Ejemplo n.º 1
0
///
/// Perform a couple of consistency checks to make it easier
/// to find bugs:
/// - check if all observables end with '_obs'
/// - check if all predicted observables end with '_th'
/// - check if the 'observables' and 'theory' lists are correctly ordered
///
bool PDF_Abs::checkConsistency()
{
	if ( m_isCrossCorPdf ) return true;
	bool allOk = true;

	// check if all observables end with '_obs'
	TIterator* it = observables->createIterator();
	while ( RooRealVar* p = (RooRealVar*)it->Next() ){
		TString pObsName = p->GetName();
		pObsName.ReplaceAll(uniqueID,"");
		if ( !pObsName.EndsWith("_obs") ){
			cout << "PDF_Abs::checkConsistency() : " << name << " : observable " << p->GetName() << " doesn't end with '_obs'" << endl;
			allOk = false;
		}
	}

	// check if all predicted observables end with '_th'
	delete it; it = theory->createIterator();
	while ( RooRealVar* p = (RooRealVar*)it->Next() ){
		TString pThName = p->GetName();
		pThName.ReplaceAll(uniqueID,"");
		if ( !pThName.EndsWith("_th") ){
			cout << "PDF_Abs::checkConsistency() : " << name << " : theory " << p->GetName() << " doesn't end with '_th'" << endl;
			allOk = false;
		}
	}

	// check if the 'observables' and 'theory' lists are correctly ordered
	for ( int i=0; i<nObs; i++ ){
		RooAbsArg* pTh = theory->at(i);
		TString base = pTh->GetName();
		base.ReplaceAll("_th","");
		base.ReplaceAll(uniqueID,"");
		TString pObsName = observables->at(i)->GetName();
		pObsName.ReplaceAll(uniqueID,"");
		if ( pObsName != base+"_obs"){
			cout << "PDF_Abs::checkConsistency() : " << name << " : " << pTh->GetName() << " doesn't match its observable." << endl;
			cout << "                              Expected '" << base+"_obs" << "'. Found '" << pObsName << "'." << endl;
			cout << "                              Check ordering of the 'theory' and 'observables' lists!" << endl;
			allOk = false;
		}
	}

	return allOk;
}
Ejemplo n.º 2
0
RooWorkspace* makeInvertedANFit(TTree* tree, float forceSigma=-1, bool constrainMu=false, float forceMu=-1) {
  RooWorkspace *ws = new RooWorkspace("ws","");

  std::vector< TString (*)(TString, RooRealVar&, RooWorkspace&) > bkgPdfList;
  bkgPdfList.push_back(makeSingleExp);
  bkgPdfList.push_back(makeDoubleExp);
#if DEBUG==0
  //bkgPdfList.push_back(makeTripleExp);
  bkgPdfList.push_back(makeModExp);
  bkgPdfList.push_back(makeSinglePow);
  bkgPdfList.push_back(makeDoublePow);
  bkgPdfList.push_back(makePoly2);
  bkgPdfList.push_back(makePoly3);
#endif



  RooRealVar mgg("mgg","m_{#gamma#gamma}",103,160,"GeV");
  mgg.setBins(38);

  mgg.setRange("sideband_low", 103,120);
  mgg.setRange("sideband_high",131,160);
  mgg.setRange("signal",120,131);

  RooRealVar MR("MR","",0,3000,"GeV");
  MR.setBins(60);
  
  RooRealVar Rsq("t1Rsq","",0,1,"GeV");
  Rsq.setBins(20);

  RooRealVar hem1_M("hem1_M","",-1,2000,"GeV");
  hem1_M.setBins(40);

  RooRealVar hem2_M("hem2_M","",-1,2000,"GeV");
  hem2_M.setBins(40);

  RooRealVar ptgg("ptgg","p_{T}^{#gamma#gamma}",0,500,"GeV");
  ptgg.setBins(50);

  RooDataSet data("data","",tree,RooArgSet(mgg,MR,Rsq,hem1_M,hem2_M,ptgg));

  RooDataSet* blind_data = (RooDataSet*)data.reduce("mgg<121 || mgg>130");

  std::vector<TString> tags;
  //fit many different background models
  for(auto func = bkgPdfList.begin(); func != bkgPdfList.end(); func++) {
    TString tag = (*func)("bonly",mgg,*ws);
    tags.push_back(tag);
    ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    RooFitResult* bres = ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    bres->SetName(tag+"_bonly_fitres");
    ws->import(*bres);

