Ejemplo n.º 1
0
TYPED_TEST(IsolatorTest, Usage)
{
  Try<PID<Master> > master = this->StartMaster();
  ASSERT_SOME(master);

  TypeParam isolator;

  slave::Flags flags = this->CreateSlaveFlags();

  Try<PID<Slave> > slave = this->StartSlave(&isolator, flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("isolator_test");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());

  Resources resources(offers.get()[0].resources());
  Option<Bytes> mem = resources.mem();
  ASSERT_SOME(mem);
  Option<double> cpus = resources.cpus();
  ASSERT_SOME(cpus);

  const std::string& file = path::join(flags.work_dir, "ready");

  // This task induces user/system load in a child process by
  // running top in a child process for ten seconds.
  task.mutable_command()->set_value(
#ifdef __APPLE__
      // Use logging mode with 30,000 samples with no interval.
      "top -l 30000 -s 0 2>&1 > /dev/null & "
#else
      // Batch mode, with 30,000 samples with no interval.
      "top -b -d 0 -n 30000 2>&1 > /dev/null & "
#endif
      "touch " + file +  "; " // Signals that the top command is running.
      "sleep 60");

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Wait for the task to begin inducing cpu time.
  while (!os::exists(file));

  ExecutorID executorId;
  executorId.set_value(task.task_id().value());

  // We'll wait up to 10 seconds for the child process to induce
  // 1/8 of a second of user and system cpu time in total.
  // TODO(bmahler): Also induce rss memory consumption, by re-using
  // the balloon framework.
  ResourceStatistics statistics;
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage =
      process::dispatch(
          (Isolator*) &isolator, // TODO(benh): Fix after reaper changes.
          &Isolator::usage,
          frameworkId.get(),
          executorId);

    AWAIT_READY(usage);

    statistics = usage.get();

    // If we meet our usage expectations, we're done!
    if (statistics.cpus_user_time_secs() >= 0.125 &&
        statistics.cpus_system_time_secs() >= 0.125 &&
        statistics.mem_rss_bytes() >= 1024u) {
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(10));


  EXPECT_GE(statistics.cpus_user_time_secs(), 0.125);
  EXPECT_GE(statistics.cpus_system_time_secs(), 0.125);
  EXPECT_EQ(statistics.cpus_limit(), cpus.get());
  EXPECT_GE(statistics.mem_rss_bytes(), 1024u);
  EXPECT_EQ(statistics.mem_limit_bytes(), mem.get().bytes());

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.killTask(task.task_id());

  AWAIT_READY(status);

  EXPECT_EQ(TASK_KILLED, status.get().state());

  driver.stop();
  driver.join();

  this->Shutdown(); // Must shutdown before 'isolator' gets deallocated.
}
Ejemplo n.º 2
0
// This test has been temporarily disabled due to MESOS-1257.
TEST_F(ExternalContainerizerTest, DISABLED_Launch)
{
  Try<PID<Master> > master = this->StartMaster();
  ASSERT_SOME(master);

  Flags testFlags;

  slave::Flags flags = this->CreateSlaveFlags();

  flags.isolation = "external";
  flags.containerizer_path =
    testFlags.build_dir + "/src/examples/python/test-containerizer";

  MockExternalContainerizer containerizer(flags);

  Try<PID<Slave> > slave = this->StartSlave(&containerizer, flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("isolator_test");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->CopyFrom(offers.get()[0].slave_id());
  task.mutable_resources()->CopyFrom(offers.get()[0].resources());

  Resources resources(offers.get()[0].resources());
  Option<Bytes> mem = resources.mem();
  ASSERT_SOME(mem);
  Option<double> cpus = resources.cpus();
  ASSERT_SOME(cpus);

  const std::string& file = path::join(flags.work_dir, "ready");

  // This task induces user/system load in a child process by
  // running top in a child process for ten seconds.
  task.mutable_command()->set_value(
#ifdef __APPLE__
      // Use logging mode with 30,000 samples with no interval.
      "top -l 30000 -s 0 2>&1 > /dev/null & "
#else
      // Batch mode, with 30,000 samples with no interval.
      "top -b -d 0 -n 30000 2>&1 > /dev/null & "
#endif
      "touch " + file +  "; " // Signals that the top command is running.
      "sleep 60");

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore rest for now.

