Ejemplo n.º 1
0
	void VarEdgeInserterDynUMLCore::BCandSPQRtreesUML::insertEdgePath(
		edge eOrig, const SList<adjEntry>& crossedEdges)
	{
		SList<edge> ti;
		SList<node> tj;
		for (adjEntry adj : crossedEdges) {
			ti.pushBack(adj->theEdge());
			tj.pushBack(adj->theEdge()->target());
		}

		m_pr.insertEdgePath(eOrig, crossedEdges);

		Graph::EdgeType typeOfEOrig = m_pr.typeOrig(eOrig);
		int costOfEOrig = m_costOrig ? eOrig ? (*m_costOrig)[eOrig] : 0 : 1;

		node v = m_pr.copy(eOrig->source());
		SListConstIterator<edge> it = ti.begin();
		SListConstIterator<node> jt = tj.begin();
		SListConstIterator<adjEntry> kt;
		for (kt = crossedEdges.begin(); it.valid(); ++it, ++jt, ++kt) {
			edge e = *it;
			node u = e->target();
			adjEntry a;
			for (a = u->firstAdj(); a->theEdge()->target() != *jt; a = a->succ())
				;
			edge f = a->theEdge();
			m_dynamicSPQRForest.updateInsertedNode(e, f);
			e = m_dynamicSPQRForest.rep(e);
			f = m_dynamicSPQRForest.rep(f);
			m_typeOf[f] = m_typeOf[e];
			m_cost[f] = m_cost[e];
			for (a = u->firstAdj(); a->theEdge()->source() != v; a = a->succ());
			f = a->theEdge();
			m_dynamicSPQRForest.updateInsertedEdge(f);
			f = m_dynamicSPQRForest.rep(f);
			m_typeOf[f] = typeOfEOrig;
			m_cost[f] = costOfEOrig;
			v = u;
		}
		node u = m_pr.copy(eOrig->target());
		adjEntry a;
		for (a = v->firstAdj(); a->theEdge()->target() != u; a = a->succ())
			;
		edge f = a->theEdge();
		m_dynamicSPQRForest.updateInsertedEdge(f);
		f = m_dynamicSPQRForest.rep(f);
		m_typeOf[f] = typeOfEOrig;
		m_cost[f] = costOfEOrig;
	}
Ejemplo n.º 2
0
void test_iter(Test* test)
{
	SList* list = new SList("hello","wordl");
	list->push_back("hi");
	list->push_back("why");
	for(SList_iterator it = list->begin();it!=list->end();it++)
		std::cout<<(*it).get_stringi()<<endl;
	delete list;
}
Ejemplo n.º 3
0
void testSList()
{
  SList list;

  list.push_front("Alice");
  list.push_front("Bob");
  list.push_front("Copernicus");
  
  for (SList::ConstIterator cit = list.begin(); cit != list.end(); ++cit) {
    std::cout << *cit << std::endl;
  }
  std::cout << std::endl;

  for (SList::Iterator it = list.begin(); it != list.end(); ++it) {
    std::cout << *it << std::endl;
  }
  std::cout << std::endl;
}
Ejemplo n.º 4
0
int main(void){
	SList<int> mylist;
	mylist.pushFront(10);
	mylist.pushFront(20);
	mylist.pushBack(30);

	for(auto it=mylist.begin();it!=mylist.end();++it){
		cout << *it << endl;
	}
	return 0;

}
Ejemplo n.º 5
0
int main()
{
	SList<int> intList;

	POSITION p1=intList.push_back(1);
	POSITION p2=intList.push_back(2);
	POSITION p3=intList.push_back(3);
	POSITION p4=intList.push_back(4);
	POSITION p5=intList.push_back(5);

	for(POSITION p=intList.start(); p != 0 ;p=intList.next(p))										//A != operátort end()-re nem tudta értelmezni így helyette 0-t írtam
	{
		cout<<intList.getAt(p)<<endl;
	}

	cout<<"Remove: "<<intList.remove(p2)<<endl;
	cout<<"Remove: "<<intList.remove(p1)<<endl;
	cout<<"Remove: "<<intList.remove(p5)<<endl;
	cout<<"Remove: "<<intList.remove(p3)<<endl;
	
	intList.insert_after(p4,10);
	intList.insert_after(p4,11);

	for(POSITION p2=intList.start();p2 != 0; p2= intList.next(p2))									//A != operátort end()-re nem tudta értelmezni így helyette 0-t írtam
	{
		cout<<intList.getAt(p2)<<endl;
	}
        
        cout << "iteratorral:\n";
        for(SList<int>::iterator it = intList.begin(); it != intList.end(); ++it)
            cout << *it << "  ";
        cout << endl;
		
