNode());

    HandleSDNode Dummy(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
                                       N->getOperand(0), N->getOperand(1),
                                       SDValue(CGLoad, 0)));

    CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
    if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
      return N;
    return Dummy.getValue().getNode();
  } else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
    SDNode *CGLoad =
            emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());

    HandleSDNode Dummy(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
                                       N->getOperand(0), N->getOperand(1),
                                       SDValue(CGLoad, 0)));
    CurDAG->ReplaceAllUsesWith(N, Dummy.getValue().getNode());
    if (SDNode *N = SelectCode(Dummy.getValue().getNode()))
      return N;
    return Dummy.getValue().getNode();
  } else if (Opc == ISD::TRUNCATE) {
    SDValue Op0 = N->getOperand(0);
    if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
        && OpVT == MVT::i32
        && Op0.getValueType() == MVT::i64) {
      // Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32
      //
      // Take advantage of the fact that the upper 32 bits are in the
      // i32 preferred slot and avoid shuffle gymnastics:
      ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
      if (CN != 0) {
        unsigned shift_amt = unsigned(CN->getZExtValue());

        if (shift_amt >= 32) {
          SDNode *hi32 =
                  CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, OpVT,
                                         Op0.getOperand(0), getRC(MVT::i32));

          shift_amt -= 32;
          if (shift_amt > 0) {
            // Take care of the additional shift, if present:
            SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32);
            unsigned Opc = SPU::ROTMAIr32_i32;

            if (Op0.getOpcode() == ISD::SRL)
              Opc = SPU::ROTMr32;

            hi32 = CurDAG->getMachineNode(Opc, dl, OpVT, SDValue(hi32, 0),
                                          shift);
          }

          return hi32;
        }
      }
    }
  } else if (Opc == ISD::SHL) {
    if (OpVT == MVT::i64)
      return SelectSHLi64(N, OpVT);
  } else if (Opc == ISD::SRL) {
    if (OpVT == MVT::i64)
      return SelectSRLi64(N, OpVT);
  } else if (Opc == ISD::SRA) {
    if (OpVT == MVT::i64)
      return SelectSRAi64(N, OpVT);
  } else if (Opc == ISD::FNEG
             && (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
    DebugLoc dl = N->getDebugLoc();
    // Check if the pattern is a special form of DFNMS:
    // (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
    SDValue Op0 = N->getOperand(0);
    if (Op0.getOpcode() == ISD::FSUB) {
      SDValue Op00 = Op0.getOperand(0);
      if (Op00.getOpcode() == ISD::FMUL) {
        unsigned Opc = SPU::DFNMSf64;
        if (OpVT == MVT::v2f64)
          Opc = SPU::DFNMSv2f64;

        return CurDAG->getMachineNode(Opc, dl, OpVT,
                                      Op00.getOperand(0),
                                      Op00.getOperand(1),
                                      Op0.getOperand(1));
      }
    }

    SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64);
    SDNode *signMask = 0;
    unsigned Opc = SPU::XORfneg64;

    if (OpVT == MVT::f64) {
      signMask = SelectI64Constant(negConst.getNode(), MVT::i64, dl);
    } else if (OpVT == MVT::v2f64) {
      Opc = SPU::XORfnegvec;
      signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
                                                 MVT::v2i64,
                                                 negConst, negConst).getNode());
    }

    return CurDAG->getMachineNode(Opc, dl, OpVT,
                                  N->getOperand(0), SDValue(signMask, 0));
  } else if (Opc == ISD::FABS) {
    if (OpVT == MVT::f64) {
      SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
      return CurDAG->getMachineNode(SPU::ANDfabs64, dl, OpVT,
                                    N->getOperand(0), SDValue(signMask, 0));
    } else if (OpVT == MVT::v2f64) {
      SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
      SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
                                       absConst, absConst);
      SDNode *signMask = emitBuildVector(absVec.getNode());
      return CurDAG->getMachineNode(SPU::ANDfabsvec, dl, OpVT,
                                    N->getOperand(0), SDValue(signMask, 0));
    }
  } else if (Opc == SPUISD::LDRESULT) {
    // Custom select instructions for LDRESULT
    EVT VT = N->getValueType(0);
    SDValue Arg = N->getOperand(0);
    SDValue Chain = N->getOperand(1);
    SDNode *Result;

    Result = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, VT,
                                    MVT::Other, Arg,
                                    getRC( VT.getSimpleVT()), Chain);
    return Result;

  } else if (Opc == SPUISD::IndirectAddr) {
    // Look at the operands: SelectCode() will catch the cases that aren't
    // specifically handled here.
    //
    // SPUInstrInfo catches the following patterns:
    // (SPUindirect (SPUhi ...), (SPUlo ...))
    // (SPUindirect $sp, imm)
    EVT VT = N->getValueType(0);
    SDValue Op0 = N->getOperand(0);
    SDValue Op1 = N->getOperand(1);
    RegisterSDNode *RN;

    if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo)
        || (Op0.getOpcode() == ISD::Register
            && ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0
                && RN->getReg() != SPU::R1))) {
      NewOpc = SPU::Ar32;
      Ops[1] = Op1;
      if (Op1.getOpcode() == ISD::Constant) {
        ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
        Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT);
        if (isInt<10>(CN->getSExtValue())) {
          NewOpc = SPU::AIr32;
          Ops[1] = Op1;
        } else {
          Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILr32, dl,
                                                  N->getValueType(0),
                                                  Op1),
                           0);
        }
      }
      Ops[0] = Op0;
      n_ops = 2;
    }
  }

  if (n_ops > 0) {
    if (N->hasOneUse())
      return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
    else
      return CurDAG->getMachineNode(NewOpc, dl, OpVT, Ops, n_ops);
  } else
    return SelectCode(N);
}