Ejemplo n.º 1
0
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
                                     SEdgeList *el, SShell *useCurvesFrom)
{
    SSurface *ss;
    for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
        if(proto->CoincidentWith(ss, sameNormal)) {
            ss->MakeEdgesInto(this, el, SSurface::MakeAs::XYZ, useCurvesFrom);
        }
    }

    SEdge *se;
    for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
        double ua, va, ub, vb;
        proto->ClosestPointTo(se->a, &ua, &va);
        proto->ClosestPointTo(se->b, &ub, &vb);

        if(sameNormal) {
            se->a = Vector::From(ua, va, 0);
            se->b = Vector::From(ub, vb, 0);
        } else {
            // Flip normal, so flip all edge directions
            se->b = Vector::From(ua, va, 0);
            se->a = Vector::From(ub, vb, 0);
        }
    }
}
Ejemplo n.º 2
0
void SShell::MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl)
{
    SSurface *s;
    for(s = surface.First(); s; s = surface.NextAfter(s)) {
        if(s->CoincidentWithPlane(n, d)) {
            s->MakeSectionEdgesInto(this, sel, sbl);
        }
    }
}
Ejemplo n.º 3
0
void SShell::AllPointsIntersecting(Vector a, Vector b,
                                   List<SInter> *il,
                                   bool seg, bool trimmed, bool inclTangent)
{
    SSurface *ss;
    for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
        ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
    }
}
Ejemplo n.º 4
0
void SShell::Clear(void) {
    SSurface *s;
    for(s = surface.First(); s; s = surface.NextAfter(s)) {
        s->Clear();
    }
    surface.Clear();

    SCurve *c;
    for(c = curve.First(); c; c = curve.NextAfter(c)) {
        c->Clear();
    }
    curve.Clear();
}
Ejemplo n.º 5
0
void SSurface::EdgeNormalsWithinSurface(Point2d auv, Point2d buv,
                                        Vector *pt,
                                        Vector *enin, Vector *enout,
                                        Vector *surfn,
                                        uint32_t auxA,
                                        SShell *shell, SShell *sha, SShell *shb)
{
    // the midpoint of the edge
    Point2d muv  = (auv.Plus(buv)).ScaledBy(0.5);

    *pt    = PointAt(muv);

    // If this edge just approximates a curve, then refine our midpoint so
    // so that it actually lies on that curve too. Otherwise stuff like
    // point-on-face tests will fail, since the point won't actually lie
    // on the other face.
    hSCurve hc = { auxA };
    SCurve *sc = shell->curve.FindById(hc);
    if(sc->isExact && sc->exact.deg != 1) {
        double t;
        sc->exact.ClosestPointTo(*pt, &t, false);
        *pt = sc->exact.PointAt(t);
        ClosestPointTo(*pt, &muv);
    } else if(!sc->isExact) {
        SSurface *trimmedA = sc->GetSurfaceA(sha, shb),
                 *trimmedB = sc->GetSurfaceB(sha, shb);
        *pt = trimmedA->ClosestPointOnThisAndSurface(trimmedB, *pt);
        ClosestPointTo(*pt, &muv);
    }

    *surfn = NormalAt(muv.x, muv.y);

    // Compute the edge's inner normal in xyz space.
    Vector ab    = (PointAt(auv)).Minus(PointAt(buv)),
           enxyz = (ab.Cross(*surfn)).WithMagnitude(SS.ChordTolMm());
    // And based on that, compute the edge's inner normal in uv space. This
    // vector is perpendicular to the edge in xyz, but not necessarily in uv.
    Vector tu, tv;
    TangentsAt(muv.x, muv.y, &tu, &tv);
    Point2d enuv;
    enuv.x = enxyz.Dot(tu) / tu.MagSquared();
    enuv.y = enxyz.Dot(tv) / tv.MagSquared();

    // Compute the inner and outer normals of this edge (within the srf),
    // in xyz space. These are not necessarily antiparallel, if the
    // surface is curved.
    Vector pin   = PointAt(muv.Minus(enuv)),
           pout  = PointAt(muv.Plus(enuv));
    *enin  = pin.Minus(*pt),
    *enout = pout.Minus(*pt);
}
Ejemplo n.º 6
0
//-----------------------------------------------------------------------------
// When we split line segments wherever they intersect a surface, we introduce
// extra pwl points. This may create very short edges that could be removed
// without violating the chord tolerance. Those are ugly, and also break
// stuff in the Booleans. So remove them.
//-----------------------------------------------------------------------------
void SCurve::RemoveShortSegments(SSurface *srfA, SSurface *srfB) {
    // Three, not two; curves are pwl'd to at least two edges (three points)
    // even if not necessary, to avoid square holes.
    if(pts.n <= 3) return;
    pts.ClearTags();

    Vector prev = pts.elem[0].p;
    int i, a;
    for(i = 1; i < pts.n - 1; i++) {
        SCurvePt *sct = &(pts.elem[i]),
                 *scn = &(pts.elem[i+1]);
        if(sct->vertex) {
            prev = sct->p;
            continue;
        }
        bool mustKeep = false;

        // We must check against both surfaces; the piecewise linear edge
        // may have a different chord tolerance in the two surfaces. (For
        // example, a circle in the surface of a cylinder is just a straight
        // line, so it always has perfect chord tol, but that circle in
        // a plane is a circle so it doesn't).
        for(a = 0; a < 2; a++) {
            SSurface *srf = (a == 0) ? srfA : srfB;
            Vector puv, nuv;
            srf->ClosestPointTo(prev,   &(puv.x), &(puv.y));
            srf->ClosestPointTo(scn->p, &(nuv.x), &(nuv.y));

            if(srf->ChordToleranceForEdge(nuv, puv) > SS.ChordTolMm()) {
                mustKeep = true;
            }
        }

        if(mustKeep) {
            prev = sct->p;
        } else {
            sct->tag = 1;
            // and prev is unchanged, since there's no longer any point
            // in between
        }
    }

