pair<double,double> bkgEvPerGeV(RooWorkspace *work, int m_hyp, int cat, int spin=false){
  
  RooRealVar *mass = (RooRealVar*)work->var("CMS_hgg_mass");
  if (spin) mass = (RooRealVar*)work->var("mass");
  mass->setRange(100,180);
  RooAbsPdf *pdf = (RooAbsPdf*)work->pdf(Form("pdf_data_pol_model_8TeV_cat%d",cat));
  RooAbsData *data = (RooDataSet*)work->data(Form("data_mass_cat%d",cat));
  RooPlot *tempFrame = mass->frame();
  data->plotOn(tempFrame,Binning(80));
  pdf->plotOn(tempFrame);
  RooCurve *curve = (RooCurve*)tempFrame->getObject(tempFrame->numItems()-1);
  double nombkg = curve->Eval(double(m_hyp));
 
  RooRealVar *nlim = new RooRealVar(Form("nlim%d",cat),"",0.,0.,1.e5);
  //double lowedge = tempFrame->GetXaxis()->GetBinLowEdge(FindBin(double(m_hyp)));
  //double upedge  = tempFrame->GetXaxis()->GetBinUpEdge(FindBin(double(m_hyp)));
  //double center  = tempFrame->GetXaxis()->GetBinUpCenter(FindBin(double(m_hyp)));

  nlim->setVal(nombkg);
  mass->setRange("errRange",m_hyp-0.5,m_hyp+0.5);
  RooAbsPdf *epdf = 0;
  epdf = new RooExtendPdf("epdf","",*pdf,*nlim,"errRange");
		
  RooAbsReal *nll = epdf->createNLL(*data,Extended(),NumCPU(4));
  RooMinimizer minim(*nll);
  minim.setStrategy(0);
  minim.setPrintLevel(-1);
  minim.migrad();
  minim.minos(*nlim);
  
  double error = (nlim->getErrorLo(),nlim->getErrorHi())/2.;
  data->Print(); 
  return pair<double,double>(nombkg,error); 
}
Ejemplo n.º 2
0
double getMyNLL(RooRealVar *var, RooAbsPdf *pdf, RooDataHist *data){
  RooPlot *plot = var->frame();
  data->plotOn(plot);
  pdf->plotOn(plot);
  RooCurve *pdfCurve = (RooCurve*)plot->getObject(plot->numItems()-1);
  double sum=0.;
  for (int i=0; i<data->numEntries(); i++){
    double binCenter = data->get(i)->getRealValue("CMS_hgg_mass");
    double weight = data->weight();
    sum+=TMath::Log(TMath::Poisson(100.*weight,100.*pdfCurve->Eval(binCenter)));
  }
  return -1.*sum;
}
Ejemplo n.º 3
0
void draw_data_mgg(TString folderName,bool blind=true,float min=103,float max=160)
{
  TFile inputFile(folderName+"/data.root");
  
  const int nCat = 5;
  TString cats[5] = {"HighPt","Hbb","Zbb","HighRes","LowRes"};

  TCanvas cv;

  for(int iCat=0; iCat < nCat; iCat++) {

    RooWorkspace *ws  = (RooWorkspace*)inputFile.Get(cats[iCat]+"_mgg_workspace");
    RooFitResult* res = (RooFitResult*)ws->obj("fitresult_pdf_data");

    RooRealVar * mass = ws->var("mgg");
    mass->setRange("all",min,max);
    mass->setRange("blind",121,130);
    mass->setRange("low",106,121);
    mass->setRange("high",130,160);

    mass->setUnit("GeV");
    mass->SetTitle("m_{#gamma#gamma}");
    
    RooAbsPdf * pdf = ws->pdf("pdf");
    RooPlot *plot = mass->frame(min,max,max-min);
    plot->SetTitle("");
    
    RooAbsData* data = ws->data("data")->reduce(Form("mgg > %f && mgg < %f",min,max));
    double nTot = data->sumEntries();
    if(blind) data = data->reduce("mgg < 121 || mgg>130");
    double nBlind = data->sumEntries();
    double norm = nTot/nBlind; //normalization for the plot
    
    data->plotOn(plot);
    pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"),RooFit::LineWidth(0.1) );
    plot->Print();

    //add the fix error band
    RooCurve* c = plot->getCurve("pdf_Norm[mgg]_Range[Full]_NormRange[Full]");
    const int Nc = c->GetN();
    //TGraphErrors errfix(Nc);
    //TGraphErrors errfix2(Nc);
    TGraphAsymmErrors errfix(Nc);
    TGraphAsymmErrors errfix2(Nc);
    Double_t *x = c->GetX();
    Double_t *y = c->GetY();
    double NtotalFit = ws->var("Nbkg1")->getVal()*ws->var("Nbkg1")->getVal() + ws->var("Nbkg2")->getVal()*ws->var("Nbkg2")->getVal();
    for( int i = 0; i < Nc; i++ )
      {
	errfix.SetPoint(i,x[i],y[i]);
	errfix2.SetPoint(i,x[i],y[i]);
	mass->setVal(x[i]);      
	double shapeErr = pdf->getPropagatedError(*res)*NtotalFit;
	//double totalErr = TMath::Sqrt( shapeErr*shapeErr + y[i] );
	//total normalization error
	double totalErr = TMath::Sqrt( shapeErr*shapeErr + y[i]*y[i]/NtotalFit ); 
	if ( y[i] - totalErr > .0 )
	  {
	    errfix.SetPointError(i, 0, 0, totalErr, totalErr );
	  }
	else
	  {
	    errfix.SetPointError(i, 0, 0, y[i] - 0.01, totalErr );
	  }
	//2sigma
	if ( y[i] -  2.*totalErr > .0 )
	  {
	    errfix2.SetPointError(i, 0, 0, 2.*totalErr,  2.*totalErr );
	  }
	else
	  {
	    errfix2.SetPointError(i, 0, 0, y[i] - 0.01,  2.*totalErr );
	  }
	/*
	std::cout << x[i] << " " << y[i] << " "
		  << " ,pdf get Val: " << pdf->getVal()
		  << " ,pdf get Prop Err: " << pdf->getPropagatedError(*res)*NtotalFit
		  << " stat uncertainty: " << TMath::Sqrt(y[i]) << " Ntot: " << NtotalFit <<  std::endl;
	*/
      }
    errfix.SetFillColor(kYellow);
    errfix2.SetFillColor(kGreen);