    //make blinded fit
    RooPlot *fmgg_b = mgg.frame();
    blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
    TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
    blindBox.SetFillColor(kGray);
    fmgg_b->addObject(&blindBox);
    ws->pdf("bonly_"+tag+"_ext")->plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
    fmgg_b->SetName(tag+"_blinded_frame");
    ws->import(*fmgg_b);
    delete fmgg_b;
    

    //set all the parameters constant
    RooArgSet* vars = ws->pdf("bonly_"+tag)->getVariables();
    RooFIter iter = vars->fwdIterator();
    RooAbsArg* a;
    while( (a = iter.next()) ){
      if(string(a->GetName()).compare("mgg")==0) continue;
      static_cast<RooRealVar*>(a)->setConstant(kTRUE);
    }

    //make the background portion of the s+b fit
    (*func)("b",mgg,*ws);

    RooRealVar sigma(tag+"_s_sigma","",5,0,100);
    if(forceSigma!=-1) {
      sigma.setVal(forceSigma);
      sigma.setConstant(true);
    }
    RooRealVar mu(tag+"_s_mu","",126,120,132);
    if(forceMu!=-1) {
      mu.setVal(forceMu);
      mu.setConstant(true);
    }
    RooGaussian sig(tag+"_sig_model","",mgg,mu,sigma);
    RooRealVar Nsig(tag+"_sb_Ns","",5,0,100);
    RooRealVar Nbkg(tag+"_sb_Nb","",100,0,100000);
    

    RooRealVar HiggsMass("HiggsMass","",125.1);
    RooRealVar HiggsMassError("HiggsMassError","",0.24);
    RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);


    RooAddPdf fitModel(tag+"_sb_model","",RooArgList( *ws->pdf("b_"+tag), sig ),RooArgList(Nbkg,Nsig));

    RooFitResult* sbres;
    RooAbsReal* nll;
    if(constrainMu) {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    } else {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
    }
    sbres->SetName(tag+"_sb_fitres");
    ws->import(*sbres);
    ws->import(fitModel);

    RooPlot *fmgg = mgg.frame();
    data.plotOn(fmgg);
    fitModel.plotOn(fmgg);
    ws->pdf("b_"+tag+"_ext")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
    fmgg->SetName(tag+"_frame");
    ws->import(*fmgg);
    delete fmgg;


    RooMinuit(*nll).migrad();

    RooPlot *fNs = Nsig.frame(0,25);
    fNs->SetName(tag+"_Nsig_pll");
    RooAbsReal *pll = nll->createProfile(Nsig);
    //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
    pll->plotOn(fNs);
    ws->import(*fNs);

    delete fNs;

    RooPlot *fmu = mu.frame(125,132);
    fmu->SetName(tag+"_mu_pll");
    RooAbsReal *pll_mu = nll->createProfile(mu);
    pll_mu->plotOn(fmu);
    ws->import(*fmu);

    delete fmu;

  }

  RooArgSet weights("weights");
  RooArgSet pdfs_bonly("pdfs_bonly");
  RooArgSet pdfs_b("pdfs_b");

  RooRealVar minAIC("minAIC","",1E10);
  //compute AIC stuff
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooAbsPdf *p_bonly = ws->pdf("bonly_"+*t);
    RooAbsPdf *p_b = ws->pdf("b_"+*t);
    RooFitResult *sb = (RooFitResult*)ws->obj(*t+"_bonly_fitres");
    RooRealVar k(*t+"_b_k","",p_bonly->getParameters(RooArgSet(mgg))->getSize());
    RooRealVar nll(*t+"_b_minNll","",sb->minNll());
    RooRealVar Npts(*t+"_b_N","",blind_data->sumEntries());
    RooFormulaVar AIC(*t+"_b_AIC","2*@0+2*@1+2*@1*(@1+1)/(@2-@1-1)",RooArgSet(nll,k,Npts));
    ws->import(AIC);
    if(AIC.getVal() < minAIC.getVal()) {
      minAIC.setVal(AIC.getVal());
    }
    //aicExpSum+=TMath::Exp(-0.5*AIC.getVal()); //we will need this precomputed  for the next step
    pdfs_bonly.add(*p_bonly);
    pdfs_b.add(*p_b);
  }
  ws->import(minAIC);
  //compute the AIC weight
  float aicExpSum=0;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    aicExpSum+=TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal())); //we will need this precomputed  for the next step    
  }
  std::cout << "aicExpSum: " << aicExpSum << std::endl;