  Future<ContainerID> containerId;
  EXPECT_CALL(containerizer, launch(_, _, _, _, _, _, _, _))
    .WillOnce(DoAll(FutureArg<0>(&containerId),
                    Invoke(&containerizer,
                           &MockExternalContainerizer::_launch)));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(containerId);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Wait for the task to begin inducing cpu time.
  while (!os::exists(file));

  ExecutorID executorId;
  executorId.set_value(task.task_id().value());

  // We'll wait up to 10 seconds for the child process to induce
  // 1/8 of a second of user and system cpu time in total.
  // TODO(bmahler): Also induce rss memory consumption, by re-using
  // the balloon framework.
  ResourceStatistics statistics;
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer.usage(containerId.get());
    AWAIT_READY(usage);

    statistics = usage.get();

    // If we meet our usage expectations, we're done!
    // NOTE: We are currently getting dummy-data from the test-
    // containerizer python script matching these expectations.
    // TODO(tillt): Consider working with real data.
    if (statistics.cpus_user_time_secs() >= 0.120 &&
        statistics.cpus_system_time_secs() >= 0.05 &&
        statistics.mem_rss_bytes() >= 1024u) {
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(10));

  EXPECT_GE(statistics.cpus_user_time_secs(), 0.120);
  EXPECT_GE(statistics.cpus_system_time_secs(), 0.05);
  EXPECT_EQ(statistics.cpus_limit(), cpus.get());
  EXPECT_GE(statistics.mem_rss_bytes(), 1024u);
  EXPECT_EQ(statistics.mem_limit_bytes(), mem.get().bytes());

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.killTask(task.task_id());

  AWAIT_READY(status);

  EXPECT_EQ(TASK_KILLED, status.get().state());

  driver.stop();
  driver.join();

  this->Shutdown();
}
Ejemplo n.º 3
0
// TODO(bmahler): Add additional tests:
//   1. Check that the data has been published to statistics.
//   2. Check that metering is occurring on subsequent resource data.
TEST(MonitorTest, WatchUnwatch)
{
  FrameworkID frameworkId;
  frameworkId.set_value("framework");

  ExecutorID executorId;
  executorId.set_value("executor");

  ExecutorInfo executorInfo;
  executorInfo.mutable_executor_id()->CopyFrom(executorId);
  executorInfo.mutable_framework_id()->CopyFrom(frameworkId);
  executorInfo.set_name("name");
  executorInfo.set_source("source");

  ResourceStatistics initialStatistics;
  initialStatistics.set_cpus_user_time_secs(0);
  initialStatistics.set_cpus_system_time_secs(0);
  initialStatistics.set_cpus_limit(2.5);
  initialStatistics.set_mem_rss_bytes(0);
  initialStatistics.set_mem_limit_bytes(2048);
  initialStatistics.set_timestamp(Clock::now().secs());

  ResourceStatistics statistics;
  statistics.set_cpus_nr_periods(100);
  statistics.set_cpus_nr_throttled(2);
  statistics.set_cpus_user_time_secs(4);
  statistics.set_cpus_system_time_secs(1);
  statistics.set_cpus_throttled_time_secs(0.5);
  statistics.set_cpus_limit(2.5);
  statistics.set_mem_rss_bytes(1024);
  statistics.set_mem_limit_bytes(2048);
  statistics.set_timestamp(
      initialStatistics.timestamp() +
      slave::RESOURCE_MONITORING_INTERVAL.secs());

  TestingIsolator isolator;

  process::spawn(isolator);

  Future<Nothing> usage1, usage2;
  EXPECT_CALL(isolator, usage(frameworkId, executorId))
    .WillOnce(DoAll(FutureSatisfy(&usage1),
                    Return(initialStatistics)))
    .WillOnce(DoAll(FutureSatisfy(&usage2),
                    Return(statistics)));
  slave::ResourceMonitor monitor(&isolator);