    //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kFALSE));
    //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kFALSE));
    //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kTRUE));
    //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kTRUE));
    plot->addObject(&errfix,"4");
    plot->addObject(&errfix2,"4");
    plot->addObject(&errfix,"4");
    data->plotOn(plot);
    TBox blindBox(121,plot->GetMinimum()-(plot->GetMaximum()-plot->GetMinimum())*0.015,130,plot->GetMaximum());
    blindBox.SetFillColor(kGray);
    if(blind) {
      plot->addObject(&blindBox);
      pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kGreen),RooFit::Range("Full"), RooFit::VisualizeError(*res,2.0,kTRUE));
      pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::FillColor(kYellow),RooFit::Range("Full"), RooFit::VisualizeError(*res,1.0,kTRUE));
    }
    //plot->addObject(&errfix,"4");
    //data->plotOn(plot);

    //pdf->plotOn(plot,RooFit::Normalization( norm ) );
    //pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"),RooFit::LineWidth(1.5) );
    pdf->plotOn(plot,RooFit::NormRange( "low,high" ),RooFit::Range("Full"), RooFit::LineWidth(1));
    data->plotOn(plot);
    /*
    pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::Range("all"),RooFit::LineWidth(0.8) );
    //pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kGreen),RooFit::Range("all"), RooFit::VisualizeError(*res,2.0,kFALSE));
    //pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kYellow),RooFit::Range("all"), RooFit::VisualizeError(*res,1.0,kFALSE));
    pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kGreen),RooFit::Range("all"), RooFit::VisualizeError(*res,2.0,kTRUE));
    pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::FillColor(kYellow),RooFit::Range("all"), RooFit::VisualizeError(*res,1.0,kTRUE));
    data->plotOn(plot);
    pdf->plotOn(plot,RooFit::Normalization(norm),RooFit::Range("all"),RooFit::LineWidth(0.8) );
    */
    TLatex lbl0(0.1,0.96,"CMS Preliminary");
    lbl0.SetNDC();
    lbl0.SetTextSize(0.042);
    plot->addObject(&lbl0);
    
    TLatex lbl(0.4,0.96,Form("%s Box",cats[iCat].Data()));
    lbl.SetNDC();
    lbl.SetTextSize(0.042);
    plot->addObject(&lbl);

    TLatex lbl2(0.6,0.96,"#sqrt{s}=8 TeV  L = 19.78 fb^{-1}");
    lbl2.SetNDC();
    lbl2.SetTextSize(0.042);
    plot->addObject(&lbl2);


    int iObj=-1;
    TNamed *obj;
    while( (obj = (TNamed*)plot->getObject(++iObj)) ) {
      obj->SetName(Form("Object_%d",iObj));
    }

    plot->Draw();
    TString tag = (blind ? "_BLIND" : "");
    cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".png");
    cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".pdf");
    cv.SaveAs(folderName+"/figs/mgg_data_"+cats[iCat]+tag+TString(Form("_%0.0f_%0.0f",min,max))+".C");
      
  }
  
}
Ejemplo n.º 4
0
void checkGoodness(TString scenario, TH1D* dummyThis,TString varType, TString shapeComb, TString INPUTDIR_PREFIX, TString SCEN_TRIG) {

      cout << "Inside the checkGoodness we have " << scenario << " histo " << dummyThis->GetName() << " " << varType << " " << shapeComb << " " <<  INPUTDIR_PREFIX << " " <<  SCEN_TRIG << endl;

   //for each bin, for each type get 3 histos
      TH1D* hpulls_sig_pass = (TH1D*)dummyThis->Clone();
      hpulls_sig_pass->SetName("hpulls_sig_pass");
      TH1D* hpulls_sig_fail = (TH1D*)dummyThis->Clone();
      hpulls_sig_fail->SetName("hpulls_sig_fail");
      //TH1D* hpulls_bkg_pass = (TH1D*)dummyThis->Clone();
      //hpulls_bkg_pass->SetName("hpulls_bkg_pass");
      //TH1D* hpulls_bkg_fail = (TH1D*)dummyThis->Clone();
      //hpulls_bkg_fail->SetName("hpulls_bkg_fail");

      for (int ibin = 0; ibin < getNbin(varType)-1; ibin++) {
 
        //int to string
        std::ostringstream pprint;
        pprint.str("");
        pprint<<ibin;
        string bin = pprint.str();

        //for each bin for each type
        cout << "get data from canvas" << endl;
        RooHist* thisDataPass        = getFitHist(INPUTDIR_PREFIX, scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb, "1",TString(bin), "data");
        RooCurve* thisSignalPass     = getFitCurve(INPUTDIR_PREFIX,scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb, "1",TString(bin), "sig");
        RooCurve* thisBackgroundPass = getFitCurve(INPUTDIR_PREFIX,scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb,"1",TString(bin), "bkg");
        RooHist* thisDataFail        = getFitHist(INPUTDIR_PREFIX, scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb,"2",TString(bin), "data");
        RooCurve* thisSignalFail     = getFitCurve(INPUTDIR_PREFIX,scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb,"2",TString(bin), "sig");
        RooCurve* thisBackgroundFail = getFitCurve(INPUTDIR_PREFIX,scenario, "datalike_mc", varType, SCEN_TRIG,shapeComb,"2",TString(bin), "bkg");

//        RooCurve* thisBackgroundFail = getFitCurve(INPUTDIR_PREFIX,scenario, "datalike_mc", varType, SCEN_TRIG,getShapeUtility(shapeComb, ibin,"datalike_mc"),"2",TString(bin), "bkg");

        //Plot and save
        //RooPlot* ctmp_pass = getFitPlot(INPUTDIR_PREFIX, scenario, "datalike_mc", varType, SCEN_TRIG,getShapeUtility(shapeComb, ibin,"datalike_mc"),"1",TString(bin), "data");
//new RooPlot(); 
        TCanvas* ctmp_pass = new TCanvas("PASS"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc"),"PASS"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc"));
        ctmp_pass->cd();
        //ctmp_pass->Draw();
        thisDataPass->Draw("ap");
        thisSignalPass->Draw("same");
        thisBackgroundPass->Draw("same");
        ctmp_pass->SaveAs(INPUTDIR_PREFIX+"/PASS"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc")+".png");