  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = new RooRealVar(*t+"_b_AICWeight","",TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal()))/aicExpSum);
    if( TMath::IsNaN(AICw->getVal()) ) {AICw->setVal(0);}
    ws->import(*AICw);
    std::cout << *t << ":  " << AIC->getVal()-minAIC.getVal() << "    " << AICw->getVal() << std::endl;
    weights.add(*AICw);
  }
  RooAddPdf bonly_AIC("bonly_AIC","",pdfs_bonly,weights);
  RooAddPdf b_AIC("b_AIC","",pdfs_b,weights);

  //b_AIC.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //RooFitResult* bres = b_AIC.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //bres->SetName("AIC_b_fitres");
  //ws->import(*bres);

  //make blinded fit
  RooPlot *fmgg_b = mgg.frame(RooFit::Range("sideband_low,sideband_high"));
  blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
  TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
  blindBox.SetFillColor(kGray);
  fmgg_b->addObject(&blindBox);
  bonly_AIC.plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
  fmgg_b->SetName("AIC_blinded_frame");
  ws->import(*fmgg_b);
  delete fmgg_b;
    
#if 1

  RooRealVar sigma("AIC_s_sigma","",5,0,100);
  if(forceSigma!=-1) {
    sigma.setVal(forceSigma);
    sigma.setConstant(true);
  }
  RooRealVar mu("AIC_s_mu","",126,120,132);
  if(forceMu!=-1) {
    mu.setVal(forceMu);
    mu.setConstant(true);
  }
  RooGaussian sig("AIC_sig_model","",mgg,mu,sigma);
  RooRealVar Nsig("AIC_sb_Ns","",5,0,100);
  RooRealVar Nbkg("AIC_sb_Nb","",100,0,100000);
  
  
  RooRealVar HiggsMass("HiggsMass","",125.1);
  RooRealVar HiggsMassError("HiggsMassError","",0.24);
  RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);
  
  
  RooAddPdf fitModel("AIC_sb_model","",RooArgList( b_AIC, sig ),RooArgList(Nbkg,Nsig));

  RooFitResult* sbres;
  RooAbsReal *nll;

  if(constrainMu) {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
  } else {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
  }

  assert(nll!=0);
  
  sbres->SetName("AIC_sb_fitres");
  ws->import(*sbres);
  ws->import(fitModel);
  
  RooPlot *fmgg = mgg.frame();
  data.plotOn(fmgg);
  fitModel.plotOn(fmgg);
  ws->pdf("b_AIC")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
  fmgg->SetName("AIC_frame");
  ws->import(*fmgg);
  delete fmgg;

  RooMinuit(*nll).migrad();
  
  RooPlot *fNs = Nsig.frame(0,25);
  fNs->SetName("AIC_Nsig_pll");
  RooAbsReal *pll = nll->createProfile(Nsig);
  //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
  pll->plotOn(fNs);
  ws->import(*fNs);
  delete fNs;


  RooPlot *fmu = mu.frame(125,132);
  fmu->SetName("AIC_mu_pll");
  RooAbsReal *pll_mu = nll->createProfile(mu);
  pll_mu->plotOn(fmu);
  ws->import(*fmu);

  delete fmu;

  std::cout << "min AIC: " << minAIC.getVal() << std::endl;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = ws->var(*t+"_b_AICWeight");
    RooRealVar* k = ws->var(*t+"_b_k");
    printf("%s & %0.0f & %0.2f & %0.2f \\\\\n",t->Data(),k->getVal(),AIC->getVal()-minAIC.getVal(),AICw->getVal());
    //std::cout << k->getVal() << " " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl;
  }
#endif
  return ws;
}
Ejemplo n.º 3
0
exampleScript()
{
  gSystem->CompileMacro("betaHelperFunctions.h"      ,"kO") ;
  gSystem->CompileMacro("RooNormalFromFlatPdf.cxx"      ,"kO") ;
  gSystem->CompileMacro("RooBetaInverseCDF.cxx"      ,"kO") ;
  gSystem->CompileMacro("RooBetaPrimeInverseCDF.cxx" ,"kO") ;
  gSystem->CompileMacro("RooCorrelatedBetaGeneratorHelper.cxx"  ,"kO") ;
  gSystem->CompileMacro("RooCorrelatedBetaPrimeGeneratorHelper.cxx"  ,"kO") ;
  gSystem->CompileMacro("rooFitBetaHelperFunctions.h","kO") ;