        SList<int> intList_2 = intList.reverse();													//A reverse függvény értelmetlen lenne másoló kontruktor használata nélkül
																									//A konstokat pedig iterátor használat céljából távolítottuk el.
		cout << "A forditott lista: ";
		for(SList<int>::iterator it = intList_2.begin(); it != intList_2.end(); ++it)
            cout << *it << "  ";
        cout << endl;

		SList<int> intList_3 = intList.concatenate(intList_2);										//A concatenate tesztelése
		cout << "Az eredeti es a forditott lista osszefuzese: ";
		for(SList<int>::iterator it = intList_3.begin(); it != intList_3.end(); ++it)
            cout << *it << "  ";
        cout << endl;

		getchar();
	return 0;
}
Ejemplo n.º 6
0
int main(void){
	SList<int> list;
	SList<int>::iterator i;
	list.insert(5);
	list.insert(6);
	list.insert(1);
	list.insert(2);
//	list.append(10);
//	list.rmFirst();
//	list.rmLast();
	for(i=list.begin();i!=list.end();i++){
		cout << *i << endl;

	}
	for(i=list.begin();i!=list.end();i++){
		*i = *i + 1;
		
	}
	for(i=list.begin();i!=list.end();i++){
		cout << *i << endl;

	}

}
Ejemplo n.º 7
0
void UpwardPlanRep::removeSinkArcs(SList<adjEntry> &crossedEdges) {

	if (crossedEdges.size() == 2)
		return;


	SListIterator<adjEntry> itPred = crossedEdges.begin(), it;
	for(it = itPred.succ(); it.valid() && it.succ().valid(); ++it)	{
		adjEntry adj = *it;
		if (m_isSinkArc[adj->theEdge()]) {
			m_Gamma.joinFaces(adj->theEdge());
			crossedEdges.delSucc(itPred);
			it = itPred;
			continue;
		}
		itPred = it;
	}
	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));
}
Ejemplo n.º 8
0
// test if graphAcyclicTest plus edges in tmpAugmented is acyclic
// removes added edges again
bool UpwardPlanarSubgraphSimple::checkAcyclic(
	GraphCopySimple &graphAcyclicTest,
	SList<Tuple2<node,node> > &tmpAugmented)
{
	SListPure<edge> added;

	SListConstIterator<Tuple2<node,node> > it;
	for(it = tmpAugmented.begin(); it.valid(); ++it)
		added.pushBack(graphAcyclicTest.newEdge(
			graphAcyclicTest.copy((*it).x1()),
			graphAcyclicTest.copy((*it).x2())));

	bool acyclic = isAcyclic(graphAcyclicTest);

	SListConstIterator<edge> itE;
	for(itE = added.begin(); itE.valid(); ++itE)
		graphAcyclicTest.delEdge(*itE);

	return acyclic;
}
void PlanarSubgraphPQTree::
removeEliminatedLeaves(SList<PQLeafKey<edge,whaInfo*,bool>*> &eliminatedKeys)
{
	PQNode<edge,whaInfo*,bool>*  nodePtr = 0;
	PQNode<edge,whaInfo*,bool>*  parent  = 0;
	PQNode<edge,whaInfo*,bool>*  sibling = 0;