        TCanvas* ctmp_fail = new TCanvas("FAIL"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc"),"FAIL"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc"));
        //RooPlot* ctmp_fail = getFitPlot(INPUTDIR_PREFIX, scenario, "datalike_mc", varType, SCEN_TRIG,getShapeUtility(shapeComb, ibin,"datalike_mc"),"1",TString(bin), "data");

        ctmp_fail->cd();
        thisDataFail->Draw("ap");
        thisSignalFail->Draw("same");
        thisBackgroundFail->Draw("same");
        ctmp_fail->SaveAs(INPUTDIR_PREFIX+"/FAIL"+TString(bin)+"_view_"+getShapeUtility(shapeComb, ibin,"datalike_mc")+".png");

        //calculate and draw pulls
        //PASS
        TCanvas* cpull_pass_sig_tmp = new TCanvas("pulls_"+TString(bin)+"_PASS_SIG_"+getShapeUtility(shapeComb, ibin,"datalike_mc"),"pulls_"+TString(bin)+"_PASS_SIG_"+getShapeUtility(shapeComb, ibin,"datalike_mc"));
        cpull_pass_sig_tmp->cd();
        thisDataPass->makeResidHist(*thisSignalPass,kTRUE)->Draw("ap"); 
        cpull_pass_sig_tmp->SaveAs(INPUTDIR_PREFIX+"/SIG"+TString(bin)+"_PULL_PASS_"+getShapeUtility(shapeComb, ibin,"datalike_mc")+".png");
        //get mean pulls for a given canvas
        hpulls_sig_pass->SetBinContent(ibin+1,fabs(getRooMean(thisDataPass->makeResidHist(*thisSignalPass,kTRUE))));
        hpulls_sig_pass->SetBinError(ibin+1,0.000001);

/*        TCanvas* cpull_pass_bkg_tmp = new TCanvas("pulls_"+TString(bin)+"_PASS_BKG_"+getShapeUtility(shapeComb, ibin,"datalike_mc","pulls_"+TString(bin)+"_PASS_BKG_"+getShapeUtility(shapeComb, ibin,"datalike_mc");
        cpull_pass_bkg_tmp->cd();
        thisDataPass->makeResidHist(*thisBackgroundPass,kTRUE)->Draw("ap");
        cpull_pass_bkg_tmp->SaveAs("BKG"+TString(bin)+"_PULL_PASS_"+getShapeUtility(shapeComb, ibin,"datalike_mc"+".png");
        //get mean pulls for a given canvas
        hpulls_bkg_pass->SetBinContent(ibin+1,getRooMean(thisDataPass->makeResidHist(*thisBackgroundPass,kTRUE)));
        hpulls_bkg_pass->SetBinError(ibin+1,0.000001);
*/
       //FAIL 
        TCanvas* cpull_fail_sig_tmp = new TCanvas("pulls_"+TString(bin)+"_FAIL_SIG_"+getShapeUtility(shapeComb, ibin,"datalike_mc"),"pulls_"+TString(bin)+"_FAIL_SIG_"+getShapeUtility(shapeComb, ibin,"datalike_mc"));
        cpull_fail_sig_tmp->cd();
        thisDataFail->makeResidHist(*thisSignalFail,kTRUE)->Draw("ap");
        cpull_fail_sig_tmp->SaveAs( INPUTDIR_PREFIX+"/SIG"+TString(bin)+"_PULL_FAIL_"+getShapeUtility(shapeComb, ibin,"datalike_mc")+".png");
        cout << "get mean pulls for a given canvas" << endl;
        hpulls_sig_fail->SetBinContent(ibin+1,fabs(getRooMean(thisDataFail->makeResidHist(*thisSignalFail,kTRUE))));
        hpulls_sig_fail->SetBinError(ibin+1,0.000001);

/*        TCanvas* cpull_fail_bkg_tmp = new TCanvas("pulls_"+TString(bin)+"_FAIL_BKG_"+getShapeUtility(shapeComb, ibin,"datalike_mc","pulls_"+TString(bin)+"_FAIL_BKG_"+getShapeUtility(shapeComb,
 ibin));
        cpull_fail_bkg_tmp->cd();
        thisDataFail->makeResidHist(*thisBackgroundFail,kTRUE)->Draw("ap");
        cpull_fail_bkg_tmp->SaveAs("BKG"+TString(bin)+"_PULL_FAIL_"+getShapeUtility(shapeComb, ibin,"datalike_mc"+".png");
        cout << "get mean pulls for a given canvas" << endl;
        hpulls_bkg_fail->SetBinContent(ibin+1,getRooMean(thisDataFail->makeResidHist(*thisBackgroundFail,kTRUE)));
        hpulls_bkg_fail->SetBinError(ibin+1,0.000001);
*/
      }
      cout << "OUT PULLS FILL LOOP XXX" << endl;
      //PLOT pull means distributions
      TCanvas* cpullf_sig = new TCanvas("SIG"+scenario+varType,"SIG"+scenario+varType);
      cpullf_sig->cd();
      cpullf_sig->SetLogx();
      cpullf_sig->SetLogy();
      hpulls_sig_pass->SetMarkerStyle(22);
      hpulls_sig_pass->SetMarkerSize(1.1);
      hpulls_sig_pass->SetMarkerColor(kBlack);
      hpulls_sig_pass->Draw("P");      
      hpulls_sig_fail->SetMarkerStyle(24);
      hpulls_sig_fail->SetMarkerSize(1.1);
      hpulls_sig_fail->SetMarkerColor(kRed);
      hpulls_sig_fail->Draw("Psame");
      cpullf_sig->SaveAs(INPUTDIR_PREFIX+"/SIG"+scenario+varType+".png");
/*
      TCanvas* cpullf_bkg = new TCanvas("BKG"+scenario+varType,"BKG"+scenario+varType);
      cpullf_bkg->cd();
      hpulls_bkg_pass->SetMarkerStyle(22);
      hpulls_bkg_pass->SetMarkerSize(1.1);
      hpulls_bkg_pass->SetMarkerColor(kBlack);
      hpulls_bkg_pass->Draw("P");      
      hpulls_bkg_fail->SetMarkerStyle(24);
      hpulls_bkg_fail->SetMarkerSize(1.1);
      hpulls_bkg_fail->SetMarkerColor(kRed);
      hpulls_bkg_fail->Draw("Psame");
      cpullf_bkg->SaveAs("BKG"+scenario+varType+".png");
*/
}
Ejemplo n.º 5
0
void fitbkgdataCard(TString configCard="template.config", 
		    bool dobands  = true,  // create baerror bands for BG models
		    bool dosignal = false, // plot the signal model (needs to be present)
		    bool blinded  = true,  // blind the data in the plots?
		    bool verbose  = true  ) {
  
  gROOT->Macro("MitStyle.C");
  gStyle->SetErrorX(0); 
  gStyle->SetOptStat(0);
  gROOT->ForceStyle();  
  