  TFile betaTest("betaTest.root","RECREATE");
  betaTest.cd();
  
  RooWorkspace workspace("workspace");
  TString correlatedName("testVariable");
  TString observables("observables");
  TString nuisances("nuisances");

  RooAbsArg* betaOne = getCorrelatedBetaConstraint(workspace,"betaOne","",
						   0.5 , 0.1 ,
						   observables, nuisances,
						   correlatedName );

  printf("\n\n *** constraint name is %s from betaOne and %s\n\n", betaOne->GetName(), correlatedName.Data() ) ;

  RooAbsArg* betaTwo = getCorrelatedBetaConstraint(workspace,"betaTwo","",
						   0 , 0 ,
						   observables, nuisances,
						   correlatedName );

  RooAbsArg* betaThree = getCorrelatedBetaConstraint(workspace,"betaThree","",
						     0.2 , 0.01 ,
						     observables, nuisances,
						     correlatedName );

  RooAbsArg* betaFour = getCorrelatedBetaConstraint(workspace,"betaFour","",
						    0.7 , 0.1 ,
						    observables, nuisances,
						    correlatedName );

  RooAbsArg* betaFourC = getCorrelatedBetaConstraint(workspace,"betaFourC","",
						    0.7 , 0.1 ,
						    observables, nuisances,
						    correlatedName, kTRUE );

  RooAbsArg* betaPrimeOne = getCorrelatedBetaPrimeConstraint(workspace,"betaPrimeOne","",
							     1.0 , 0.5 ,
							     observables, nuisances,
							     correlatedName );

  RooAbsArg* betaPrimeOneC = getCorrelatedBetaPrimeConstraint(workspace,"betaPrimeOneC","",
							     1.0 , 0.5 ,
							     observables, nuisances,
							     correlatedName, kTRUE );

  RooAbsArg* betaPrimeTwo = getCorrelatedBetaPrimeConstraint(workspace,"betaPrimeTwo","",
							     0.7 , 0.5 ,
							     observables, nuisances,
							     correlatedName );

  RooAbsArg* betaPrimeThree = getCorrelatedBetaPrimeConstraint(workspace,"betaPrimeThree","",
							       0.1 , 0.05 ,
							       observables, nuisances,
							       correlatedName );

  RooAbsArg* betaPrimeFour = getCorrelatedBetaPrimeConstraint(workspace,"betaPrimeFour","",
							      7 , 1 ,
							      observables, nuisances,
							      correlatedName );

  RooRealVar* correlatedParameter = workspace.var(correlatedName);

  RooAbsPdf* normalFromFlat = workspace.pdf(correlatedName+"_Constraint");

  RooDataSet* data = normalFromFlat->generate(RooArgSet(*correlatedParameter),1e5);

  data->addColumn(*normalFromFlat);

  data->addColumn(*betaOne);
  data->addColumn(*betaTwo);
  data->addColumn(*betaThree);
  data->addColumn(*betaFour);
  data->addColumn(*betaFourC);
  
  data->addColumn(*betaPrimeOne);
  data->addColumn(*betaPrimeTwo);
  data->addColumn(*betaPrimeThree);
  data->addColumn(*betaPrimeFour);
  data->addColumn(*betaPrimeOneC);

  data->Print("v");

  workspace.Print() ;

  //Setup Plotting Kluges:

  RooRealVar normalPlotter  (correlatedName+"_Constraint" , correlatedName+"_Constraint"  ,0,1);
  RooPlot* normalPlot = normalPlotter.frame();
  data->plotOn(normalPlot);

  RooRealVar betaOnePlotter  ("betaOne_BetaInverseCDF"  ,"betaOne_BetaInverseCDF"  ,0,1);
  RooRealVar betaTwoPlotter  ("betaTwo_BetaInverseCDF"  ,"betaTwo_BetaInverseCDF"  ,0,1);
  RooRealVar betaThreePlotter("betaThree_BetaInverseCDF","betaThree_BetaInverseCDF",0,1);
  RooRealVar betaFourPlotter ("betaFour_BetaInverseCDF" ,"betaFour_BetaInverseCDF" ,0,1);
  RooRealVar betaFourCPlotter ("betaFourC_BetaInverseCDF" ,"betaFourC_BetaInverseCDF" ,0,1);