	SListIterator<PQLeafKey<edge,whaInfo*,bool>*> it;
	for (it = eliminatedKeys.begin(); it.valid(); it++)
	{
		nodePtr = (*it)->nodePointer();
		parent = nodePtr->parent();
		sibling = nodePtr->getNextSib(NULL);

		removeNodeFromTree(parent,nodePtr);
		checkIfOnlyChild(sibling,parent);
		if (parent->status() == TO_BE_DELETED)
		{
			parent->status(WHA_DELETE);
		}
		nodePtr->status(WHA_DELETE);
	}
}
Ejemplo n.º 10
0
	void FixEdgeInserterCore::insertEdge(CombinatorialEmbedding &E, edge eOrig, const SList<adjEntry> &crossed)
	{
		// remove dual nodes on insertion path
		SListConstIterator<adjEntry> it;
		for(it = crossed.begin(); it != crossed.rbegin(); ++it) {
			m_dual.delNode(m_nodeOf[E.rightFace(*it)]);
		}

		// update primal
		m_pr.insertEdgePathEmbedded(eOrig,E,crossed);

		// insert new face nodes into dual
		const List<edge> &path = m_pr.chain(eOrig);
		for(edge e : path)
		{
			adjEntry adj = e->adjSource();
			m_nodeOf[E.leftFace (adj)] = m_dual.newNode();
			m_nodeOf[E.rightFace(adj)] = m_dual.newNode();
		}

		// insert new edges into dual
		for(edge e : path)
			insertEdgesIntoDual(E, e->adjSource());
	}
Ejemplo n.º 11
0
void UpwardPlanarSubgraphSimple::call(GraphCopy &GC, List<edge> &delEdges)
{
	const Graph &G = GC.original();
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G,nullptr);
	NodeArray<node> mapToG(H,nullptr);

	for(node v : G.nodes)
		mapToG[ mapToH[v] = H.newNode() ] = v;


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	SList<Tuple2<node,node> > augmented;
	GraphCopySimple graphAcyclicTest(G);

	for(edge eG : G.edges)
	{
		// already treated ?
		if(visitedEdge[eG] == true)
			continue;

		// insert edge into H
		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		node superSink;
		SList<edge> augmentedEdges;
		if (UpwardPlanarity::upwardPlanarAugment_singleSource(H,superSink,augmentedEdges) == false) {
			// if H is no longer upward planar, remove eG from subgraph
			H.delEdge(eH);
			delEdges.pushBack(eG);

		} else {
			// add augmented edges as node-pair to tmpAugmented and remove
			// all augmented edges from H again
			SList<Tuple2<node,node> > tmpAugmented;
			SListConstIterator<edge> it;
			for(it = augmentedEdges.begin(); it.valid(); ++it) {
				node v = mapToG[(*it)->source()];
				node w = mapToG[(*it)->target()];

				if (v && w)
					tmpAugmented.pushBack(Tuple2<node,node>(v,w));

				H.delEdge(*it);
			}

			if (mapToG[superSink] == nullptr)
				H.delNode(superSink);

			//****************************************************************
			// The following is a simple workaround to assure the following
			// property of the upward planar subgraph:
			//   The st-augmented upward planar subgraph plus the edges not
			//   in the subgraph must be acyclic. (This is a special property
			//   of the embedding, not the augmentation.)
			// The upward-planar embedding function gives us ANY upward-planar
			// embedding. We check if the property above holds with this
			// embedding. If it doesn't, we have actually no idea if another
			// embedding would do.
			// The better solution would be to incorporate the acyclicity
			// property into the upward-planarity test, but this is compicated.
			//****************************************************************

			// test if original graph plus augmented edges is still acyclic
			if(checkAcyclic(graphAcyclicTest,tmpAugmented) == true) {
				augmented = tmpAugmented;

			} else {
				// if not, remove eG from subgraph
				H.delEdge(eH);
				delEdges.pushBack(eG);
			}
		}

	}

	// remove edges not in the subgraph from GC
	ListConstIterator<edge> itE;
	for(itE = delEdges.begin(); itE.valid(); ++itE)
		GC.delEdge(GC.copy(*itE));

	// add augmented edges to GC
	SListConstIterator<Tuple2<node,node> > itP;
	for(itP = augmented.begin(); itP.valid(); ++itP) {
		node v = (*itP).x1();
		node w = (*itP).x2();

