Ejemplo n.º 1
0
/**
 * Test if argument is valid. The boolean flag 'once' is used to signal whether the argument matching
 * is done in a static or a dynamic context. If the rule is constant, then the argument matching
 * is done in a static context (evaluate-x§once context) regardless of the setting of the once flag.
 * If the argument is constant, we try type promotion if permitted by the variable required type.
 *
 * @todo See the TODOs for fitArgument(...)
 */
bool ArgumentRule::isArgumentValid(const RevPtr<const Variable> &var, bool once) const
{
    
    if ( var == NULL )
    {
        return false;
    }
    
//    TODO: Use this code when the constant flag in ArgumentRule is used correctly
//    if ( isConstant() || !var->isAssignable() )
//    if ( isConstant() )
    if ( evalType == BY_VALUE )
    {
        once = true;
    }

    for ( std::vector<TypeSpec>::const_iterator it = argTypeSpecs.begin(); it != argTypeSpecs.end(); ++it )
    {
        if ( var->getRevObject().isTypeSpec( *it ) )
        {
            return true;
        }
        else if ( var->getRevObject().isConvertibleTo( *it, once ) )
        {
            return true;
        }
        else if ( once == false && !var->isAssignable() &&
                  var->getRevObject().isConvertibleTo( *it, true ) &&
                  (*it).isDerivedOf( var->getRevObjectTypeSpec() )
                )
        {
            return true;
        }
        
    }
    
    return false;
}
Ejemplo n.º 2
0
/**
 * Fit a variable into an argument according to the argument rule. If necessary and
 * appropriate, we do type conversion or type promotion.
 *
 * @todo The constant flag is currently not used correctly in ArgumentRule. Therefore,
 *       we ignore it here for now. This needs to be changed.
 *
 * @todo We need to check whether workspace objects with member variables are
 *       modifiable by the user.
 *
 * @todo To conform to the old code we change the required type of the incoming
 *       variable wrapper here. We need to change this so that we do not change
 *       the wrapper here, but make sure that if the argument variable is inserted
 *       in a member variable or container element slot, that the slot variable
 *       wrapper, which should be unique (not the same as the incoming variable
 *       wrapper), has the right required type.
 */
Argument ArgumentRule::fitArgument( Argument& arg, bool once ) const
{
    //    TODO: Use this code when the constant flag in ArgumentRule is used correctly
    //    if ( isConstant() || !theVar->isAssignable() )
    if ( evalType == BY_VALUE )
    {
        once = true;
    }
    
    RevPtr<Variable> theVar = arg.getVariable();
    
    for ( std::vector<TypeSpec>::const_iterator it = argTypeSpecs.begin(); it != argTypeSpecs.end(); ++it )
    {
        if ( theVar->getRevObject().isTypeSpec( *it ) )
        {
            // For now, change the required type of the incoming variable wrapper
            theVar->setRevObjectTypeSpec( *it );
            
            if ( !isEllipsis() )
                return Argument( theVar, getArgumentLabel(), evalType == BY_CONSTANT_REFERENCE );
            else
                return Argument( theVar, arg.getLabel(), true );
        }
        else if ( once == false &&
                 !theVar->isAssignable() &&
                 theVar->getRevObject().isConvertibleTo( *it, true ) &&
                 (*it).isDerivedOf( theVar->getRevObjectTypeSpec() )
                 )
        {
            // Fit by type promotion. For now, we also modify the type of the incoming variable wrapper.
            RevObject* convertedObject = theVar->getRevObject().convertTo( *it );
            theVar->setRevObject( convertedObject );
            theVar->setRevObjectTypeSpec( *it );
            if ( !isEllipsis() )
                return Argument( theVar, getArgumentLabel(), evalType == BY_CONSTANT_REFERENCE );
            else
                return Argument( theVar, arg.getLabel(), true );
        }
        else if ( theVar->getRevObject().isConvertibleTo( *it, once ) )
        {
            // Fit by type conversion
            if ( once || !theVar->getRevObject().hasDagNode() )
            {
                RevObject* convertedObject = theVar->getRevObject().convertTo( *it );
                Variable*  convertedVar    = new Variable( convertedObject );
                convertedVar->setRevObjectTypeSpec( *it );

                if ( !isEllipsis() )
                    return Argument( convertedVar, getArgumentLabel(), evalType == BY_CONSTANT_REFERENCE );
                else
                    return Argument( convertedVar, arg.getLabel(), true );
            }
            else
            {
                RevObject* conversionObject = theVar->getRevObject().convertTo( *it );
                conversionObject->makeConversionValue( theVar );
                Variable*  conversionVar    = new Variable( conversionObject );
                conversionVar->setRevObjectTypeSpec( *it );
                
                if ( !isEllipsis() )
                    return Argument( conversionVar, getArgumentLabel(), evalType == BY_CONSTANT_REFERENCE );
                else
                    return Argument( conversionVar, arg.getLabel(), true );
            }
        }
    }
    