    pts.RemoveTagged();
}
Ejemplo n.º 7
0
SSurface SSurface::FromTransformationOf(SSurface *a,
                                        Vector t, Quaternion q, double scale,
                                        bool includingTrims)
{
    SSurface ret = {};

    ret.h = a->h;
    ret.color = a->color;
    ret.face = a->face;

    ret.degm = a->degm;
    ret.degn = a->degn;
    int i, j;
    for(i = 0; i <= 3; i++) {
        for(j = 0; j <= 3; j++) {
            ret.ctrl[i][j] = a->ctrl[i][j];
            ret.ctrl[i][j] = (ret.ctrl[i][j]).ScaledBy(scale);
            ret.ctrl[i][j] = (q.Rotate(ret.ctrl[i][j])).Plus(t);

            ret.weight[i][j] = a->weight[i][j];
        }
    }

    if(includingTrims) {
        STrimBy *stb;
        for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
            STrimBy n = *stb;
            n.start  = n.start.ScaledBy(scale);
            n.finish = n.finish.ScaledBy(scale);
            n.start  = (q.Rotate(n.start)) .Plus(t);
            n.finish = (q.Rotate(n.finish)).Plus(t);
            ret.trim.Add(&n);
        }
    }

    if(scale < 0) {
        // If we mirror every surface of a shell, then it will end up inside
        // out. So fix that here.
        ret.Reverse();
    }

    return ret;
}
Ejemplo n.º 8
0
void SShell::TriangulateInto(SMesh *sm) {
    SSurface *s;
    for(s = surface.First(); s; s = surface.NextAfter(s)) {
        s->TriangulateInto(this, sm);
    }
}
Ejemplo n.º 9
0
void SShell::MakeEdgesInto(SEdgeList *sel) {
    SSurface *s;
    for(s = surface.First(); s; s = surface.NextAfter(s)) {
        s->MakeEdgesInto(this, sel, SSurface::AS_XYZ);
    }
}
Ejemplo n.º 10
0
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis, RgbaColor color, Group *group)
{
    SBezierLoop *sbl;

    int i0 = surface.n, i;

    // Normalize the axis direction so that the direction of revolution
    // ends up parallel to the normal of the sketch, on the side of the
    // axis where the sketch is.
    Vector pto;
    double md = VERY_NEGATIVE;
    for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
        SBezier *sb;
        for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
            // Choose the point farthest from the axis; we'll get garbage
            // if we choose a point that lies on the axis, for example.
            // (And our surface will be self-intersecting if the sketch
            // spans the axis, so don't worry about that.)
            Vector p = sb->Start();
            double d = p.DistanceToLine(pt, axis);
            if(d > md) {
                md = d;
                pto = p;
            }
        }
    }
    Vector ptc = pto.ClosestPointOnLine(pt, axis),
           up  = (pto.Minus(ptc)).WithMagnitude(1),
           vp  = (sbls->normal).Cross(up);
    if(vp.Dot(axis) < 0) {
        axis = axis.ScaledBy(-1);
    }

    // Now we actually build and trim the surfaces.
    for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
        int i, j;
        SBezier *sb, *prev;
        List<Revolved> hsl = {};

        for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
            Revolved revs;
            for(j = 0; j < 4; j++) {
                if(sb->deg == 1 &&
                        (sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
                        (sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
                {
                    // This is a line on the axis of revolution; it does
                    // not contribute a surface.
                    revs.d[j].v = 0;
                } else {
                    SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis,
                                  (PI/2)*j,
                                  (PI/2)*(j+1));
                    ss.color = color;
                    if(sb->entity != 0) {
                        hEntity he;
                        he.v = sb->entity;
                        hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
                        if(SK.entity.FindByIdNoOops(hface) != NULL) {
                            ss.face = hface.v;
                        }
                    }
                    revs.d[j] = surface.AddAndAssignId(&ss);
                }
            }
            hsl.Add(&revs);
        }

        for(i = 0; i < sbl->l.n; i++) {
            Revolved revs  = hsl.elem[i],
                     revsp = hsl.elem[WRAP(i-1, sbl->l.n)];

            sb   = &(sbl->l.elem[i]);
            prev = &(sbl->l.elem[WRAP(i-1, sbl->l.n)]);

            for(j = 0; j < 4; j++) {
                SCurve sc;
                Quaternion qs = Quaternion::From(axis, (PI/2)*j);
                // we want Q*(x - p) + p = Q*x + (p - Q*p)
                Vector ts = pt.Minus(qs.Rotate(pt));

                // If this input curve generate a surface, then trim that
                // surface with the rotated version of the input curve.
                if(revs.d[j].v) {
                    sc = {};
                    sc.isExact = true;
                    sc.exact = sb->TransformedBy(ts, qs, 1.0);
                    (sc.exact).MakePwlInto(&(sc.pts));
                    sc.surfA = revs.d[j];
                    sc.surfB = revs.d[WRAP(j-1, 4)];

                    hSCurve hcb = curve.AddAndAssignId(&sc);

                    STrimBy stb;
                    stb = STrimBy::EntireCurve(this, hcb, true);
                    (surface.FindById(sc.surfA))->trim.Add(&stb);
                    stb = STrimBy::EntireCurve(this, hcb, false);
                    (surface.FindById(sc.surfB))->trim.Add(&stb);
                }

                // And if this input curve and the one after it both generated
                // surfaces, then trim both of those by the appropriate
                // circle.
                if(revs.d[j].v && revsp.d[j].v) {
                    SSurface *ss = surface.FindById(revs.d[j]);

                    sc = {};
                    sc.isExact = true;
                    sc.exact = SBezier::From(ss->ctrl[0][0],
                                             ss->ctrl[0][1],
                                             ss->ctrl[0][2]);
                    sc.exact.weight[1] = ss->weight[0][1];
                    (sc.exact).MakePwlInto(&(sc.pts));
                    sc.surfA = revs.d[j];
                    sc.surfB = revsp.d[j];

                    hSCurve hcc = curve.AddAndAssignId(&sc);