  // We pause the clock first in order to make sure that we can
  // advance time below to force the 'delay' in
  // ResourceMonitorProcess::watch to execute.
  process::Clock::pause();

  monitor.watch(
      frameworkId,
      executorId,
      executorInfo,
      slave::RESOURCE_MONITORING_INTERVAL);

  // Now wait for ResouorceMonitorProcess::watch to finish so we can
  // advance time to cause collection to begin.
  process::Clock::settle();

  process::Clock::advance(slave::RESOURCE_MONITORING_INTERVAL);
  process::Clock::settle();

  AWAIT_READY(usage1);

  // Wait until the isolator has finished returning the statistics.
  process::Clock::settle();

  // The second collection will populate the cpus_usage.
  process::Clock::advance(slave::RESOURCE_MONITORING_INTERVAL);
  process::Clock::settle();

  AWAIT_READY(usage2);

  // Wait until the isolator has finished returning the statistics.
  process::Clock::settle();

  process::UPID upid("monitor", process::ip(), process::port());

  Future<Response> response = process::http::get(upid, "usage.json");

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(
      "application/json",
      "Content-Type",
      response);

  // TODO(bmahler): Verify metering directly through statistics.
  AWAIT_EXPECT_RESPONSE_BODY_EQ(
      strings::format(
          "[{"
              "\"executor_id\":\"executor\","
              "\"executor_name\":\"name\","
              "\"framework_id\":\"framework\","
              "\"resource_usage\":{"
                  "\"cpu_time\":%g,"
                  "\"cpu_usage\":%g,"
                  "\"memory_rss\":%lu"
              "},"
              "\"source\":\"source\""
          "}]",
          statistics.cpus_system_time_secs() + statistics.cpus_user_time_secs(),
          (statistics.cpus_system_time_secs() +
           statistics.cpus_user_time_secs()) /
               slave::RESOURCE_MONITORING_INTERVAL.secs(),
          statistics.mem_rss_bytes()).get(),
      response);

  response = process::http::get(upid, "statistics.json");

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(
      "application/json",
      "Content-Type",
      response);

  // TODO(bmahler): Verify metering directly through statistics.
  AWAIT_EXPECT_RESPONSE_BODY_EQ(
      strings::format(
          "[{"
              "\"executor_id\":\"executor\","
              "\"executor_name\":\"name\","
              "\"framework_id\":\"framework\","
              "\"source\":\"source\","
              "\"statistics\":{"
                  "\"cpus_limit\":%g,"
                  "\"cpus_nr_periods\":%d,"
                  "\"cpus_nr_throttled\":%d,"
                  "\"cpus_system_time_secs\":%g,"
                  "\"cpus_throttled_time_secs\":%g,"
                  "\"cpus_user_time_secs\":%g,"
                  "\"mem_limit_bytes\":%lu,"
                  "\"mem_rss_bytes\":%lu"
              "}"
          "}]",
          statistics.cpus_limit(),
          statistics.cpus_nr_periods(),
          statistics.cpus_nr_throttled(),
          statistics.cpus_system_time_secs(),
          statistics.cpus_throttled_time_secs(),
          statistics.cpus_user_time_secs(),
          statistics.mem_limit_bytes(),
          statistics.mem_rss_bytes()).get(),
      response);

  // Ensure the monitor stops polling the isolator.
  monitor.unwatch(frameworkId, executorId);

  // Wait until ResourceMonitorProcess::unwatch has completed.
  process::Clock::settle();

  // This time, Isolator::usage should not get called.
  EXPECT_CALL(isolator, usage(frameworkId, executorId))
    .Times(0);

  process::Clock::advance(slave::RESOURCE_MONITORING_INTERVAL);
  process::Clock::settle();

  response = process::http::get(upid, "usage.json");

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(
      "application/json",
      "Content-Type",
      response);
  AWAIT_EXPECT_RESPONSE_BODY_EQ("[]", response);
}