  TString projectDir;

  std::vector<TString> catdesc;
  std::vector<TString> catnames;  
  std::vector<int>     polorder;

  double massmin = -1.;
  double massmax = -1.;

  double theCMenergy = -1.;

  bool readStatus = readFromConfigCard( configCard,
					projectDir,
					catnames,
					catdesc,
					polorder,
					massmin,
					massmax,
					theCMenergy
					);
  
  if( !readStatus ) {
    std::cerr<<" ERROR: Could not read from card > "<<configCard.Data()<<" <."<<std::endl;
    return;
  }
  
  TFile *fdata = new TFile(TString::Format("%s/CMS-HGG-data.root",projectDir.Data()),"READ");
  if( !fdata ) {
    std::cerr<<" ERROR: Could not open file "<<projectDir.Data()<<"/CMS-HGG-data.root."<<std::endl;
    return;
  }
  
  if( !gSystem->cd(TString::Format("%s/databkg/",projectDir.Data())) ) {
    std::cerr<<" ERROR: Could not change directory to "<<TString::Format("%s/databkg/",projectDir.Data()).Data()<<"."<<std::endl;
    return;
  }
  
  // ----------------------------------------------------------------------
  // load the input workspace....
  RooWorkspace* win = (RooWorkspace*)fdata->Get("cms_hgg_workspace_data");
  if( !win ) {
    std::cerr<<" ERROR: Could not load workspace > cms_hgg_workspace_data < from file > "<<TString::Format("%s/CMS-HGG-data.root",projectDir.Data()).Data()<<" <."<<std::endl;
    return;
  }

  RooRealVar *intLumi = win->var("IntLumi");
  RooRealVar *hmass   = win->var("CMS_hgg_mass");
  if( !intLumi || !hmass ) {
    std::cerr<<" ERROR: Could not load needed variables > IntLumi < or > CMS_hgg_mass < forom input workspace."<<std::endl;
    return;
  }

  //win->Print();

  hmass->setRange(massmin,massmax);
  hmass->setBins(4*(int)(massmax-massmin));
  hmass->SetTitle("m_{#gamma#gamma}");
  hmass->setUnit("GeV");
  hmass->setRange("fitrange",massmin,massmax);

  hmass->setRange("blind1",100.,110.);
  hmass->setRange("blind2",150.,180.);
  
  // ----------------------------------------------------------------------
  // some auxiliray vectro (don't know the meaning of all of them ... yet...
  std::vector<RooAbsData*> data_vec;
  std::vector<RooAbsPdf*>  pdfShape_vec;   // vector to store the NOT-EXTENDED PDFs (aka pdfshape)
  std::vector<RooAbsPdf*>  pdf_vec;        // vector to store the EXTENDED PDFs
  
  std::vector<RooAbsReal*> normu_vec;      // this holds the normalization vars for each Cat (needed in bands for combined cat)

  RooArgList               normList;       // list of range-limityed normalizations (needed for error bands on combined category)

  //std::vector<RooRealVar*> coeffv;
  //std::vector<RooAbsReal*> normu_vecv; // ???

  // ----------------------------------------------------------------------
  // define output works
  RooWorkspace *wOut = new RooWorkspace("wbkg","wbkg") ;
  
  // util;ities for the combined fit
  RooCategory     finalcat  ("finalcat",  "finalcat") ;  
  RooSimultaneous fullbkgpdf("fullbkgpdf","fullbkgpdf",finalcat);
  RooDataSet      datacomb  ("datacomb",  "datacomb",  RooArgList(*hmass,finalcat)) ;

  RooDataSet *datacombcat = new RooDataSet("data_combcat","",RooArgList(*hmass)) ;
  
  // add the 'combcat' to the list...if more than one cat
  if( catnames.size() > 1 ) {
    catnames.push_back("combcat");    
    catdesc.push_back("Combined");
  }
  
  for (UInt_t icat=0; icat<catnames.size(); ++icat) {
    TString catname = catnames.at(icat);
    finalcat.defineType(catname);
    
    // check if we're in a sub-cat or the comb-cat
    RooDataSet *data   = NULL;
    RooDataSet *inData = NULL;
    if( icat < (catnames.size() - 1) || catnames.size() == 1) { // this is NOT the last cat (which is by construction the combination)
      inData = (RooDataSet*)win->data(TString("data_mass_")+catname);
      if( !inData ) {
	std::cerr<<" ERROR: Could not find dataset > data_mass_"<<catname.Data()<<" < in input workspace."<<std::endl;
	return;
      }
      data = new RooDataSet(TString("data_")+catname,"",*hmass,Import(*inData));  // copy the dataset (why?)
      
      // append the data to the combined data...
      RooDataSet *datacat = new RooDataSet(TString("datacat")+catname,"",*hmass,Index(finalcat),Import(catname,*data)) ;
      datacomb.append(*datacat);
      datacombcat->append(*data);
      
      // normalization for this category
      RooRealVar *nbkg = new RooRealVar(TString::Format("CMS_hgg_%s_bkgshape_norm",catname.Data()),"",800.0,0.0,25e3);
      
      // we keep track of the normalizario vars only for N-1 cats, naming convetnions hystoric...
      if( catnames.size() > 2 && icat < (catnames.size() - 2) ) {
	RooRealVar* cbkg = new RooRealVar(TString::Format("cbkg%s",catname.Data()),"",0.0,0.0,1e3);
	cbkg->removeRange();
	normu_vec.push_back(cbkg);
	normList.add(*cbkg);
      }
      
      /// generate the Bernstrin polynomial (FIX-ME: add possibility ro create other models...)
      fstBernModel* theBGmodel = new fstBernModel(hmass, polorder[icat], icat, catname);            // using my dedicated class...
      