                    STrimBy stb;
                    stb = STrimBy::EntireCurve(this, hcc, false);
                    (surface.FindById(sc.surfA))->trim.Add(&stb);
                    stb = STrimBy::EntireCurve(this, hcc, true);
                    (surface.FindById(sc.surfB))->trim.Add(&stb);
                }
            }
        }

        hsl.Clear();
    }

    for(i = i0; i < surface.n; i++) {
        SSurface *srf = &(surface.elem[i]);

        // Revolution of a line; this is potentially a plane, which we can
        // rewrite to have degree (1, 1).
        if(srf->degm == 1 && srf->degn == 2) {
            // close start, far start, far finish
            Vector cs, fs, ff;
            double d0, d1;
            d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
            d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);

            if(d0 > d1) {
                cs = srf->ctrl[1][0];
                fs = srf->ctrl[0][0];
                ff = srf->ctrl[0][2];
            } else {
                cs = srf->ctrl[0][0];
                fs = srf->ctrl[1][0];
                ff = srf->ctrl[1][2];
            }

            // origin close, origin far
            Vector oc = cs.ClosestPointOnLine(pt, axis),
                   of = fs.ClosestPointOnLine(pt, axis);

            if(oc.Equals(of)) {
                // This is a plane, not a (non-degenerate) cone.
                Vector oldn = srf->NormalAt(0.5, 0.5);

                Vector u = fs.Minus(of), v;

                v = (axis.Cross(u)).WithMagnitude(1);

                double vm = (ff.Minus(of)).Dot(v);
                v = v.ScaledBy(vm);

                srf->degm = 1;
                srf->degn = 1;
                srf->ctrl[0][0] = of;
                srf->ctrl[0][1] = of.Plus(u);
                srf->ctrl[1][0] = of.Plus(v);
                srf->ctrl[1][1] = of.Plus(u).Plus(v);
                srf->weight[0][0] = 1;
                srf->weight[0][1] = 1;
                srf->weight[1][0] = 1;
                srf->weight[1][1] = 1;

                if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
                    swap(srf->ctrl[0][0], srf->ctrl[1][0]);
                    swap(srf->ctrl[0][1], srf->ctrl[1][1]);
                }
                continue;
            }

            if(fabs(d0 - d1) < LENGTH_EPS) {
                // This is a cylinder; so transpose it so that we'll recognize
                // it as a surface of extrusion.
                SSurface sn = *srf;

                // Transposing u and v flips the normal, so reverse u to
                // flip it again and put it back where we started.
                sn.degm = 2;
                sn.degn = 1;
                int dm, dn;
                for(dm = 0; dm <= 1; dm++) {
                    for(dn = 0; dn <= 2; dn++) {
                        sn.ctrl  [dn][dm] = srf->ctrl  [1-dm][dn];
                        sn.weight[dn][dm] = srf->weight[1-dm][dn];
                    }
                }

                *srf = sn;
                continue;
            }
        }

    }

}
Ejemplo n.º 11
0
//-----------------------------------------------------------------------------
// Trim this surface against the specified shell, in the way that's appropriate
// for the specified Boolean operation type (and which operand we are). We
// also need a pointer to the shell that contains our own surface, since that
// contains our original trim curves.
//-----------------------------------------------------------------------------
SSurface SSurface::MakeCopyTrimAgainst(SShell *parent,
                                       SShell *sha, SShell *shb,
                                       SShell *into,
                                       int type)
{
    bool opA = (parent == sha);
    SShell *agnst = opA ? shb : sha;

    SSurface ret;
    // The returned surface is identical, just the trim curves change
    ret = *this;
    ret.trim = {};

    // First, build a list of the existing trim curves; update them to use
    // the split curves.
    STrimBy *stb;
    for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
        STrimBy stn = *stb;
        stn.curve = (parent->curve.FindById(stn.curve))->newH;
        ret.trim.Add(&stn);
    }

    if(type == SShell::AS_DIFFERENCE && !opA) {
        // The second operand of a Boolean difference gets turned inside out
        ret.Reverse();
    }

    // Build up our original trim polygon; remember the coordinates could
    // be changed if we just flipped the surface normal, and we are using
    // the split curves (not the original curves).
    SEdgeList orig = {};
    ret.MakeEdgesInto(into, &orig, AS_UV);
    ret.trim.Clear();
    // which means that we can't necessarily use the old BSP...
    SBspUv *origBsp = SBspUv::From(&orig, &ret);

    // And now intersect the other shell against us
    SEdgeList inter = {};

    SSurface *ss;
    for(ss = agnst->surface.First(); ss; ss = agnst->surface.NextAfter(ss)) {
        SCurve *sc;
        for(sc = into->curve.First(); sc; sc = into->curve.NextAfter(sc)) {
            if(sc->source != SCurve::FROM_INTERSECTION) continue;
            if(opA) {
                if(sc->surfA.v != h.v || sc->surfB.v != ss->h.v) continue;
            } else {
                if(sc->surfB.v != h.v || sc->surfA.v != ss->h.v) continue;
            }

            int i;
            for(i = 1; i < sc->pts.n; i++) {
                Vector a = sc->pts.elem[i-1].p,
                       b = sc->pts.elem[i].p;

                Point2d auv, buv;
                ss->ClosestPointTo(a, &(auv.x), &(auv.y));
                ss->ClosestPointTo(b, &(buv.x), &(buv.y));

                int c = (ss->bsp) ? ss->bsp->ClassifyEdge(auv, buv, ss) : SBspUv::OUTSIDE;
                if(c != SBspUv::OUTSIDE) {
                    Vector ta = Vector::From(0, 0, 0);
                    Vector tb = Vector::From(0, 0, 0);
                    ret.ClosestPointTo(a, &(ta.x), &(ta.y));
                    ret.ClosestPointTo(b, &(tb.x), &(tb.y));

                    Vector tn = ret.NormalAt(ta.x, ta.y);
                    Vector sn = ss->NormalAt(auv.x, auv.y);