  RooRealVar betaPrimeOnePlotter  ("betaPrimeOne_BetaPrimeInverseCDF"  ,"betaPrimeOne_BetaPrimeInverseCDF"  ,0,4);
  RooRealVar betaPrimeOneCPlotter  ("betaPrimeOneC_BetaPrimeInverseCDF"  ,"betaPrimeOneC_BetaPrimeInverseCDF"  ,0,4);
  RooRealVar betaPrimeTwoPlotter  ("betaPrimeTwo_BetaPrimeInverseCDF"  ,"betaPrimeTwo_BetaPrimeInverseCDF"  ,0,4);
  RooRealVar betaPrimeThreePlotter("betaPrimeThree_BetaPrimeInverseCDF","betaPrimeThree_BetaPrimeInverseCDF",0,0.3);
  RooRealVar betaPrimeFourPlotter ("betaPrimeFour_BetaPrimeInverseCDF" ,"betaPrimeFour_BetaPrimeInverseCDF" ,4,12);

  RooPlot* betaOnePlot   = betaOnePlotter  .frame();
  RooPlot* betaTwoPlot   = betaTwoPlotter  .frame();
  RooPlot* betaThreePlot = betaThreePlotter.frame();
  RooPlot* betaFourPlot  = betaFourPlotter .frame();
  RooPlot* betaFourCPlot  = betaFourCPlotter .frame();

  data->plotOn(betaOnePlot  );
  data->plotOn(betaTwoPlot  );
  data->plotOn(betaThreePlot);
  data->plotOn(betaFourPlot );
  data->plotOn(betaFourCPlot );

  RooPlot* betaPrimeOnePlot   = betaPrimeOnePlotter  .frame();
  RooPlot* betaPrimeOneCPlot   = betaPrimeOneCPlotter  .frame();
  RooPlot* betaPrimeTwoPlot   = betaPrimeTwoPlotter  .frame();
  RooPlot* betaPrimeThreePlot = betaPrimeThreePlotter.frame();
  RooPlot* betaPrimeFourPlot  = betaPrimeFourPlotter .frame();

  data->plotOn(betaPrimeOnePlot  );
  data->plotOn(betaPrimeOneCPlot  );
  data->plotOn(betaPrimeTwoPlot  );
  data->plotOn(betaPrimeThreePlot);
  data->plotOn(betaPrimeFourPlot );

  TCanvas* underlyingVariable = new TCanvas("underlyingVariable","underlyingVariable",800,800);
  underlyingVariable->Divide(2,2);
  underlyingVariable->cd(1);
  RooPlot* underlyingPlot   = correlatedParameter->frame();
  data->plotOn(underlyingPlot);
  underlyingPlot->Draw();
  underlyingVariable->cd(2);
  normalPlot->Draw();
  underlyingVariable->cd(3);
  TH2F* underlying = data->createHistogram(*correlatedParameter,normalPlotter,50,50);
  underlying->Draw("col");
  TH2F* legoUnderlying = (TH2F*)underlying->Clone();
  underlyingVariable->cd(4);
  legoUnderlying->Draw("lego");

  underlyingVariable->SaveAs("underlyingVariable.pdf");
  
  TCanvas* betaCanvas = new TCanvas("betaCanvas","betaCanvas",800,800);
  
  betaCanvas->Divide(3,2);
  
  betaCanvas->cd(1);
  betaOnePlot->Draw();
  betaCanvas->cd(2);
  betaTwoPlot->Draw();
  betaCanvas->cd(3);
  betaThreePlot->Draw();
  betaCanvas->cd(4);
  betaFourPlot->Draw();
  betaCanvas->cd(5);
  betaFourCPlot->Draw();

  betaCanvas->SaveAs("betaVariables.pdf");

  TCanvas* betaPrimeCanvas = new TCanvas("betaPrimeCanvas","betaPrimeCanvas",1200,800);
  
  betaPrimeCanvas->Divide(3,2);
  
  betaPrimeCanvas->cd(1);
  betaPrimeOnePlot->Draw();
  betaPrimeCanvas->cd(2);
  betaPrimeTwoPlot->Draw();
  betaPrimeCanvas->cd(3);
  betaPrimeThreePlot->Draw();
  betaPrimeCanvas->cd(4);
  betaPrimeFourPlot->Draw();
  betaPrimeCanvas->cd(5);
  betaPrimeOneCPlot->Draw();

  betaPrimeCanvas->SaveAs("betaPrimeVariables.pdf");
  