      std::cout<<" model name is "<<theBGmodel->getPdf()->GetName()<<std::endl;

      RooAbsPdf*    bkgshape   = theBGmodel->getPdf();                                              // the BG shape
      RooAbsPdf*    bkgpdf     = new RooExtendPdf(TString("bkgpdf")+catname,"",*bkgshape,*nbkg);    // the extended PDF
      
      // add the extedned PDF to the RooSimultaneous holding all models...
      fullbkgpdf.addPdf(*bkgpdf,catname);
      // store the NON-EXTENDED PDF for usgae to compute the error bands later..
      pdfShape_vec.push_back(bkgshape);
      pdf_vec     .push_back(bkgpdf);
      data_vec    .push_back(data);
      
    } else {
      data = datacombcat;   // we're looking at the last cat (by construction the combination)
      data_vec.push_back(data);
      
      // sum up all the cts PDFs for combined PDF
      RooArgList subpdfs;
      for (int ipdf=0; ipdf<pdf_vec.size(); ++ipdf) {
	subpdfs.add(*pdf_vec.at(ipdf));
      }
      RooAddPdf* bkgpdf = new RooAddPdf(TString("bkgpdf")+catname,"",subpdfs);
      pdfShape_vec.push_back(bkgpdf);      
      pdf_vec     .push_back(bkgpdf);  // I don't think this is really needed though....
    }
    
    // generate the binned dataset (to be put into the workspace... just in case...)
    RooDataHist *databinned = new RooDataHist(TString("databinned_")+catname,"",*hmass,*data);
    
    wOut->import(*data);
    wOut->import(*databinned);

  }
  
  std::cout<<" ***************** "<<std::endl;

  // fit the RooSimultaneous to the combined dataset -> (we could also fit each cat separately)
  fullbkgpdf.fitTo(datacomb,Strategy(1),Minos(kFALSE),Save(kTRUE));
  RooFitResult *fullbkgfitres = fullbkgpdf.fitTo(datacomb,Strategy(2),Minos(kFALSE),Save(kTRUE));
  
  // in principle we're done now, so store the results in the output workspace
  wOut->import(datacomb);  
  wOut->import(fullbkgpdf);
  wOut->import(*fullbkgfitres);

  std::cout<<" ***************** "<<std::endl;
  

  if( verbose ) wOut->Print();

  
  std::cout<<" ***************** "<<std::endl;

  wOut->writeToFile("bkgdatawithfit.root") ;  
  
  if( verbose ) {
    printf("IntLumi = %5f\n",intLumi->getVal());
    printf("ndata:\n");
    for (UInt_t icat=0; icat<catnames.size(); ++icat) {    
      printf("%i ",data_vec.at(icat)->numEntries());      
    }   
    printf("\n");
  } 
  
  // --------------------------------------------------------------------------------------------
  // Now comesd the plotting
  // chage the Statistics style...
  gStyle->SetOptStat(1110);
  
  // we want to plot in 1GeV bins (apparently...)
  UInt_t nbins = (UInt_t) (massmax-massmin);
  
  // here we'll store the curves for the bands...
  std::vector<RooCurve*> fitcurves;
  
  // loop again over the cats
  TCanvas **canbkg = new TCanvas*[catnames.size()];
  RooPlot** plot   = new RooPlot*[catnames.size()];

  TLatex** lat  = new TLatex*[catnames.size()];
  TLatex** lat2 = new TLatex*[catnames.size()];

  std::cout<<"  beofre plotting..."<<std::endl;
  

  for (UInt_t icat=0; icat<catnames.size(); ++icat) {
    TString catname = catnames.at(icat);
    

    std::cout<<" trying to plot #"<<icat<<std::endl;

    // plot the data and the fit 
    canbkg[icat] = new TCanvas;
    plot  [icat] = hmass->frame(Bins(nbins),Range("fitrange"));
    
    std::cout<<" trying to plot #"<<icat<<std::endl;

    // first plot the data invisibly... and put the fitted BG model on top...
    data_vec    .at(icat)->plotOn(plot[icat],RooFit::LineColor(kWhite),MarkerColor(kWhite),Invisible());
    pdfShape_vec.at(icat)->plotOn(plot[icat],RooFit::LineColor(kRed),Range("fitrange"),NormRange("fitrange"));
    
    std::cout<<" trying to plot #"<<icat<<std::endl;


    // if toggled on, plot also the Data visibly
    if( !blinded ) {
      data_vec.at(icat)->plotOn(plot[icat]);
    }
   
    std::cout<<" trying to plot #"<<icat<<std::endl;

    // some cosmetics...
    plot[icat]->SetTitle("");      
    plot[icat]->SetMinimum(0.0);
    plot[icat]->SetMaximum(1.40*plot[icat]->GetMaximum());
    plot[icat]->GetXaxis()->SetTitle("m_{#gamma#gamma} (GeV/c^{2})");
    plot[icat]->Draw();       
            

    std::cout<<" trying to plot #"<<icat<<std::endl;

    // legend....
    TLegend *legmc = new TLegend(0.68,0.70,0.97,0.90);
    legmc->AddEntry(plot[icat]->getObject(2),"Data","LPE");
    legmc->AddEntry(plot[icat]->getObject(1),"Bkg Model","L");
    
    // this part computes the 1/2-sigma bands.    
    TGraphAsymmErrors *onesigma = NULL;
    TGraphAsymmErrors *twosigma = NULL;
    
    std::cout<<" trying ***  to plot #"<<icat<<std::endl;

    RooAddition* sumcatsnm1 = NULL;

    if ( dobands ) { //&& icat == (catnames.size() - 1) ) {

      onesigma = new TGraphAsymmErrors();
      twosigma = new TGraphAsymmErrors();

      // get the PDF for this cat from the vector
      RooAbsPdf *thisPdf = pdfShape_vec.at(icat); 

      // get the nominal fir curve
      RooCurve *nomcurve = dynamic_cast<RooCurve*>(plot[icat]->getObject(1));
      fitcurves.push_back(nomcurve);

      bool iscombcat       = ( icat == (catnames.size() - 1) && catnames.size() > 1);
      RooAbsData *datanorm = ( iscombcat ? &datacomb : data_vec.at(icat) );