                    // We are subtracting the portion of our surface that
                    // lies in the shell, so the in-plane edge normal should
                    // point opposite to the surface normal.
                    bool bkwds = true;
                    if((tn.Cross(b.Minus(a))).Dot(sn) < 0) bkwds = !bkwds;
                    if(type == SShell::AS_DIFFERENCE && !opA) bkwds = !bkwds;
                    if(bkwds) {
                        inter.AddEdge(tb, ta, sc->h.v, 1);
                    } else {
                        inter.AddEdge(ta, tb, sc->h.v, 0);
                    }
                }
            }
        }
    }

    // Record all the points where more than two edges join, which I will call
    // the choosing points. If two edges join at a non-choosing point, then
    // they must either both be kept or both be discarded (since that would
    // otherwise create an open contour).
    SPointList choosing = {};
    SEdge *se;
    for(se = orig.l.First(); se; se = orig.l.NextAfter(se)) {
        choosing.IncrementTagFor(se->a);
        choosing.IncrementTagFor(se->b);
    }
    for(se = inter.l.First(); se; se = inter.l.NextAfter(se)) {
        choosing.IncrementTagFor(se->a);
        choosing.IncrementTagFor(se->b);
    }
    SPoint *sp;
    for(sp = choosing.l.First(); sp; sp = choosing.l.NextAfter(sp)) {
        if(sp->tag == 2) {
            sp->tag = 1;
        } else {
            sp->tag = 0;
        }
    }
    choosing.l.RemoveTagged();

    // The list of edges to trim our new surface, a combination of edges from
    // our original and intersecting edge lists.
    SEdgeList final = {};

    while(orig.l.n > 0) {
        SEdgeList chain = {};
        FindChainAvoiding(&orig, &chain, &choosing);

        // Arbitrarily choose an edge within the chain to classify; they
        // should all be the same, though.
        se = &(chain.l.elem[chain.l.n/2]);

        Point2d auv  = (se->a).ProjectXy(),
                buv  = (se->b).ProjectXy();

        Vector pt, enin, enout, surfn;
        ret.EdgeNormalsWithinSurface(auv, buv, &pt, &enin, &enout, &surfn,
                                        se->auxA, into, sha, shb);

        int indir_shell, outdir_shell, indir_orig, outdir_orig;

        indir_orig  = SShell::INSIDE;
        outdir_orig = SShell::OUTSIDE;

        agnst->ClassifyEdge(&indir_shell, &outdir_shell,
                            ret.PointAt(auv), ret.PointAt(buv), pt,
                            enin, enout, surfn);

        if(KeepEdge(type, opA, indir_shell, outdir_shell,
                               indir_orig,  outdir_orig))
        {
            for(se = chain.l.First(); se; se = chain.l.NextAfter(se)) {
                final.AddEdge(se->a, se->b, se->auxA, se->auxB);
            }
        }
        chain.Clear();
    }
Ejemplo n.º 12
0
void Group::GenerateShellAndMesh(void) {
    bool prevBooleanFailed = booleanFailed;
    booleanFailed = false;

    Group *srcg = this;

    thisShell.Clear();
    thisMesh.Clear();
    runningShell.Clear();
    runningMesh.Clear();

    // Don't attempt a lathe or extrusion unless the source section is good:
    // planar and not self-intersecting.
    bool haveSrc = true;
    if(type == EXTRUDE || type == LATHE) {
        Group *src = SK.GetGroup(opA);
        if(src->polyError.how != POLY_GOOD) {
            haveSrc = false;
        }
    }

    if(type == TRANSLATE || type == ROTATE) {
        // A step and repeat gets merged against the group's prevous group,
        // not our own previous group.
        srcg = SK.GetGroup(opA);

        GenerateForStepAndRepeat<SShell>(&(srcg->thisShell), &thisShell);
        GenerateForStepAndRepeat<SMesh> (&(srcg->thisMesh),  &thisMesh);
    } else if(type == EXTRUDE && haveSrc) {
        Group *src = SK.GetGroup(opA);
        Vector translate = Vector::From(h.param(0), h.param(1), h.param(2));

        Vector tbot, ttop;
        if(subtype == ONE_SIDED) {
            tbot = Vector::From(0, 0, 0); ttop = translate.ScaledBy(2);
        } else {
            tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1);
        }

        SBezierLoopSetSet *sblss = &(src->bezierLoops);
        SBezierLoopSet *sbls;
        for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
            int is = thisShell.surface.n;
            // Extrude this outer contour (plus its inner contours, if present)
            thisShell.MakeFromExtrusionOf(sbls, tbot, ttop, color);

            // And for any plane faces, annotate the model with the entity for
            // that face, so that the user can select them with the mouse.
            Vector onOrig = sbls->point;
            int i;
            for(i = is; i < thisShell.surface.n; i++) {
                SSurface *ss = &(thisShell.surface.elem[i]);
                hEntity face = Entity::NO_ENTITY;

                Vector p = ss->PointAt(0, 0),
                       n = ss->NormalAt(0, 0).WithMagnitude(1);
                double d = n.Dot(p);

                if(i == is || i == (is + 1)) {
                    // These are the top and bottom of the shell.
                    if(fabs((onOrig.Plus(ttop)).Dot(n) - d) < LENGTH_EPS) {
                        face = Remap(Entity::NO_ENTITY, REMAP_TOP);
                        ss->face = face.v;
                    }
                    if(fabs((onOrig.Plus(tbot)).Dot(n) - d) < LENGTH_EPS) {
                        face = Remap(Entity::NO_ENTITY, REMAP_BOTTOM);
                        ss->face = face.v;
                    }
                    continue;
                }

                // So these are the sides
                if(ss->degm != 1 || ss->degn != 1) continue;

                Entity *e;
                for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
                    if(e->group.v != opA.v) continue;
                    if(e->type != Entity::LINE_SEGMENT) continue;