		GC.newEdge(GC.copy(v),GC.copy(w));
	}

	// add super sink to GC
	node sGC = nullptr;
	SList<node> sinks;
	for(node v : GC.nodes) {
		if(v->indeg() == 0)
			sGC = v;
		if(v->outdeg() == 0)
			sinks.pushBack(v);
	}

	node superSinkGC = GC.newNode();
	SListConstIterator<node> itV;
	for(itV = sinks.begin(); itV.valid(); ++itV)
		GC.newEdge(*itV,superSinkGC);

	// add st-edge to GC, so that we now have a planar st-digraph
	GC.newEdge(sGC,superSinkGC);

	OGDF_ASSERT(isAcyclic(GC));
	OGDF_ASSERT(isPlanar(GC));
}
Ejemplo n.º 12
0
uint32_t Scheduler::Run()
{
    ThreadLocalInfo& info = GetLocalInfo();
    info.current_task = NULL;
    uint32_t do_max_count = runnale_task_count_;
    uint32_t do_count = 0;

    Debug("Run --------------------------");

    // 每次Run执行的协程数量不能多于当前runnable协程数量
    // 以防wait状态的协程得不到执行。
    while (do_count < do_max_count)
    {
        uint32_t cnt = std::max((uint32_t)1, std::min(
                    do_max_count / GetOptions().chunk_count,
                    GetOptions().max_chunk_size));
        Debug("want pop %u tasks.", cnt);
        SList<Task> slist = run_task_.pop(cnt);
        Debug("really pop %u tasks.", cnt);
        if (slist.empty()) break;

        SList<Task>::iterator it = slist.begin();
        while (it != slist.end())
        {
            Task* tk = &*it;
            info.current_task = tk;
            Debug("enter task(%llu)", tk->id_);
            swapcontext(&info.scheduler, &tk->ctx_);
            ++do_count;
            Debug("exit task(%llu) state=%d", tk->id_, tk->state_);
            info.current_task = NULL;

            switch (tk->state_) {
                case TaskState::runnable:
                    ++it;
                    break;

                case TaskState::io_block:
                case TaskState::sync_block:
                    --runnale_task_count_;
                    it = slist.erase(it);
                    wait_task_.push(tk);
                    break;

                case TaskState::done:
                default:
                    --task_count_;
                    --runnale_task_count_;
                    it = slist.erase(it);
                    delete tk;
                    break;
            }
        }
        Debug("push %d task return to runnable list", slist.size());
        run_task_.push(slist);
    }

    static thread_local epoll_event evs[1024];
    int n = epoll_wait(epoll_fd, evs, 1024, 1);
    Debug("do_count=%u, do epoll event, n = %d", do_count, n);
    for (int i = 0; i < n; ++i)
    {
        Task* tk = (Task*)evs[i].data.ptr;
        if (tk->unlink())
            AddTask(tk);
    }

    return do_count;
}
Ejemplo n.º 13
0
uint32_t Processer::Run(ThreadLocalInfo &info, uint32_t &done_count)
{
    info.current_task = NULL;
    done_count = 0;
    uint32_t c = 0;
    SList<Task> slist = runnable_list_.pop_all();
    uint32_t do_count = slist.size();

    DebugPrint(dbg_scheduler, "Run [Proc(%d) do_count:%u] --------------------------", id_, do_count);

    SList<Task>::iterator it = slist.begin();
    for (; it != slist.end(); ++c)
    {
        Task* tk = &*it;
        info.current_task = tk;
        tk->state_ = TaskState::runnable;
        DebugPrint(dbg_switch, "enter task(%s)", tk->DebugInfo());
        RestoreStack(tk);
        int ret = swapcontext(&info.scheduler, &tk->ctx_);
        if (ret) {
            fprintf(stderr, "swapcontext error:%s\n", strerror(errno));
            runnable_list_.push(tk);
            ThrowError(eCoErrorCode::ec_swapcontext_failed);
        }
        DebugPrint(dbg_switch, "leave task(%s) state=%d", tk->DebugInfo(), tk->state_);
        info.current_task = NULL;

        switch (tk->state_) {
            case TaskState::runnable:
                ++it;
                break;