      // this si the nornmalization in the 'sliding-window' (i.e. per 'test-bin')
      RooRealVar *nlim = new RooRealVar(TString::Format("nlim%s",catnames.at(icat).Data()),"",0.0,0.0,10.0);
      nlim->removeRange();

      if( iscombcat ) {
	// ----------- HISTORIC NAMING  ----------------------------------------
	sumcatsnm1 = new RooAddition("sumcatsnm1","",normList);   // summing all normalizations epect the last Cat
	// this is the normlization of the last Cat
	RooFormulaVar *nlast = new RooFormulaVar("nlast","","TMath::Max(0.1,@0-@1)",RooArgList(*nlim,*sumcatsnm1));
	// ... and adding it ot the list of norms
	normu_vec.push_back(nlast);
      }

      //if (icat == 1 && catnames.size() == 2) continue; // only 1 cat, so don't need combination

      for (int i=1; i<(plot[icat]->GetXaxis()->GetNbins()+1); ++i) {
	
	// this defines the 'binning' we use for the error bands
        double lowedge = plot[icat]->GetXaxis()->GetBinLowEdge(i);
        double upedge = plot[icat]->GetXaxis()->GetBinUpEdge(i);
        double center = plot[icat]->GetXaxis()->GetBinCenter(i);
        
	// get the nominal value at the center of the bin
        double nombkg = nomcurve->interpolate(center);
        nlim->setVal(nombkg);
        hmass->setRange("errRange",lowedge,upedge);

	// this is the new extended PDF whith the normalization restricted to the bin-area
        RooAbsPdf *extLimPdf = NULL;
	if( iscombcat ) {
	  extLimPdf = new RooSimultaneous("epdf","",finalcat);
	  // loop over the cats and generate temporary extended PDFs
	  for (int jcat=0; jcat<(catnames.size()-1); ++jcat) {
            RooRealVar *rvar = dynamic_cast<RooRealVar*>(normu_vec.at(jcat));
            if (rvar) rvar->setVal(fitcurves.at(jcat)->interpolate(center));
            RooExtendPdf *ecpdf = new RooExtendPdf(TString::Format("ecpdf%s",catnames.at(jcat).Data()),"",*pdfShape_vec.at(jcat),*normu_vec.at(jcat),"errRange");
            static_cast<RooSimultaneous*>(extLimPdf)->addPdf(*ecpdf,catnames.at(jcat));
          }
	} else
	  extLimPdf = new RooExtendPdf("extLimPdf","",*thisPdf,*nlim,"errRange");

        RooAbsReal *nll = extLimPdf->createNLL(*datanorm,Extended(),NumCPU(1));
        RooMinimizer minim(*nll);
        minim.setStrategy(0);
        double clone = 1.0 - 2.0*RooStats::SignificanceToPValue(1.0);
        double cltwo = 1.0 - 2.0*RooStats::SignificanceToPValue(2.0);
	
        if (iscombcat) minim.setStrategy(2);
        
        minim.migrad();
	
        if (!iscombcat) { 
          minim.minos(*nlim);
        }
        else {
          minim.hesse();
          nlim->removeAsymError();
        }

	if( verbose ) 
	  printf("errlo = %5f, errhi = %5f\n",nlim->getErrorLo(),nlim->getErrorHi());
        
        onesigma->SetPoint(i-1,center,nombkg);
        onesigma->SetPointError(i-1,0.,0.,-nlim->getErrorLo(),nlim->getErrorHi());
        
	// to get the 2-sigma bands...
        minim.setErrorLevel(0.5*pow(ROOT::Math::normal_quantile(1-0.5*(1-cltwo),1.0), 2)); // the 0.5 is because qmu is -2*NLL
                          // eventually if cl = 0.95 this is the usual 1.92!      
        
        if (!iscombcat) { 
          minim.migrad();
          minim.minos(*nlim);
        }
        else {
          nlim->setError(2.0*nlim->getError());
          nlim->removeAsymError();          
        }
	
        twosigma->SetPoint(i-1,center,nombkg);
        twosigma->SetPointError(i-1,0.,0.,-nlim->getErrorLo(),nlim->getErrorHi());      
        
        // for memory clean-up
        delete nll;
        delete extLimPdf;
      }
      
      hmass->setRange("errRange",massmin,massmax);

      if( verbose )
	onesigma->Print("V");
      
      // plot[icat] the error bands
      twosigma->SetLineColor(kGreen);
      twosigma->SetFillColor(kGreen);
      twosigma->SetMarkerColor(kGreen);
      twosigma->Draw("L3 SAME");     
      
      onesigma->SetLineColor(kYellow);
      onesigma->SetFillColor(kYellow);
      onesigma->SetMarkerColor(kYellow);
      onesigma->Draw("L3 SAME");
      
      plot[icat]->Draw("SAME");
    
      // and add the error bands to the legend
      legmc->AddEntry(onesigma,"#pm1 #sigma","F");  
      legmc->AddEntry(twosigma,"#pm2 #sigma","F");  
    }
    
    std::cout<<" trying ***2  to plot #"<<icat<<std::endl;

    // rest of the legend ....
    legmc->SetBorderSize(0);
    legmc->SetFillStyle(0);
    legmc->Draw();   

    lat[icat]  = new TLatex(103.0,0.9*plot[icat]->GetMaximum(),TString::Format("#scale[0.7]{#splitline{CMS preliminary}{#sqrt{s} = %.1f TeV L = %.2f fb^{-1}}}",theCMenergy,intLumi->getVal()));
    lat2[icat] = new TLatex(103.0,0.75*plot[icat]->GetMaximum(),catdesc.at(icat));

    lat[icat] ->Draw();
    lat2[icat]->Draw();
    
    // -------------------------------------------------------    
    // save canvas in different formats
    canbkg[icat]->SaveAs(TString("databkg") + catname + TString(".pdf"));
    canbkg[icat]->SaveAs(TString("databkg") + catname + TString(".eps"));
    canbkg[icat]->SaveAs(TString("databkg") + catname + TString(".root"));              
  }
  
  return;
  
}
void grabDataSubtractedHistograms(int nJet, int massRange) {
  TFile f("Histograms_data_and_template.root", "update");


  // Figure out the plot directory name first
  TString dir2jet = "./plots_10172011_2jetsample";
  TString dir3jet = "./plots_10172011_3jetsample";
  TString dirName = "";
  if(nJet==2) dirName = dir2jet;
  if(nJet==3) dirName = dir3jet;