                    Vector a = SK.GetEntity(e->point[0])->PointGetNum(),
                           b = SK.GetEntity(e->point[1])->PointGetNum();
                    a = a.Plus(ttop);
                    b = b.Plus(ttop);
                    // Could get taken backwards, so check all cases.
                    if((a.Equals(ss->ctrl[0][0]) && b.Equals(ss->ctrl[1][0])) ||
                       (b.Equals(ss->ctrl[0][0]) && a.Equals(ss->ctrl[1][0])) ||
                       (a.Equals(ss->ctrl[0][1]) && b.Equals(ss->ctrl[1][1])) ||
                       (b.Equals(ss->ctrl[0][1]) && a.Equals(ss->ctrl[1][1])))
                    {
                        face = Remap(e->h, REMAP_LINE_TO_FACE);
                        ss->face = face.v;
                        break;
                    }
                }
            }
        }
    } else if(type == LATHE && haveSrc) {
        Group *src = SK.GetGroup(opA);

        Vector pt   = SK.GetEntity(predef.origin)->PointGetNum(),
               axis = SK.GetEntity(predef.entityB)->VectorGetNum();
        axis = axis.WithMagnitude(1);

        SBezierLoopSetSet *sblss = &(src->bezierLoops);
        SBezierLoopSet *sbls;
        for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
            thisShell.MakeFromRevolutionOf(sbls, pt, axis, color, this);
        }
    } else if(type == LINKED) {
        // The imported shell or mesh are copied over, with the appropriate
        // transformation applied. We also must remap the face entities.
        Vector offset = {
            SK.GetParam(h.param(0))->val,
            SK.GetParam(h.param(1))->val,
            SK.GetParam(h.param(2))->val };
        Quaternion q = {
            SK.GetParam(h.param(3))->val,
            SK.GetParam(h.param(4))->val,
            SK.GetParam(h.param(5))->val,
            SK.GetParam(h.param(6))->val };

        thisMesh.MakeFromTransformationOf(&impMesh, offset, q, scale);
        thisMesh.RemapFaces(this, 0);

        thisShell.MakeFromTransformationOf(&impShell, offset, q, scale);
        thisShell.RemapFaces(this, 0);
    }

    if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) {
        thisShell.MergeCoincidentSurfaces();
    }

    // So now we've got the mesh or shell for this group. Combine it with
    // the previous group's mesh or shell with the requested Boolean, and
    // we're done.

    Group *prevg = srcg->RunningMeshGroup();

    if(prevg->runningMesh.IsEmpty() && thisMesh.IsEmpty() && !forceToMesh) {
        SShell *prevs = &(prevg->runningShell);
        GenerateForBoolean<SShell>(prevs, &thisShell, &runningShell,
            srcg->meshCombine);

        if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) {
            runningShell.MergeCoincidentSurfaces();
        }

        // If the Boolean failed, then we should note that in the text screen
        // for this group.
        booleanFailed = runningShell.booleanFailed;
        if(booleanFailed != prevBooleanFailed) {
            SS.ScheduleShowTW();
        }
    } else {
        SMesh prevm, thism;
        prevm = {};
        thism = {};

        prevm.MakeFromCopyOf(&(prevg->runningMesh));
        prevg->runningShell.TriangulateInto(&prevm);

        thism.MakeFromCopyOf(&thisMesh);
        thisShell.TriangulateInto(&thism);

        SMesh outm = {};
        GenerateForBoolean<SMesh>(&prevm, &thism, &outm, srcg->meshCombine);

        // And make sure that the output mesh is vertex-to-vertex.
        SKdNode *root = SKdNode::From(&outm);
        root->SnapToMesh(&outm);
        root->MakeMeshInto(&runningMesh);

        outm.Clear();
        thism.Clear();
        prevm.Clear();
    }

    displayDirty = true;
}
Ejemplo n.º 13
0
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
                                SShell *into)
{
    Vector amax, amin, bmax, bmin;
    GetAxisAlignedBounding(&amax, &amin);
    b->GetAxisAlignedBounding(&bmax, &bmin);

    if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
        // They cannot possibly intersect, no curves to generate
        return;
    }

    Vector alongt, alongb;
    SBezier oft, ofb;
    bool isExtdt = this->IsExtrusion(&oft, &alongt),
         isExtdb =    b->IsExtrusion(&ofb, &alongb);

    if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
        // Line-line intersection; it's a plane or nothing.
        Vector na = NormalAt(0, 0).WithMagnitude(1),
               nb = b->NormalAt(0, 0).WithMagnitude(1);
        double da = na.Dot(PointAt(0, 0)),
               db = nb.Dot(b->PointAt(0, 0));

        Vector dl = na.Cross(nb);
        if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
        dl = dl.WithMagnitude(1);
        Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);

        // Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
        // necessary, since line will be split and excess edges culled, but
        // this improves speed and robustness.
        int i;
        double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
        for(i = 0; i < 2; i++) {
            SSurface *s = (i == 0) ? this : b;
            Vector tu, tv;
            s->TangentsAt(0, 0, &tu, &tv);

            double up, vp, ud, vd;
            s->ClosestPointTo(p, &up, &vp);
            ud = (dl.Dot(tu)) / tu.MagSquared();
            vd = (dl.Dot(tv)) / tv.MagSquared();

            // so u = up + t*ud
            //    v = vp + t*vd
            if(ud > LENGTH_EPS) {
                tmin = max(tmin, -up/ud);
                tmax = min(tmax, (1 - up)/ud);
            } else if(ud < -LENGTH_EPS) {
                tmax = min(tmax, -up/ud);
                tmin = max(tmin, (1 - up)/ud);
            } else {
                if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
                    // u is constant, and outside [0, 1]
                    tmax = VERY_NEGATIVE;
                }
            }
            if(vd > LENGTH_EPS) {
                tmin = max(tmin, -vp/vd);
                tmax = min(tmax, (1 - vp)/vd);
            } else if(vd < -LENGTH_EPS) {
                tmax = min(tmax, -vp/vd);
                tmin = max(tmin, (1 - vp)/vd);
            } else {
                if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
                    // v is constant, and outside [0, 1]
                    tmax = VERY_NEGATIVE;
                }
            }
        }

        if(tmax > tmin + LENGTH_EPS) {
            SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
                                           p.Plus(dl.ScaledBy(tmax)));
            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }
    } else if((degm == 1 && degn == 1 && isExtdb) ||
              (b->degm == 1 && b->degn == 1 && isExtdt))
    {
        // The intersection between a plane and a surface of extrusion
        SSurface *splane, *sext;
        if(degm == 1 && degn == 1) {
            splane = this;
            sext = b;
        } else {
            splane = b;
            sext = this;
        }

        Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
        double d = n.Dot(splane->PointAt(0, 0));
        SBezier bezier;
        (void)sext->IsExtrusion(&bezier, &along);

        if(fabs(n.Dot(along)) < LENGTH_EPS) {
            // Direction of extrusion is parallel to plane; so intersection
            // is zero or more lines. Build a line within the plane, and
            // normal to the direction of extrusion, and intersect that line
            // against the surface; each intersection point corresponds to
            // a line.
            Vector pm, alu, p0, dp;
            // a point halfway along the extrusion
            pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
            alu = along.WithMagnitude(1);
            dp = (n.Cross(along)).WithMagnitude(1);
            // n, alu, and dp form an orthogonal csys; set n component to
            // place it on the plane, alu component to lie halfway along
            // extrusion, and dp component doesn't matter so zero
            p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));

            List<SInter> inters = {};
            sext->AllPointsIntersecting(p0, p0.Plus(dp), &inters,
                /*asSegment=*/false, /*trimmed=*/false, /*inclTangent=*/true);

            SInter *si;
            for(si = inters.First(); si; si = inters.NextAfter(si)) {
                Vector al = along.ScaledBy(0.5);
                SBezier bezier;
                bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
                AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
            }

            inters.Clear();
        } else {
            // Direction of extrusion is not parallel to plane; so
            // intersection is projection of extruded curve into our plane.
            int i;
            for(i = 0; i <= bezier.deg; i++) {
                Vector p0 = bezier.ctrl[i],
                       p1 = p0.Plus(along);

                bezier.ctrl[i] =
                    Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
            }

            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }
    } else if(isExtdt && isExtdb &&
                sqrt(fabs(alongt.Dot(alongb))) >
                sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
    {
        // Two surfaces of extrusion along the same axis. So they might
        // intersect along some number of lines parallel to the axis.
        Vector axis = alongt.WithMagnitude(1);

        List<SInter> inters = {};
        List<Vector> lv = {};

        double a_axis0 = (   ctrl[0][0]).Dot(axis),
               a_axis1 = (   ctrl[0][1]).Dot(axis),
               b_axis0 = (b->ctrl[0][0]).Dot(axis),
               b_axis1 = (b->ctrl[0][1]).Dot(axis);

        if(a_axis0 > a_axis1) swap(a_axis0, a_axis1);
        if(b_axis0 > b_axis1) swap(b_axis0, b_axis1);

        double ab_axis0 = max(a_axis0, b_axis0),
               ab_axis1 = min(a_axis1, b_axis1);

        if(fabs(ab_axis0 - ab_axis1) < LENGTH_EPS) {
            // The line would be zero-length
            return;
        }

        Vector axis0 = axis.ScaledBy(ab_axis0),
               axis1 = axis.ScaledBy(ab_axis1),
               axisc = (axis0.Plus(axis1)).ScaledBy(0.5);

        oft.MakePwlInto(&lv);

        int i;
        for(i = 0; i < lv.n - 1; i++) {
            Vector pa = lv.elem[i], pb = lv.elem[i+1];
            pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
            pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
            pa = pa.Plus(axisc);
            pb = pb.Plus(axisc);

            b->AllPointsIntersecting(pa, pb, &inters,
                /*asSegment=*/true,/*trimmed=*/false, /*inclTangent=*/false);
        }

        SInter *si;
        for(si = inters.First(); si; si = inters.NextAfter(si)) {
            Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
            double ub, vb;
            b->ClosestPointTo(p, &ub, &vb, /*mustConverge=*/true);
            SSurface plane;
            plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));

            b->PointOnSurfaces(this, &plane, &ub, &vb);

            p = b->PointAt(ub, vb);

            SBezier bezier;
            bezier = SBezier::From(p.Plus(axis0), p.Plus(axis1));
            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }

        inters.Clear();
        lv.Clear();
    } else {
        // Try intersecting the surfaces numerically, by a marching algorithm.
        // First, we find all the intersections between a surface and the
        // boundary of the other surface.
        SPointList spl = {};
        int a;
        for(a = 0; a < 2; a++) {
            SShell   *shA  = (a == 0) ? agnstA : agnstB;
            SSurface *srfA = (a == 0) ? this : b,
                     *srfB = (a == 0) ? b : this;

            SEdgeList el = {};
            srfA->MakeEdgesInto(shA, &el, MakeAs::XYZ, NULL);

            SEdge *se;
            for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
                List<SInter> lsi = {};

                srfB->AllPointsIntersecting(se->a, se->b, &lsi,
                    /*asSegment=*/true, /*trimmed=*/true, /*inclTangent=*/false);
                if(lsi.n == 0) continue;

                // Find the other surface that this curve trims.
                hSCurve hsc = { (uint32_t)se->auxA };
                SCurve *sc = shA->curve.FindById(hsc);
                hSSurface hother = (sc->surfA.v == srfA->h.v) ?
                                                    sc->surfB : sc->surfA;
                SSurface *other = shA->surface.FindById(hother);