            case TaskState::io_block:
                it = slist.erase(it);
                g_Scheduler.io_wait_.SchedulerSwitch(tk);
                break;

            case TaskState::sleep:
                it = slist.erase(it);
                g_Scheduler.sleep_wait_.SchedulerSwitch(tk);
                break;

            case TaskState::sys_block:
            case TaskState::user_block:
                {
                    if (tk->block_) {
                        it = slist.erase(it);
                        if (!tk->block_->AddWaitTask(tk))
                            runnable_list_.push(tk);
                        tk->block_ = NULL;
                    } else {
                        std::unique_lock<LFLock> lock(g_Scheduler.user_wait_lock_);
                        auto &zone = g_Scheduler.user_wait_tasks_[tk->user_wait_type_];
                        auto &wait_pair = zone[tk->user_wait_id_];
                        auto &task_queue = wait_pair.second;
                        if (wait_pair.first) {
                            --wait_pair.first;
                            tk->state_ = TaskState::runnable;
                            ++it;
                        } else {
                            it = slist.erase(it);
                            task_queue.push(tk);
                        }
                        g_Scheduler.ClearWaitPairWithoutLock(tk->user_wait_type_,
                                tk->user_wait_id_, zone, wait_pair);
                    }
                }
                break;

            case TaskState::done:
            default:
                --task_count_;
                ++done_count;
                it = slist.erase(it);
                DebugPrint(dbg_task, "task(%s) done.", tk->DebugInfo());
                if (tk->eptr_) {
                    std::exception_ptr ep = tk->eptr_;
                    runnable_list_.push(slist);
                    tk->DecrementRef();
                    std::rethrow_exception(ep);
                } else
                    tk->DecrementRef();
                break;
        }
    }
    if (do_count)
        runnable_list_.push(slist);

    return c;
}
Ejemplo n.º 14
0
void UpwardPlanRep::insertEdgePathEmbedded(edge eOrig, SList<adjEntry> crossedEdges, EdgeArray<int> &costOrig)
{
	removeSinkArcs(crossedEdges);

	//case the copy v of eOrig->source() is a sink switch
	//we muss remove the sink arcs incident to v, since after inserting eOrig, v is not a sink witch
	node v =  crossedEdges.front()->theNode();
	List<edge> outEdges;
	if (v->outdeg() == 1)
		v->outEdges(outEdges); // we delete these edges later

	m_eCopy[eOrig].clear();

	adjEntry adjSrc, adjTgt;
	SListConstIterator<adjEntry> it = crossedEdges.begin();

	// iterate over all adjacency entries in crossedEdges except for first
	// and last
	adjSrc = *it;
	List<adjEntry> dirtyList; // left and right face of the element of this list are modified
	for(++it; it.valid() && it.succ().valid(); ++it)
	{
		adjEntry adj = *it;

		bool isASourceArc = false, isASinkArc = false;
		if (m_isSinkArc[adj->theEdge()])
			isASinkArc = true;
		if (m_isSourceArc[adj->theEdge()])
			isASourceArc = true;

		int c = 0;
		if (original(adj->theEdge()) != nullptr)
			c = costOrig[original(adj->theEdge())];

		// split edge
		node u = m_Gamma.split(adj->theEdge())->source();
		if (!m_isSinkArc[adj->theEdge()] && !m_isSourceArc[adj->theEdge()])
			crossings = crossings + c; // crossing sink/source arcs cost nothing

		// determine target adjacency entry and source adjacency entry
		// in the next iteration step
		adjTgt = u->firstAdj();
		adjEntry adjSrcNext = adjTgt->succ();

		if (adjTgt != adj->twin())
			std::swap(adjTgt, adjSrcNext);

		edge e_split = adjTgt->theEdge(); // the new split edge
		if (e_split->source() != u)
			e_split = adjSrcNext->theEdge();

		if (isASinkArc)
			m_isSinkArc[e_split] = true;
		if (isASourceArc)
			m_isSourceArc[e_split] = true;

