// Training of client Speakers // Input: Xlist Format: ID_Client Seg1 Seg2 .. // Output: ALIZE_MixtureServer (binaire) + GMM / Client (binary) int TrainTarget(Config& config) { String inputClientListFileName = config.getParam("targetIdList"); String inputWorldFilename = config.getParam("inputWorldFilename"); String outputSERVERFilename = ""; if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer"); bool initByClient=false; // In this case, the init model is read from the file if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool(); bool saveEmptyModel=false; if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool(); // label for selected frames - Only the frames associated with this label, in the label files, will be used bool fixedLabelSelectedFrame=true; String labelSelectedFrames; if (config.existsParam("useIdForSelectedFrame")) // the ID of each speaker is used as labelSelectedFrame ? fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false); if (fixedLabelSelectedFrame) // the label is decided by the command line and is unique for the run labelSelectedFrames=config.getParam("labelSelectedFrames"); bool modelData=false; if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool(); String initModelS=inputWorldFilename; if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init bool outputAdaptParam=false; if (config.existsParam("superVector")) outputAdaptParam=true; bool NAP=false; Matrix <double> ChannelMatrix; if (config.existsParam("NAP")) { if (verbose) cout<< "Removing channel effect with NAP from " << config.getParam("NAP") << " of size: ["; NAP=true; // enable NAP ChannelMatrix.load(config.getParam("NAP"),config); //get Channel Matrix from args and load in a Matrix object if (verbose) cout << ChannelMatrix.rows() << "," <<ChannelMatrix.cols() << "]" << endl; } bool saveCompleteServer=false; try{ XList inputClientList(inputClientListFileName,config); // read the Id + filenames for each client XLine * linep; inputClientList.getLine(0); MixtureServer ms(config); StatServer ss(config, ms); if (verbose) cout << "TrainTarget - Load world model [" << inputWorldFilename<<"]"<<endl; MixtureGD& world = ms.loadMixtureGD(inputWorldFilename); MixtureGD& initModel =ms.loadMixtureGD(initModelS); if (verbose) cout <<"Use["<<initModelS<<"] for initializing EM"<<endl; // *********** Target loop ***************** while ((linep=inputClientList.getLine()) != NULL){ // linep gives the XLine with the Id of a given client and the list of files String *id=linep->getElement(); // Get the Client ID (id) XLine featureFileListp=linep->getElements(); // Get the list of feature file for the client (end of the line) if (verbose) cout << "Train model ["<<*id<<"]"<<endl; if (!fixedLabelSelectedFrame){ // the ID is used as label for selecting the frame labelSelectedFrames=*id; if (verbose) cout <<*id<<" is used for label selected frames"<<endl; } FeatureServer fs(config,featureFileListp); // Reading the features (from several files) SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(featureFileListp,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files... MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB); // Creating final as a copy of the world model MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB); if (initByClient){ // During trainig data statistic estimation by EM, clientMixture= ms.loadMixtureGD(*id); // the client model is used for initalization adaptedMixture=clientMixture; } long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames); // Get the index of the cluster with in interest audio segments if (codeSelectedFrame==-1){ // No data for this model !!!!!!!!!!!!!! cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]"; if (saveEmptyModel){ cout <<" World model is returned"<<endl; // In this case, the client model is the world model if (verbose) cout << "Save client model ["<<*id<<"]" << endl; adaptedMixture.save(*id, config); // Save the client model } } else{ SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments if (!initByClient) ms.setMixtureId(clientMixture,*id); // Set the client model Id if (modelData) modelBasedadaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture,initModel); // EM algo with MAP criterion else adaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture); // EM algo with MAP criterion if (NAP) { if (verbose) cout << "NAP on SVs" << endl; computeNap(clientMixture,ChannelMatrix); } if (outputAdaptParam) { RealVector<double> v; getSuperVector(v,world,clientMixture,config); String out=config.getParam("saveVectorFilesPath")+*id+config.getParam("vectorFilesExtension"); Matrix <double> vv=(Matrix<double>)v; vv.save(out,config); } if (!outputAdaptParam) { if (verbose) cout << "Save client model ["<<*id<<"]" << endl; clientMixture.save(*id, config); // Save the client model } if (!saveCompleteServer){ long tid=ms.getMixtureIndex(*id); // TO BE SUPPRESSED BY ms.deleteMixtures(tid,tid); // ADDING a delete on a mixture pointor ms.deleteUnusedDistribs(); } } } // end of the the target loop // Save the complete mixture server // TODO } // fin try catch (Exception& e) { cout << e.toString().c_str() << endl; } return 0; }
// Training of client Speakers // The same than TrainTarget but train simultaneoulsy 1 model for each cluster (set of segments with the same label) // found in the input files labels. // One option in order to save the n models as a modification of the world model - save disk space int TrainTargetByLabel(Config& config) { String inputClientListFileName = config.getParam("targetIdList"); String inputWorldFilename = config.getParam("inputWorldFilename"); String outputSERVERFilename = config.getParam("mixtureServer"); // label for selected frames - Only the frames associated with this label, in the label files, will be used //bool fixedLabelSelectedFrame; bool initByClient=false; bool aprioriWorld=true; if (config.existsParam("initByClient")) initByClient=true; if (config.existsParam("aprioriClient")){ aprioriWorld=false; initByClient=true; } bool saveCompleteServer=false; bool outputAdaptParam=false; if (config.existsParam("outputAdaptParam")) outputAdaptParam=config.getParam("outputAdaptParam").toBool(); try{ XList inputClientList(inputClientListFileName,config); // read the Id + filenames for each client XLine *linep; inputClientList.getLine(0); MixtureServer ms(config); StatServer ss(config, ms); if (verbose) cout << "TrainTarget - by label opption - Load world model [" << inputWorldFilename<<"]"<<endl; MixtureGD& world = ms.loadMixtureGD(inputWorldFilename); // *********** Target loop ***************** while ((linep=inputClientList.getLine()) != NULL){ // linep gives the XLine with the Id of a given client and the list of files String clientId=(*linep->getElement()); // Get the Client ID (clientId) XLine featureFileListp=linep->getElements(); // Get the list of feature file for the client (end of the line) FeatureServer fs(config,featureFileListp); // Reading the features (from several files) if (verbose) cout << "Train label models for client ["<<clientId<<"]"<<endl; MixtureGD &clientGModel=ms.createMixtureGD(); if (initByClient) { if (verbose) cout << "Load client model [" << clientId <<"]"<<endl; clientGModel = ms.loadMixtureGD(clientId); //not necessary to load client model } SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(featureFileListp,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files... for (unsigned long codeSelectedFrame=0;codeSelectedFrame<segmentsServer.getClusterCount();codeSelectedFrame++){ // For each cluster String clientIdByLabel=clientId+"_"+labelServer.getLabel(codeSelectedFrame).getString(); // Build the model name for the client and the label if (verbose) cout << "Train labeldependent model ["<<clientIdByLabel<<"]"<<endl; SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments MixtureGD & clientMixture = ms.duplicateMixture(world,DUPL_DISTRIB); // Creating clientMixture as a copy of the world model ms.setMixtureId(clientMixture,clientIdByLabel); // Set the client model Id if (initByClient) // During trainig data statistic estimation by EM, clientMixture=clientGModel; // the global client model is used for initalization if (aprioriWorld) // EM algo with MAP criterion adaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture); // A priori info is the world model else adaptModel(config,ss,ms,fs,selectedSegments,clientGModel,clientMixture);// A priori info is the client model-by default initByClient is also set if (!outputAdaptParam) { if (verbose) cout << "Save client model ["<<clientIdByLabel<<"]" << endl; clientMixture.save(clientIdByLabel, config); // Save the client model } if (!saveCompleteServer){ long tid=ms.getMixtureIndex(clientIdByLabel); // TO BE SUPPRESSED BY ms.deleteMixtures(tid,tid); // ADDING a delete on a mixture pointor ms.deleteUnusedDistribs(); } } if (!saveCompleteServer){ long tid=ms.getMixtureIndex(clientId); // TO BE SUPPRESSED BY ms.deleteMixtures(tid,tid); // ADDING a delete on a mixture pointor ms.deleteUnusedDistribs(); } // end of the the label loop fr a speaker } // end of the the target loop // Save the complete mixture server // TODO } // fin try catch (Exception& e) { cout << e.toString().c_str() << endl; } return 0; }