                SInter *si;
                for(si = lsi.First(); si; si = lsi.NextAfter(si)) {
                    Vector p = si->p;
                    double u, v;
                    srfB->ClosestPointTo(p, &u, &v);
                    srfB->PointOnSurfaces(srfA, other, &u, &v);
                    p = srfB->PointAt(u, v);
                    if(!spl.ContainsPoint(p)) {
                        SPoint sp;
                        sp.p = p;
                        // We also need the edge normal, so that we know in
                        // which direction to march.
                        srfA->ClosestPointTo(p, &u, &v);
                        Vector n = srfA->NormalAt(u, v);
                        sp.auxv = n.Cross((se->b).Minus(se->a));
                        sp.auxv = (sp.auxv).WithMagnitude(1);

                        spl.l.Add(&sp);
                    }
                }
                lsi.Clear();
            }

            el.Clear();
        }

        while(spl.l.n >= 2) {
            SCurve sc = {};
            sc.surfA = h;
            sc.surfB = b->h;
            sc.isExact = false;
            sc.source = SCurve::Source::INTERSECTION;

            Vector start  = spl.l.elem[0].p,
                   startv = spl.l.elem[0].auxv;
            spl.l.ClearTags();
            spl.l.elem[0].tag = 1;
            spl.l.RemoveTagged();

            // Our chord tolerance is whatever the user specified
            double maxtol = SS.ChordTolMm();
            int maxsteps = max(300, SS.GetMaxSegments()*3);

            // The curve starts at our starting point.
            SCurvePt padd = {};
            padd.vertex = true;
            padd.p = start;
            sc.pts.Add(&padd);

            Point2d pa, pb;
            Vector np, npc = Vector::From(0, 0, 0);
            bool fwd = false;
            // Better to start with a too-small step, so that we don't miss
            // features of the curve entirely.
            double tol, step = maxtol;
            for(a = 0; a < maxsteps; a++) {
                ClosestPointTo(start, &pa);
                b->ClosestPointTo(start, &pb);

                Vector na =    NormalAt(pa).WithMagnitude(1),
                       nb = b->NormalAt(pb).WithMagnitude(1);

                if(a == 0) {
                    Vector dp = nb.Cross(na);
                    if(dp.Dot(startv) < 0) {
                        // We want to march in the more inward direction.
                        fwd = true;
                    } else {
                        fwd = false;
                    }
                }

                int i;
                for(i = 0; i < 20; i++) {
                    Vector dp = nb.Cross(na);
                    if(!fwd) dp = dp.ScaledBy(-1);
                    dp = dp.WithMagnitude(step);

                    np = start.Plus(dp);
                    npc = ClosestPointOnThisAndSurface(b, np);
                    tol = (npc.Minus(np)).Magnitude();

                    if(tol > maxtol*0.8) {
                        step *= 0.90;
                    } else {
                        step /= 0.90;
                    }

                    if((tol < maxtol) && (tol > maxtol/2)) {
                        // If we meet the chord tolerance test, and we're
                        // not too fine, then we break out.
                        break;
                    }
                }

                SPoint *sp;
                for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
                    if((sp->p).OnLineSegment(start, npc, 2*SS.ChordTolMm())) {
                        sp->tag = 1;
                        a = maxsteps;
                        npc = sp->p;
                    }
                }

                padd.p = npc;
                padd.vertex = (a == maxsteps);
                sc.pts.Add(&padd);

                start = npc;
            }

            spl.l.RemoveTagged();

            // And now we split and insert the curve
            SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, b);
            sc.Clear();
            into->curve.AddAndAssignId(&split);
        }
        spl.Clear();
    }
}
Ejemplo n.º 14
0
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? There are many cases; inside and
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
// possibilities.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
bool SShell::ClassifyEdge(int *indir, int *outdir,
                          Vector ea, Vector eb,
                          Vector p,
                          Vector edge_n_in, Vector edge_n_out, Vector surf_n)
{
    List<SInter> l;
    ZERO(&l);

    srand(0);

    // First, check for edge-on-edge
    int edge_inters = 0;
    Vector inter_surf_n[2], inter_edge_n[2];
    SSurface *srf;
    for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
        if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;

        SEdgeList *sel = &(srf->edges);
        SEdge *se;
        for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
            if((ea.Equals(se->a) && eb.Equals(se->b)) ||
               (eb.Equals(se->a) && ea.Equals(se->b)) ||
                p.OnLineSegment(se->a, se->b))
            {
                if(edge_inters < 2) {
                    // Edge-on-edge case
                    Point2d pm;
                    srf->ClosestPointTo(p,  &pm, false);
                    // A vector normal to the surface, at the intersection point
                    inter_surf_n[edge_inters] = srf->NormalAt(pm);
                    // A vector normal to the intersecting edge (but within the
                    // intersecting surface) at the intersection point, pointing
                    // out.
                    inter_edge_n[edge_inters] =
                      (inter_surf_n[edge_inters]).Cross((se->b).Minus((se->a)));
                }

                edge_inters++;
            }
        }
    }

    if(edge_inters == 2) {
        // TODO, make this use the appropriate curved normals
        double dotp[2];
        for(int i = 0; i < 2; i++) {
            dotp[i] = edge_n_out.DirectionCosineWith(inter_surf_n[i]);
        }

        if(fabs(dotp[1]) < DOTP_TOL) {
            SWAP(double, dotp[0],         dotp[1]);
            SWAP(Vector, inter_surf_n[0], inter_surf_n[1]);
            SWAP(Vector, inter_edge_n[0], inter_edge_n[1]);
        }

        int coinc = (surf_n.Dot(inter_surf_n[0])) > 0 ? COINC_SAME : COINC_OPP;

        if(fabs(dotp[0]) < DOTP_TOL && fabs(dotp[1]) < DOTP_TOL) {
            // This is actually an edge on face case, just that the face
            // is split into two pieces joining at our edge.
            *indir  = coinc;
            *outdir = coinc;
        } else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] > DOTP_TOL) {
            if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
                *indir  = coinc;
                *outdir = OUTSIDE;
            } else {
                *indir  = INSIDE;
                *outdir = coinc;
            }
        } else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] < -DOTP_TOL) {
            if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
                *indir  = coinc;
                *outdir = INSIDE;
            } else {
                *indir  = OUTSIDE;
                *outdir = coinc;
            }
        } else if(dotp[0] > DOTP_TOL && dotp[1] > DOTP_TOL) {
            *indir  = INSIDE;
            *outdir = OUTSIDE;
        } else if(dotp[0] < -DOTP_TOL && dotp[1] < -DOTP_TOL) {
            *indir  = OUTSIDE;
            *outdir = INSIDE;
        } else {
            // Edge is tangent to the shell at shell's edge, so can't be
            // a boundary of the surface.
            return false;
        }
        return true;
    }

    if(edge_inters != 0) dbp("bad, edge_inters=%d", edge_inters);