		// insert a new edge into the face
		edge eNew = m_Gamma.splitFace(adjSrc,adjTgt);
		m_eIterator[eNew] = GraphCopy::m_eCopy[eOrig].pushBack(eNew);
		m_eOrig[eNew] = eOrig;
		dirtyList.pushBack(eNew->adjSource());

		adjSrc = adjSrcNext;
	}

	// insert last edge
	edge eNew = m_Gamma.splitFace(adjSrc,*it);
	m_eIterator[eNew] = m_eCopy[eOrig].pushBack(eNew);
	m_eOrig[eNew] = eOrig;
	dirtyList.pushBack(eNew->adjSource());

	// remove the sink arc incident to v
	if(!outEdges.empty()) {
		edge e = outEdges.popFrontRet();
		if (m_isSinkArc[e])
			m_Gamma.joinFaces(e);
	}

	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));

	//computeSinkSwitches();
	FaceSinkGraph fsg(m_Gamma, s_hat);
	List<adjEntry> dummyList;
	FaceArray< List<adjEntry> > sinkSwitches(m_Gamma, dummyList);
	fsg.sinkSwitches(sinkSwitches);

	//construct sinkArc for the dirty faces
	for(adjEntry adj : dirtyList) {
		face fLeft = m_Gamma.leftFace(adj);
		face fRight = m_Gamma.rightFace(adj);
		List<adjEntry> switches = sinkSwitches[fLeft];

		OGDF_ASSERT(!switches.empty());

		constructSinkArcs(fLeft, switches.front()->theNode());

		OGDF_ASSERT(!switches.empty());

		switches = sinkSwitches[fRight];
		constructSinkArcs(fRight, switches.front()->theNode());
	}

	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));
	computeSinkSwitches();
}
Ejemplo n.º 15
0
void PlanRep::expandLowDegreeVertices(OrthoRep &OR)
{
	for(node v : nodes)
	{
		if (!(isVertex(v)) || expandAdj(v) != nullptr)
			continue;

		SList<edge> adjEdges;
		SListPure<Tuple2<node,int> > expander;

		node u = v;
		bool firstTime = true;

		setExpandedNode(v, v);

		for(adjEntry adj : v->adjEdges) {
			adjEdges.pushBack(adj->theEdge());

			if(!firstTime)
				u = newNode();

			setExpandedNode(u, v);
			typeOf(u) = Graph::lowDegreeExpander;
			expander.pushBack(Tuple2<node,int>(u,OR.angle(adj)));
			firstTime = false;
		}

		SListConstIterator<Tuple2<node,int>> itn = expander.begin().succ();

		for (SListConstIterator<edge> it = adjEdges.begin().succ(); it.valid(); ++it)
		{
			// Did we allocate enough dummy nodes?
			OGDF_ASSERT(itn.valid());

			if ((*it)->source() == v)
				moveSource(*it,(*itn).x1());
			else
				moveTarget(*it,(*itn).x1());
			++itn;
		}

		adjEntry adjPrev = v->firstAdj();
		itn = expander.begin();
		int nBends = (*itn).x2();

		for (++itn; itn.valid(); ++itn)
		{
			edge e = newEdge(adjPrev,(*itn).x1()->firstAdj());

			OR.bend(e->adjSource()).set(convexBend,nBends);
			OR.bend(e->adjTarget()).set(reflexBend,nBends);
			OR.angle(adjPrev) = 1;
			OR.angle(e->adjSource()) = 2;
			OR.angle(e->adjTarget()) = 1;

			nBends = (*itn).x2();

			typeOf(e) = association; //???
			setExpansionEdge(e, 2);

			adjPrev = (*itn).x1()->firstAdj();
		}

		edge e = newEdge(adjPrev,v->lastAdj());
		typeOf(e) = association; //???
		setExpansionEdge(e, 2);

		expandAdj(v) = e->adjSource();

		OR.bend(e->adjSource()).set(convexBend,nBends);
		OR.bend(e->adjTarget()).set(reflexBend,nBends);
		OR.angle(adjPrev) = 1;
		OR.angle(e->adjSource()) = 2;
		OR.angle(e->adjTarget()) = 1;

	}
}//expandlowdegreevertices