//----------------------------------------------------------------------------------------------------------------------------------------------------------- int TrainTargetLFA(Config& config) { String inputClientListFileName = config.getParam("targetIdList"); String inputWorldFilename = config.getParam("inputWorldFilename"); String outputSERVERFilename = ""; if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer"); bool initByClient=false; // In this case, the init model is read from the file if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool(); bool saveEmptyModel=false; if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool(); // label for selected frames - Only the frames associated with this label, in the label files, will be used bool fixedLabelSelectedFrame=true; String labelSelectedFrames; if (config.existsParam("useIdForSelectedFrame")) // the ID of each speaker is used as labelSelectedFrame ? fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false); if (fixedLabelSelectedFrame) // the label is decided by the command line and is unique for the run labelSelectedFrames=config.getParam("labelSelectedFrames"); bool modelData=false; if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool(); String initModelS=inputWorldFilename; if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init bool outputAdaptParam=false; if (config.existsParam("superVectors")) outputAdaptParam=true; try{ XList inputClientList(inputClientListFileName,config); // read the Id + filenames for each client XLine * linep; inputClientList.getLine(0); MixtureServer ms(config); StatServer ss(config, ms); if (verbose) cout << "(TrainTarget) Latent Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl; MixtureGD& world = ms.loadMixtureGD(inputWorldFilename); if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl; //LOAD JFA MAtrices unsigned long svsize=world.getDistribCount()*world.getVectSize(); Matrix<double> U, V; DoubleVector D(svsize,svsize); //Initialise EC matrix if(config.existsParam("eigenChannelMatrix")){ String uName = config.getParam("matrixFilesPath") + config.getParam("eigenChannelMatrix") + config.getParam("loadMatrixFilesExtension"); U.load (uName, config); if (verboseLevel >=1) cout << "(TrainTargetLFA) Init EC matrix from "<< config.getParam("eigenChannelMatrix") <<" from EigenChannel Matrix: "<<", rank: ["<<U.rows() << "] sv size: [" << U.cols() <<"]"<<endl; } else{ U.setDimensions(1,svsize); U.setAllValues(0.0); if (verboseLevel >1) cout << "(TrainTargetLFA) Init EC matrix to 0"<<endl; } V.setDimensions(1,svsize); V.setAllValues(0.0); if (verboseLevel >=1) cout << "(TrainTargetLFA) Init EV matrix to 0"<<endl; //Initialise the D matrix for MAP adaptation for(unsigned long i=0; i<world.getDistribCount(); i++){ for(unsigned long j = 0; j<world.getVectSize(); j++){ D[i*world.getVectSize()+j] = sqrt(1.0/(world.getDistrib(i).getCovInv(j)*config.getParam("regulationFactor").toDouble())); } } // *********** Target loop ***************** while ((linep=inputClientList.getLine()) != NULL){ // linep gives the XLine with the Id of a given client and the list of files String *id=linep->getElement(); // Get the Client ID (id) XLine featureFileListp=linep->getElements(); // Get the list of feature file for the client (end of the line) if (verbose) cout << "(TrainTargetLFA) Train model ["<<*id<<"]"<<endl; XList ndx; ndx.addLine() = featureFileListp; JFAAcc jfaAcc(ndx,config,"TrainTarget"); //Charger les matrices V, U et D a partir des objets matrice existant. jfaAcc.loadEV(V, config); jfaAcc.loadEC(U, config); jfaAcc.loadD(D); //Initialise VU matrix jfaAcc.initVU(); FeatureServer fs(config,featureFileListp); // Reading the features (from several files) SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(featureFileListp,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files... MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB); // Creating final as a copy of the world model MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB); long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames); // Get the index of the cluster with in interest audio segments if (codeSelectedFrame==-1){ // No data for this model !!!!!!!!!!!!!! cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]"; if (saveEmptyModel){ cout <<" World model is returned"<<endl; // In this case, the client model is the world model if (verbose) cout << "Save client model ["<<*id<<"]" << endl; adaptedMixture.save(*id, config); // Save the client model } } else{ SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments //Compute the JFA statistics jfaAcc.computeAndAccumulateJFAStat(selectedSegments,fs,config); //Estimate X and Y in one time for each speaker jfaAcc.storeAccs(); jfaAcc.estimateVUEVUT(config); jfaAcc.estimateAndInverseL_VU(config); jfaAcc.substractMplusDZ(config); jfaAcc.estimateYX(); //Reinitialise the accumulators jfaAcc.resetTmpAcc(); jfaAcc.restoreAccs(); //Split X and Y estimates jfaAcc.splitYX(); //Substract speaker and channel statistics M + VUYX jfaAcc.substractMplusVUYX(); //Estimate Z for each speaker double tau = config.getParam("regulationFactor").toLong(); jfaAcc.estimateZMAP(tau); //Reinitialise the accumulators jfaAcc.resetTmpAcc(); jfaAcc.restoreAccs(); bool varAdapt = false; if((config.existsParam("varAdapt")) && ( config.getParam("varAdapt").toBool() )){ varAdapt = true; } DoubleVector clientModel(jfaAcc.getSvSize(), jfaAcc.getSvSize()); clientModel.setSize(jfaAcc.getSvSize()); jfaAcc.getMplusVYplusDZ(clientModel, 0); //Create the ClientMixture svToModel(clientModel, clientMixture); clientMixture.save(*id, config); long tid=ms.getMixtureIndex(*id); ms.deleteMixtures(tid,tid); ms.deleteUnusedDistribs(); } } } // fin try catch (Exception& e) {cout << e.toString().c_str() << endl;} return 0; }
//----------------------------------------------------------------------------------------------------------------------------------------------------------- int TrainTargetJFA(Config& config) { String inputClientListFileName = config.getParam("targetIdList"); String inputWorldFilename = config.getParam("inputWorldFilename"); String outputSERVERFilename = ""; if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer"); bool initByClient=false; // In this case, the init model is read from the file if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool(); bool saveEmptyModel=false; if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool(); // label for selected frames - Only the frames associated with this label, in the label files, will be used bool fixedLabelSelectedFrame=true; String labelSelectedFrames; if (config.existsParam("useIdForSelectedFrame")) // the ID of each speaker is used as labelSelectedFrame ? fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false); if (fixedLabelSelectedFrame) // the label is decided by the command line and is unique for the run labelSelectedFrames=config.getParam("labelSelectedFrames"); bool modelData=false; if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool(); String initModelS=inputWorldFilename; if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init bool outputAdaptParam=false; if (config.existsParam("superVectors")) outputAdaptParam=true; try{ XList inputClientList(inputClientListFileName,config); // read the Id + filenames for each client XLine * linep; inputClientList.getLine(0); MixtureServer ms(config); StatServer ss(config, ms); if (verbose) cout << "(TrainTarget) Joint Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl; MixtureGD& world = ms.loadMixtureGD(inputWorldFilename); if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl; //LOAD JFA MAtrices Matrix<double> U, V; DoubleVector D; //Initialise EC matrix if(config.existsParam("eigenChannelMatrix")){ String uName = config.getParam("matrixFilesPath") + config.getParam("eigenChannelMatrix") + config.getParam("loadMatrixFilesExtension"); U.load (uName, config); if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EC matrix from "<< config.getParam("eigenChannelMatrix") <<" from EigenChannel Matrix: "<<", rank: ["<<U.rows() << "] sv size: [" << U.cols() <<"]"<<endl; } else{ unsigned long sS = world.getVectSize() * world.getDistribCount(); U.setDimensions(1,sS); U.setAllValues(0.0); if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EC matrix to 0"<<endl; } //Initialise EV matrix if(config.existsParam("eigenVoiceMatrix")){ String vName = config.getParam("matrixFilesPath") + config.getParam("eigenVoiceMatrix") + config.getParam("loadMatrixFilesExtension"); V.load (vName, config); if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EV matrix from "<< config.getParam("eigenVoiceMatrix") <<" from EigenVoice Matrix: "<<", rank: ["<<V.rows() << "] sv size: [" << V.cols() <<"]"<<endl; } else{ unsigned long sS = world.getVectSize() * world.getDistribCount(); V.setDimensions(1,sS); V.setAllValues(0.0); if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EV matrix to 0"<<endl; } //Initialise D matrix if(config.existsParam("DMatrix")){ String dName = config.getParam("matrixFilesPath") + config.getParam("DMatrix") + config.getParam("loadMatrixFilesExtension"); Matrix<double> tmpD(dName, config); if( (tmpD.rows() != 1) || ( tmpD.cols() != world.getVectSize()*world.getDistribCount() ) ){ throw Exception("Incorrect dimension of D Matrix",__FILE__,__LINE__); } else{ D.setSize(world.getVectSize()*world.getDistribCount()); D.setAllValues(0.0); for(unsigned long i=0; i<world.getVectSize()*world.getDistribCount(); i++){ D[i] = tmpD(0,i); } if (verboseLevel >=1) cout << "(TrainTargetJFA) Init D matrix from "<<config.getParam("DMatrix")<<endl; } } else{ unsigned long sS = world.getVectSize() * world.getDistribCount(); D.setSize(sS); D.setAllValues(0.0); if (verboseLevel >1) cout << "(TrainTargetJFA) Init D matrix to 0"<<endl; } // *********** Target loop ***************** while ((linep=inputClientList.getLine()) != NULL){ // linep gives the XLine with the Id of a given client and the list of files String *id=linep->getElement(); // Get the Client ID (id) XLine featureFileListp=linep->getElements(); // Get the list of feature file for the client (end of the line) if (verbose) cout << "(TrainTarget) Train model ["<<*id<<"]"<<endl; XList ndx; ndx.addLine() = featureFileListp; JFAAcc jfaAcc(ndx,config,"TrainTarget"); //Load V, U and D from existing matrices. jfaAcc.loadEV(V, config); jfaAcc.loadEC(U, config); jfaAcc.loadD(D); //Initialize VU matrix jfaAcc.initVU(); FeatureServer fs(config,featureFileListp); // Reading the features (from several files) SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(featureFileListp,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files... MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB); // Creating final as a copy of the world model MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB); long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames); // Get the index of the cluster with in interest audio segments if (codeSelectedFrame==-1){ // No data for this model !!!!!!!!!!!!!! cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]"; if (saveEmptyModel){ cout <<" World model is returned"<<endl; // In this case, the client model is the world model if (verbose) cout << "Save client model ["<<*id<<"]" << endl; adaptedMixture.save(*id, config); // Save the client model } } else{ SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments //Compute the JFA statistics jfaAcc.computeAndAccumulateJFAStat(selectedSegments,fs,config); //Estimate X and Y in one time for each speaker jfaAcc.storeAccs(); jfaAcc.estimateVUEVUT(config); jfaAcc.estimateAndInverseL_VU(config); jfaAcc.substractMplusDZ(config); jfaAcc.estimateYX(); //Reinitialise the accumulators jfaAcc.resetTmpAcc(); jfaAcc.restoreAccs(); //Split X and Y estimates jfaAcc.splitYX(); //Substract speaker and channel statistics M + VUYX jfaAcc.substractMplusVUYX(); //Estimate Z for each speaker jfaAcc.estimateZ(); //Reinitialise the accumulators jfaAcc.resetTmpAcc(); jfaAcc.restoreAccs(); bool varAdapt = false; if((config.existsParam("varAdapt")) && ( config.getParam("varAdapt").toBool() )){ varAdapt = true; } DoubleVector clientSV(jfaAcc.getSvSize(), jfaAcc.getSvSize()); clientSV.setSize(jfaAcc.getSvSize()); DoubleVector clientModel(jfaAcc.getSvSize(), jfaAcc.getSvSize()); clientModel.setSize(jfaAcc.getSvSize()); bool saveMixture = true; if((config.existsParam("saveMixture")) && !