  TString massStr = "";
  if(nJet==2 && massRange==1) massStr = "150-230";
  else if(nJet==2 && massRange==2) massStr = "200-400";
  else if(nJet==2 && massRange==3) massStr = "360-500";
  else if(nJet==2 && massRange==4) massStr = "450-800";
  else if(nJet==3 && massRange==1) massStr = "150-230";
  else if(nJet==3 && massRange==2) massStr = "200-400";
  else if(nJet==3 && massRange==3) massStr = "360-800";

  TString ConnectorStr = "";
  if( !(massStr=="") ) ConnectorStr = "-";
  TString fitFileName = TString("mLnuJJ-") + massStr + ConnectorStr + TString("combined-fit");


  TFile* fitFile = new TFile( dirName + TString("/") + fitFileName+".root", "read");
  TCanvas* fitCan = (TCanvas*) fitFile->Get( fitFileName );
  RooHist* data = (RooHist*) fitCan->FindObject( "h_data" );
  RooCurve* fit = (RooCurve*) fitCan->FindObject( "h_total" );
  RooCurve* fit_wjj = (RooCurve*) fitCan->FindObject( "h_Wjets" );
  RooCurve* fit_diboson = (RooCurve*) fitCan->FindObject( "h_diboson" );
  RooCurve* fit_Top = (RooCurve*) fitCan->FindObject( "h_Top" );
  RooCurve* fit_QCD = (RooCurve*) fitCan->FindObject( "h_QCD" );
  RooCurve* fit_Zjets = (RooCurve*) fitCan->FindObject( "h_Zjets" );


  TFile* systFileUp = new TFile( dirName + TString("SystUp/") + fitFileName+".root", "read");
  TCanvas* systFileUpCan = (TCanvas*) systFileUp->Get( fitFileName );
  RooCurve* fit_wjj_systUp = (RooCurve*) systFileUpCan->FindObject( "h_Wjets" );
  RooCurve* fit_systUp = (RooCurve*) systFileUpCan->FindObject( "h_total" );

  TFile* systFileDown = new TFile( dirName + TString("SystDown/") + fitFileName+".root", "read");
  TCanvas* systFileDownCan = (TCanvas*) systFileDown->Get( fitFileName );
  RooCurve* fit_wjj_systDown = (RooCurve*) systFileDownCan->FindObject( "h_Wjets" );
  RooCurve* fit_systDown = (RooCurve*) systFileDownCan->FindObject("h_total");


  ///// Now save everything ///////////////
  TString outPrefix = TString("2jet_MassRange_") + massStr + TString("_");
  if(nJet==3) outPrefix = TString("3jet_MassRange_") + massStr + TString("_");


  data->SetName( outPrefix+"hist_data" );
  fit->SetName( outPrefix+"curve_fitTotal" );
  fit_wjj->SetName( outPrefix+"curve_WJets" );
  fit_diboson->SetName( outPrefix+"curve_diboson" );
  fit_Top->SetName(  outPrefix+"curve_Top" );
  fit_QCD->SetName(  outPrefix+"curve_QCD" );
  fit_Zjets->SetName(  outPrefix+"curve_Zjets" );
  fit_wjj_systUp->SetName( outPrefix+"curve_WJets_SystUp" );
  fit_wjj_systDown->SetName( outPrefix+"curve_WJets_SystDown" );
  fit_systUp->SetName( outPrefix+"curve_fitTotal_SystUp" );
  fit_systDown->SetName( outPrefix+"curve_fitTotal_SystDown" );

  
  f.cd();
  data->Write();
  fit->Write();
  fit_wjj->Write();
  fit_diboson->Write();
  fit_Top->Write();
  fit_QCD->Write();
  fit_Zjets->Write();
  fit_wjj_systUp->Write();
  fit_wjj_systDown->Write();
  fit_systUp->Write();
  fit_systDown->Write();

  f.Close();
  delete fitFile;
  delete systFileUp;
  delete systFileDown;
}
Ejemplo n.º 7
0
int main() {
  float min_logL1 = 5986.94;
  float min_logL0 = 5987.16;
  
  string filepath="FINAL_RESULT_AB.root_RESULT__RESULT";
  filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_175622__RNSG_46692.4.root__RESULT__RESULT"; // final MCwS 
  
  filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_175622__RNSG_46692.4.root__RESULT__RESULT";


  filepath="/shome/buchmann/KillerKoala/CBAF/Development/exchange/RooFit__WorkSpace__Exchange_201417_141126__RNSG_97048.1.root__RESULT__RESULT";
//  *************************************************************************************

  setlumi(PlottingSetup::luminosity);
  setessentialcut(PlottingSetup::essential);  // this sets the essential cut; this one is used in the draw command so it is AUTOMATICALLY applied everywhere. IMPORTANT: Do NOT store weights here!
  stringstream resultsummary;

  // write_analysis_type(PlottingSetup::RestrictToMassPeak,PlottingSetup::DoBTag);
  do_png(true);
  do_pdf(true);
  do_eps(false);
  do_C(true);
  do_root(false);

  PlottingSetup::directoryname = "pValuePlot";
  gROOT->SetStyle("Plain");
  bool do_fat_line = false;  // if you want to have HistLineWidth=1 and FuncWidth=1 as it was before instead of 2
  setTDRStyle(do_fat_line);
  gStyle->SetTextFont(42);
  bool showList = true;
  set_directory(PlottingSetup::directoryname);  // Indicate the directory name where you'd like to save the output files in Setup.C
  set_treename("events");        // you can set the treename here to be used; options are "events" (for reco) for "PFevents" (for particle flow)


  
  TFile *f = new TFile(filepath.c_str());

  if(f->IsZombie()) {
    cout << "Seems to be a zombie. goodbye." << endl;
    return -1;
  }

  RooWorkspace *wa = (RooWorkspace*)f->Get("transferSpace");
  RooPlot *plot = (RooPlot*) wa->obj("frame_mlledge_109fde50");
  
  
//  cout << plot << endl;
wa->Print("v");
  