  TCanvas* betaCorrelationsCanvas = new TCanvas("betaCorrelationsCanvas","betaCorrelationsCanvas",1600,800);
  
  betaCorrelationsCanvas->Divide(4,2);

  TH2F* oneTwo = data->createHistogram(betaOnePlotter,betaTwoPlotter,30,30);
  TH2F* oneThree = data->createHistogram(betaOnePlotter,betaThreePlotter,30,30);
  TH2F* oneFour = data->createHistogram(betaOnePlotter,betaFourPlotter,30,30);
  TH2F* twoThree = data->createHistogram(betaTwoPlotter,betaThreePlotter,30,30);
  TH2F* twoFour = data->createHistogram(betaTwoPlotter,betaFourPlotter,30,30);
  TH2F* threeFour = data->createHistogram(betaThreePlotter,betaFourPlotter,30,30);
  TH2F* twoFourC = data->createHistogram(betaTwoPlotter,betaFourCPlotter,30,30);
  TH2F* fourFourC = data->createHistogram(betaFourPlotter,betaFourCPlotter,30,30);

  betaCorrelationsCanvas->cd(1);
  oneTwo->DrawCopy("lego");
  betaCorrelationsCanvas->cd(2);
  oneThree->DrawCopy("lego");
  betaCorrelationsCanvas->cd(3);
  oneFour->DrawCopy("lego");
  betaCorrelationsCanvas->cd(4);
  twoThree->DrawCopy("lego");
  betaCorrelationsCanvas->cd(5);
  twoFour->DrawCopy("lego");
  betaCorrelationsCanvas->cd(6);
  threeFour->DrawCopy("lego");
  betaCorrelationsCanvas->cd(7);
  twoFourC->DrawCopy("lego");
  betaCorrelationsCanvas->cd(8);
  fourFourC->DrawCopy("lego");

  betaCorrelationsCanvas->SaveAs("betaCorrelations.pdf");

  TCanvas* betaPrimeCorrelationsCanvas = new TCanvas("betaPrimeCorrelationsCanvas","betaPrimeCorrelationsCanvas",1600,800);
  
  betaPrimeCorrelationsCanvas->Divide(4,2);

  TH2F* oneTwo = data->createHistogram(betaPrimeOnePlotter,betaPrimeTwoPlotter,30,30);
  TH2F* oneThree = data->createHistogram(betaPrimeOnePlotter,betaPrimeThreePlotter,30,30);
  TH2F* oneFour = data->createHistogram(betaPrimeOnePlotter,betaPrimeFourPlotter,30,30);
  TH2F* twoThree = data->createHistogram(betaPrimeTwoPlotter,betaPrimeThreePlotter,30,30);
  TH2F* twoFour = data->createHistogram(betaPrimeTwoPlotter,betaPrimeFourPlotter,30,30);
  TH2F* threeFour = data->createHistogram(betaPrimeThreePlotter,betaPrimeFourPlotter,30,30);
  TH2F* oneOneC = data->createHistogram(betaPrimeOnePlotter,betaPrimeOneCPlotter,30,30);

  betaPrimeCorrelationsCanvas->cd(1);
  oneTwo->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(2);
  oneThree->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(3);
  oneFour->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(4);
  twoThree->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(5);
  twoFour->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(6);
  threeFour->DrawCopy("lego");
  betaPrimeCorrelationsCanvas->cd(7);
  oneOneC->DrawCopy("lego");

  betaPrimeCorrelationsCanvas->SaveAs("betaPrimeCorrelations.pdf");

  RooProdPdf totalPdf("totalPdf","totalPdf",workspace.allPdfs());
  totalPdf.Print("v");

  RooArgSet* observableSet = workspace.set("observables");

  observableSet->Print();

  RooDataSet* allDataOne = totalPdf.generate(*observableSet,1);
  allDataOne->Print("v");

  correlatedParameter->setVal(0.25);

  RooDataSet* allDataTwo = totalPdf.generate(*observableSet,1);
  allDataTwo->Print("v");

  correlatedParameter->setVal(0.75);

  RooDataSet* allDataThree = totalPdf.generate(*observableSet,1);
  allDataThree->Print("v");

  //Testing for extreme values!