    throw RbException( "Argument type mismatch fitting a " + theVar->getRevObject().getType() + " argument to formal " +
                        getArgumentTypeSpec()[0].getType() + " " + getArgumentLabel() );
}
Ejemplo n.º 3
0
/**
 * @brief Evaluate dynamic rhs content
 *
 * This function returns the semantic value of the variable expression
 * when it is part of a dynamic expression, that is, the right-hand side
 * of an equation (deterministic) or tilde (stochastic) assignment.
 *
 * It differs from the standard evaluateContent() in several ways. First,
 * control variables need to return clones of themselves (temporary
 * variables) rather than themselves, so that they are not included in
 * the DAG. Second, we cannot compute a static index for indexed variables.
 * Instead, we need to deliver an index conisting of variables resulting
 * from dynamic evaluation of the index variables. These need to be put
 * in a dynamic lookup variable.
 */
RevPtr<Variable> SyntaxVariable::evaluateDynamicContent( Environment& env)
{
    RevPtr<Variable> theVar;
    
    if ( baseVariable == NULL )
    {
        if ( functionCall != NULL )
        {
            // Get the dynamic return variable of the function call
            theVar = functionCall->evaluateDynamicContent( env );
        }
        else if ( expression  != NULL )
        {
            // Get the dynamic return variable of the expression
            theVar = expression->evaluateDynamicContent( env );
        }
        else
        {
            // Get variable from the environment (no dynamic version of identifier)
            theVar = env.getVariable( identifier );
        }
    }
    else
    {
        // Note that the function call is always NULL if there is
        // a base variable, because any variables that are base to
        // the function call are handled by the function call. Note
        // also that generic expressions can only occur in base
        // variables, so we need not worry about any expression if
        // we are not a base variable.
        
        // Get the base variable
        theVar = baseVariable->evaluateDynamicContent( env );
        
        // Find member variable (no dynamic version of identifier)
        theVar = theVar->getRevObject().getMember( identifier );
    }

    // Get dynamic index
    std::vector< RevPtr<Variable> > oneOffsetIndexVars = computeDynamicIndex( env );
    
    // Check if we need a dynamic lookup
    bool dynamicLookup = false;
    for ( std::vector< RevPtr<Variable> >::iterator it = oneOffsetIndexVars.begin(); it != oneOffsetIndexVars.end(); ++it )
    {
        if ( (*it)->getRevObject().hasDagNode() && (*it)->isAssignable() )
        {
            dynamicLookup = true;
            break;
        }
    }
    
    // If the variable we are looking up things in does not have a DAG node, we do not need a dynamic lookup regardless
    // If it does have a DAG node, we need a dynamic lookup if it is named, regardless of whether we have constant indices
    if ( theVar->getRevObject().hasDagNode() == false )
        dynamicLookup = false;
    else if ( theVar->isAssignable() )
        dynamicLookup = true;

    // Get dynamic element from container or subscript operator
    while ( !oneOffsetIndexVars.empty() )
    {
        // Get the element...
        if ( theVar->getRevObject().isTypeSpec( Container::RevObject::getClassTypeSpec() ) )
        {
            // ... from a container
            
            // Get the container index variables
            std::vector< RevPtr<Variable> > containerOneOffsetIndexVars;
            for ( size_t i = 0; i < theVar->getRevObject().getDim(); ++i )
            {
                if ( !oneOffsetIndexVars.empty() )
                {
                    containerOneOffsetIndexVars.push_back( oneOffsetIndexVars[0] );
                    oneOffsetIndexVars.erase( oneOffsetIndexVars.begin() );
                }
                else
                    containerOneOffsetIndexVars.push_back( new Variable( new Natural( 0 ) ) );
            }
            
            if ( dynamicLookup )
            {
                // Make a dynamic element lookup
                theVar = new Variable( theVar->getRevObject().makeElementLookup( theVar, containerOneOffsetIndexVars ) );
            }
            else
            {
                // We want a static element lookup

                // Get the container indices statically
                std::vector<size_t> containerOneOffsetIndices;
                for ( size_t i = 0; i < containerOneOffsetIndexVars.size(); ++i )
                {
                    containerOneOffsetIndices.push_back( getIndex( containerOneOffsetIndexVars[i], env ) );
                }
                
                // Get the element using the getElement function
                theVar = theVar->getRevObject().getElement( containerOneOffsetIndices );
            }
        }
        else
        {
            // ... or from a subscript operator
            
            // Note that we do not name the element here; either the member object gives out
            // a variable it names itself, or it gives out a temporary variable copy, which
            // should not be named
            
            // Create the single argument for the index operator (statically always for now)
            std::vector<Argument> args;
            args.push_back( Argument( new Variable( new Natural( getIndex( oneOffsetIndexVars[0], env ) ) ) ) );

           // Get the variable using the subscript operator function
            // TODO: This needs to be made generic for user-defined member objects
            // TODO: This needs to check that there is a subscript operator function and not procedure,
            // and then return a dynamic element lookup
            theVar = theVar->getRevObject().executeMethod( "[]", args );
            
            // Erase the index
            oneOffsetIndexVars.erase( oneOffsetIndexVars.begin() );
        }
    }
    
    // Check whether we have a control variable and make a clone in that case
    if ( theVar->isControlVar() )
        theVar = new Variable( theVar->getRevObject().clone() );
    
    // Return the variable for assignment
    return theVar;
}