( config.getParam("saveMixture").toBool() )) saveMixture = false; bool saveSuperVector = true; if((config.existsParam("saveSuperVector")) && !( config.getParam("saveSuperVector").toBool() )) saveSuperVector = false; bool saveX = false; bool saveY = false; bool saveZ = false; if(config.existsParam("saveX")) saveX = config.getParam("saveX").toBool(); if(config.existsParam("saveY")) saveY = config.getParam("saveY").toBool(); if(config.existsParam("saveZ")) saveZ = config.getParam("saveZ").toBool(); String xExtension = ".x"; String yExtension = ".y"; String zExtension = ".z"; if(config.existsParam("xExtension")) xExtension = config.getParam("xExtension"); if(config.existsParam("yExtension")) yExtension = config.getParam("yExtension"); if(config.existsParam("zExtension")) zExtension = config.getParam("zExtension"); jfaAcc.getVYplusDZ(clientSV, 0); jfaAcc.getMplusVYplusDZ(clientModel, 0); //WARNING !!!!! only the SuperVector model is divided by the UBM Co-Variance. for(unsigned long i=0; i<jfaAcc.getSvSize(); i++){ clientSV[i] *= jfaAcc.getUbmInvVar()[i]; } //Create the ClientMixture to save if required if(saveMixture){ svToModel(clientModel, clientMixture); clientMixture.save(*id, config); } String svPath,svExt,svFile; if(saveSuperVector){ String svPath =config.getParam("saveVectorFilesPath"); String svExt =config.getParam("vectorFilesExtension"); String svFile =svPath+*id+svExt; ((Matrix<double>)clientSV).save(svFile,config); } // String svPath=config.getParam("saveVectorFilesPath"); if(saveX){ String xFile=svPath+*id+xExtension; jfaAcc.saveX(xFile,config); } if(saveY){ String yFile=svPath+*id+yExtension; jfaAcc.saveY(yFile,config); } if(saveZ){ String zFile=svPath+*id+zExtension; jfaAcc.saveZ(zFile,config); } long tid=ms.getMixtureIndex(*id); ms.deleteMixtures(tid,tid); ms.deleteUnusedDistribs(); } } } // fin try catch (Exception& e) {cout << e.toString().c_str() << endl;} return 0; }
//----------------------------------------------------------------------------------------------------------------------------------------------------------- int TrainTargetFA(Config& config) { String inputClientListFileName = config.getParam("targetIdList"); String inputWorldFilename = config.getParam("inputWorldFilename"); String outputSERVERFilename = ""; if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer"); bool initByClient=false; // In this case, the init model is read from the file if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool(); bool saveEmptyModel=false; if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool(); // label for selected frames - Only the frames associated with this label, in the label files, will be used bool fixedLabelSelectedFrame=true; String labelSelectedFrames; if (config.existsParam("useIdForSelectedFrame")) // the ID of each speaker is used as labelSelectedFrame ? fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false); if (fixedLabelSelectedFrame) // the label is decided by the command line and is unique for the run labelSelectedFrames=config.getParam("labelSelectedFrames"); bool modelData=false; if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool(); String initModelS=inputWorldFilename; if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init bool outputAdaptParam=false; if (config.existsParam("superVectors")) outputAdaptParam=true; Matrix <double> ChannelMatrix; if (verbose) cout<< "EigenMAP and Eigenchannel with [" << config.getParam("initChannelMatrix") << "] of size: ["; ChannelMatrix.load(config.getParam("initChannelMatrix"),config); //get Channel Matrix from args and load in a Matrix object if (verbose) cout << ChannelMatrix.rows() << "," <<ChannelMatrix.cols() << "]" << endl; bool varAdapt=false; if (config.existsParam("FAVarAdapt")) varAdapt=true; bool saveCompleteServer=false; try{ XList inputClientList(inputClientListFileName,config); // read the Id + filenames for each client XLine * linep; inputClientList.getLine(0); MixtureServer ms(config); StatServer ss(config, ms); if (verbose) cout << "(TrainTarget) Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl; MixtureGD& world = ms.loadMixtureGD(inputWorldFilename); if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl; // *********** Target loop ***************** while ((linep=inputClientList.getLine()) != NULL){ // linep gives the XLine with the Id of a given client and the list of files