    // Next, check for edge-on-surface. The ray-casting for edge-inside-shell
    // would catch this too, but test separately, for speed (since many edges
    // are on surface) and for numerical stability, so we don't pick up
    // the additional error from the line intersection.

    for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
        if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;

        Point2d puv;
        srf->ClosestPointTo(p, &(puv.x), &(puv.y), false);
        Vector pp = srf->PointAt(puv);

        if((pp.Minus(p)).Magnitude() > LENGTH_EPS) continue;
        Point2d dummy = { 0, 0 };
        int c = srf->bsp->ClassifyPoint(puv, dummy, srf);
        if(c == SBspUv::OUTSIDE) continue;

        // Edge-on-face (unless edge-on-edge above superceded)
        Point2d pin, pout;
        srf->ClosestPointTo(p.Plus(edge_n_in),  &pin,  false);
        srf->ClosestPointTo(p.Plus(edge_n_out), &pout, false);

        Vector surf_n_in  = srf->NormalAt(pin),
               surf_n_out = srf->NormalAt(pout);

        *indir  = ClassifyRegion(edge_n_in,  surf_n_in,  surf_n);
        *outdir = ClassifyRegion(edge_n_out, surf_n_out, surf_n);
        return true;
    }

    // Edge is not on face or on edge; so it's either inside or outside
    // the shell, and we'll determine which by raycasting.
    int cnt = 0;
    for(;;) {
        // Cast a ray in a random direction (two-sided so that we test if
        // the point lies on a surface, but use only one side for in/out
        // testing)
        Vector ray = Vector::From(Random(1), Random(1), Random(1));

        AllPointsIntersecting(
            p.Minus(ray), p.Plus(ray), &l, false, true, false);

        // no intersections means it's outside
        *indir  = OUTSIDE;
        *outdir = OUTSIDE;
        double dmin = VERY_POSITIVE;
        bool onEdge = false;
        edge_inters = 0;

        SInter *si;
        for(si = l.First(); si; si = l.NextAfter(si)) {
            double t = ((si->p).Minus(p)).DivPivoting(ray);
            if(t*ray.Magnitude() < -LENGTH_EPS) {
                // wrong side, doesn't count
                continue;
            }

            double d = ((si->p).Minus(p)).Magnitude();

            // We actually should never hit this case; it should have been
            // handled above.
            if(d < LENGTH_EPS && si->onEdge) {
                edge_inters++;
            }

            if(d < dmin) {
                dmin = d;
                // Edge does not lie on surface; either strictly inside
                // or strictly outside
                if((si->surfNormal).Dot(ray) > 0) {
                    *indir  = INSIDE;
                    *outdir = INSIDE;
                } else {
                    *indir  = OUTSIDE;
                    *outdir = OUTSIDE;
                }
                onEdge = si->onEdge;
            }
        }
        l.Clear();

        // If the point being tested lies exactly on an edge of the shell,
        // then our ray always lies on edge, and that's okay. Otherwise
        // try again in a different random direction.
        if(!onEdge) break;
        if(cnt++ > 5) {
            dbp("can't find a ray that doesn't hit on edge!");
            dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
            SS.nakedEdges.AddEdge(ea, eb);
            break;
        }
    }

    return true;
}
Ejemplo n.º 15
0
void StepFileWriter::ExportSurfacesTo(char *file) {
    Group *g = SK.GetGroup(SS.GW.activeGroup);
    SShell *shell = &(g->runningShell);

    if(shell->surface.n == 0) {
        Error("The model does not contain any surfaces to export.%s",
            g->runningMesh.l.n > 0 ?
                "\n\nThe model does contain triangles from a mesh, but "
                "a triangle mesh cannot be exported as a STEP file. Try "
                "File -> Export Mesh... instead." : "");
        return;
    }

    f = fopen(file, "wb");
    if(!f) {
        Error("Couldn't write to '%s'", file);
        return;
    }

    WriteHeader();
	WriteProductHeader();

    ZERO(&advancedFaces);

    SSurface *ss;
    for(ss = shell->surface.First(); ss; ss = shell->surface.NextAfter(ss)) {
        if(ss->trim.n == 0) continue;

        // Get all of the loops of Beziers that trim our surface (with each
        // Bezier split so that we use the section as t goes from 0 to 1), and
        // the piecewise linearization of those loops in xyz space.
        SBezierList sbl;
        ZERO(&sbl);
        ss->MakeSectionEdgesInto(shell, NULL, &sbl);

        // Apply the export scale factor.
        ss->ScaleSelfBy(1.0/SS.exportScale);
        sbl.ScaleSelfBy(1.0/SS.exportScale);

        ExportSurface(ss, &sbl);

        sbl.Clear();
    }

    fprintf(f, "#%d=CLOSED_SHELL('',(", id);
    int *af;
    for(af = advancedFaces.First(); af; af = advancedFaces.NextAfter(af)) {
        fprintf(f, "#%d", *af);
        if(advancedFaces.NextAfter(af) != NULL) fprintf(f, ",");
    }
    fprintf(f, "));\n");
    fprintf(f, "#%d=MANIFOLD_SOLID_BREP('brep',#%d);\n", id+1, id);
    fprintf(f, "#%d=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#%d,#170),#168);\n",
        id+2, id+1);
    fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n",
        id+3, id+2);

    WriteFooter();

    fclose(f);
    advancedFaces.Clear();
}