  for(int i = 0; i< 101; i++)
    {
      correlatedParameter->setVal((double)i/100.);
      cout << "Correlation parameter has value of " << correlatedParameter->getVal();
      cout << " and the pdf has an unnormalized value of " << normalFromFlat->getVal() << endl;
    }


}
Ejemplo n.º 4
0
void DrawChannelCompatibility(double rMin = -5,double rMax=5)
{
  gROOT->ForceStyle();
  TFile *inf = TFile::Open("higgsCombineZ.ChannelCompatibilityCheck.mH120.root");
  RooFitResult *fit_nominal   = (RooFitResult *)inf->Get("fit_nominal");
  RooFitResult *fit_alternate = (RooFitResult *)inf->Get("fit_alternate");
  RooRealVar *rFit = (RooRealVar*)fit_nominal->floatParsFinal().find("r");
  
  TString prefix = TString::Format("_ChannelCompatibilityCheck_%s_","r");

  int nChann = 0;
  TIterator *iter = fit_alternate->floatParsFinal().createIterator();
  for (RooAbsArg *a = (RooAbsArg *) iter->Next(); a != 0; a = (RooAbsArg *) iter->Next()) {
    if (TString(a->GetName()).Index(prefix) == 0) nChann++;
  }
  TH2F *frame = new TH2F("frame",";best fit #sigma/#sigma_{SM};",1,rMin,rMax,nChann,0,nChann);

  iter->Reset(); 
  int iChann = 0; 
  TGraphAsymmErrors *points = new TGraphAsymmErrors(nChann);
  float chi2(0.0);
  for (RooAbsArg *a = (RooAbsArg *) iter->Next(); a != 0; a = (RooAbsArg *) iter->Next()) {
    if (TString(a->GetName()).Index(prefix) == 0) {
      RooRealVar *ri = (RooRealVar *) a;
      TString channel = a->GetName(); 
      channel.ReplaceAll(prefix,"");
      points->SetPoint(iChann,ri->getVal(),iChann+0.5);
      cout<<channel<<" "<<ri->getVal()<<" "<<ri->getAsymErrorLo()<<" +"<<ri->getAsymErrorHi()<<endl;
      chi2 += pow((ri->getVal()-rFit->getVal())/ri->getError(),2);
      points->SetPointError(iChann,-ri->getAsymErrorLo(),ri->getAsymErrorHi(),0,0);
      //points->SetPointError(iChann,ri->getAsymErrorHi(),ri->getAsymErrorHi(),0,0);
      iChann++;
      frame->GetYaxis()->SetBinLabel(iChann, channel);
    }
  }
  cout<<"Combined fit: "<<rFit->getVal()<<" "<<rFit->getAsymErrorLo()<<" +"<<rFit->getAsymErrorHi()<<endl;
  cout<<"chi2 = "<<chi2<<endl;
  points->SetLineColor(kRed);
  points->SetLineWidth(3);
  points->SetMarkerStyle(21);

  TCanvas *can = new TCanvas("ChannelCompatibility_Z","ChannelCompatibility_Z",900,600);
  frame->GetXaxis()->SetNdivisions(505);
  frame->GetXaxis()->SetTitleSize(0.06);
  frame->GetXaxis()->SetTitleOffset(0.9);
  frame->GetXaxis()->SetLabelSize(0.05);
  frame->GetYaxis()->SetLabelSize(0.1);
  frame->Draw(); 
  //gStyle->SetOptStat(0);
  TBox globalFitBand(rFit->getVal()+rFit->getAsymErrorLo(), 0, rFit->getVal()+rFit->getAsymErrorHi(), nChann);
  //TBox globalFitBand(rFit->getVal()-rFit->getAsymErrorHi(), 0, rFit->getVal()+rFit->getAsymErrorHi(), nChann);
  globalFitBand.SetFillStyle(3013);
  globalFitBand.SetFillColor(65);
  globalFitBand.SetLineStyle(0);
  globalFitBand.DrawClone();
  TLine globalFitLine(rFit->getVal(), 0, rFit->getVal(), nChann);
  globalFitLine.SetLineWidth(4);
  globalFitLine.SetLineColor(214);
  globalFitLine.DrawClone();
  points->Draw("P SAME");
  gPad->Update();

  TLine *ln0 = new TLine(1,gPad->GetFrame()->GetY1(),1,gPad->GetFrame()->GetY2());
  ln0->SetLineColor(kBlack);
  ln0->SetLineWidth(1);
  ln0->SetLineStyle(2);
  ln0->Draw("same");
}