   TCanvas *can = new TCanvas("can","can");
   
cout << "Address of plot : " << plot << endl;
//   plot->Draw();
   
   float pVal_mllmin=35;
   float pVal_mllmax=90;
   int is_data=PlottingSetup::data;
   
   vector < std::pair < float, float> > loglikelihoods;
   
   string function="";
   for(int i=0; i< plot->numItems();i++){
     string name = plot->getObject(i)->GetName();
     if (plot->getObject(i)->IsA()->InheritsFrom( "RooCurve" ))function=name;
   }
   
   RooCurve* curve = (RooCurve*) plot->findObject(function.c_str(),RooCurve::Class()) ;
   if (!curve) { 
     dout << "RooPlot::residHist(" << plot->GetName() << ") cannot find curve" << endl ;
     return 0 ;
   }
   
   int iMinimum=0;
   float min=1e7;

   for(int i=0;i<curve->GetN();i++) {
     double x,y;
     curve->GetPoint(i,x,y);
     if(y<min & y>=0) {
       min=y;
       iMinimum=i;
     }
   }
   
   double x,y;
   curve->GetPoint(iMinimum,x,y);
   cout << "Minimum is at " << x << " : " << y << endl;
   loglikelihoods.push_back(make_pair(x,y+min_logL1));
   
   //move right starting from the minimum
   for(int i=iMinimum+1;i<curve->GetN();i++) {
     float yold=y;
     curve->GetPoint(i,x,y);
     //if(abs((y-yold)/yold)>0.5) continue;
     loglikelihoods.push_back(make_pair(x,y+min_logL1));
   }
   
   /*  
   for(int i=0;i<curve->GetN();i++) {
     double x,y;
     curve->GetPoint(i,x,y);
     loglikelihoods.push_back(make_pair(x,y+min_logL1));
   }*/
     
     
   
   cout << "The whole thing contains " << loglikelihoods.size() << " points " << endl;
   ProduceSignificancePlots(min_logL0, loglikelihoods, pVal_mllmin, pVal_mllmax, is_data, "", "");
   
   
   
   can->SaveAs("Crap.png");
   
   delete can;
   delete plot;
   delete wa;
   f->Close();
  return 0;
}
void grabDataSubtractedHistograms() {
  TFile f("Histograms_Mjj_data_and_template.root", "update");


  TFile* fitFile = new TFile( plots_dir + "/mJJ-combined-fit.root", "read");
  TCanvas* fitCan = (TCanvas*) fitFile->Get( "mJJ-combined-fit" );
  RooHist* data = (RooHist*) fitCan->FindObject( "h_data" );
  RooCurve* fit_total = (RooCurve*) fitCan->FindObject( "h_total" );
  RooCurve* fit_diboson = (RooCurve*) fitCan->FindObject( "h_diboson" );
  RooCurve* fit_Wjets = (RooCurve*) fitCan->FindObject( "h_Wjets" );

  RooCurve* fit_Top = (RooCurve*) fitCan->FindObject( "h_Top" );
  RooCurve* fit_QCD = (RooCurve*) fitCan->FindObject( "h_QCD" );
  RooCurve* fit_Zjets = (RooCurve*) fitCan->FindObject( "h_Zjets" );
//   RooCurve* fit_Ztautau = (RooCurve*) fitCan->FindObject( "h_Ztautau" );

  TFile* subtrFile = new TFile( plots_dir + "/mJJ-combined-fit-subtracted.root", "read");
  TCanvas* subtrCan = (TCanvas*) subtrFile->Get( "mJJ-combined-fit-subtracted" );
  RooHist* subtrHist = (RooHist*) subtrCan->FindObject( "resid_h_data_h_Background" );
  RooCurve* Diboson = (RooCurve*) subtrCan->FindObject( "h_diboson" );



//   TFile* fitFile1 = new TFile( plots_dir + "/mJJ-mu-fit.root", "read");
//   TCanvas* fitCan1 = (TCanvas*) fitFile1->Get( "mJJ-mu-fit" );
//   RooHist* data1 = (RooHist*) fitCan1->FindObject( "h_data" );
//   RooCurve* fit1 = (RooCurve*) fitCan1->FindObject( "h_total" );

//   TFile* subtrFile1 = new TFile( plots_dir + "/mJJ-mu-fit-subtracted.root", "read");
//   TCanvas* subtrCan1 = (TCanvas*) subtrFile1->Get( "mJJ-mu-fit-subtracted" );
//   RooHist* subtrHist1 = (RooHist*) subtrCan1->FindObject( "resid_h_data_h_Background" );
//   RooCurve* Diboson1 = (RooCurve*) subtrCan1->FindObject( "h_diboson" );



//   TFile* fitFile2 = new TFile( plots_dir + "/mJJ-ele-fit.root", "read");
//   TCanvas* fitCan2 = (TCanvas*) fitFile2->Get( "mJJ-ele-fit" );
//   RooHist* data2 = (RooHist*) fitCan2->FindObject( "h_data" );
//   RooCurve* fit2 = (RooCurve*) fitCan2->FindObject( "h_total" );

//   TFile* subtrFile2 = new TFile( plots_dir + "/mJJ-ele-fit-subtracted.root", "read");
//   TCanvas* subtrCan2 = (TCanvas*) subtrFile2->Get( "mJJ-ele-fit-subtracted" );
//   RooHist* subtrHist2 = (RooHist*) subtrCan2->FindObject( "resid_h_data_h_Background" );
//   RooCurve* Diboson2 = (RooCurve*) subtrCan2->FindObject( "h_diboson" );


  // --------- Now save everything in the output file -------
 f.cd();
 data->Write("hist_data");
 fit_total->Write("fit_total");
 fit_diboson->Write("fit_diboson");
 fit_Wjets->Write("fit_Wjets");
 fit_Top->Write("fit_Top");
 fit_QCD->Write("fit_QCD");
 fit_Zjets->Write("fit_Zjets");
//  fit_Ztautau->Write("fit_Ztautau");

 subtrHist->Write("hist_data_subtracted");
 Diboson->Write("curve_diboson");

//  data1->Write("hist_data_muon");
//  fit1->Write("curve_fit_muon");
//  subtrHist1->Write("hist_data_subtracted_muon");
//  Diboson1->Write("curve_diboson_muon");

//  data2->Write("hist_data_electron");
//  fit2->Write("curve_fit_electron");
//  subtrHist2->Write("hist_data_subtracted_electron");
//  Diboson2->Write("curve_diboson_electron");

 f.Close();
}