String *id=linep->getElement(); // Get the Client ID (id) XLine featureFileListp=linep->getElements(); // Get the list of feature file for the client (end of the line) if (verbose) cout << "(TrainTarget) Train model ["<<*id<<"]"<<endl; FeatureServer fs(config,featureFileListp); // Reading the features (from several files) SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(featureFileListp,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files... MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB); // Creating final as a copy of the world model MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB); long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames); // Get the index of the cluster with in interest audio segments if (codeSelectedFrame==-1){ // No data for this model !!!!!!!!!!!!!! cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]"; if (saveEmptyModel){ cout <<" World model is returned"<<endl; // In this case, the client model is the world model if (verbose) cout << "Save client model ["<<*id<<"]" << endl; adaptedMixture.save(*id, config); // Save the client model } } else{ SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments /// **** Factor Analysis Stuff XList faNdx; faNdx.addLine()=featureFileListp; FactorAnalysisStat FA(faNdx,fs,config); // give all features to FA stats //FA.computeAndAccumulateGeneralFAStats(selectedSegments,fs,config); for(int i=0;i<config.getParam("nbTrainIt").toLong();i++){ if (verbose) cout << "------ Iteration ["<<i<<"] ------"<<endl; FA.computeAndAccumulateGeneralFAStats(selectedSegments,fs,config); /*if (!varAdapt) FA.getTrueSpeakerModel(clientMixture,linep->getElement(1)); else FA.getFactorAnalysisModel(clientMixture,linep->getElement(1)); if (verbose) cout << "LLK for model["<<*id<<"] at it["<<i-1<<"]="<<FA.getLLK(selectedSegments,clientMixture,fs,config) << endl; */ FA.estimateAndInverseL(config); FA.substractSpeakerStats(); FA.getXEstimate(); FA.substractChannelStats(); FA.getYEstimate(); } MixtureGD & sessionMixture= ms.duplicateMixture(world,DUPL_DISTRIB); bool saveSessionModel=false; if (config.existsParam("saveSessionModel")) saveSessionModel=true; if (saveSessionModel) FA.getSessionModel(sessionMixture,linep->getElement(1)); if (!varAdapt) FA.getTrueSpeakerModel(clientMixture,linep->getElement(1)); // basically compute M_s_h=M+Dy_s and get a model else FA.getFactorAnalysisModel(clientMixture,linep->getElement(1)); // get FA variance adapted model if (verbose) cout << "Final LLK for model["<<*id<<"]="<<FA.getLLK(selectedSegments,clientMixture,fs,config) << endl; /// **** End of FA if (!outputAdaptParam) { if (verbose) cout << "Save client model ["<<*id<<"]" << endl; clientMixture.save(*id, config); // Save the client model if (saveSessionModel) { String sessionfile=*id+".session"; if (verbose) cout << "Save session model ["<<sessionfile<<"]" << endl; sessionMixture.save(sessionfile,config); } } if (!saveCompleteServer){ long tid=ms.getMixtureIndex(*id); // TO BE SUPPRESSED BY ms.deleteMixtures(tid,tid); // ADDING a delete on a mixture pointor ms.deleteUnusedDistribs(); } } } } // fin try catch (Exception& e) {cout << e.toString().c_str() << endl;} return 0; }
void launchTurnDetectionProcess(Config & config){ String outputFilesPath=config.getParam("outputFilesPath"); String inputListFileName = config.getParam("listFileToSegment"); //file including the list of files to segment XLine classToAnalyse; //Array of labels to analyze classToAnalyse.reset(); if(verbose){ cout << "*********** Current Configuration ***************" << endl; for(unsigned long i=0; i<config.getParamCount(); i++){ cout << config.getParamName(i) << " => " << config.getParamContent(i) << endl; } cout << "*************************************************" << endl; } try{ XList listLabel; XList listFileName; try{ listFileName.load(inputListFileName,config); } catch(FileNotFoundException& e){ cout<<"There is no files to segment !"<<endl; exit(-1); } listFileName.rewind(); XLine *filep; while ((filep=listFileName.getLine()) != NULL){ // For each stream of audio data (in several files in the same line) const XLine & listFile=filep->getElements(); // One or several files, as several part of the same stream MixtureServer ms(config); StatServer ss(config, ms); SegServer Resultat; FeatureServer fs(config,listFile); // Reading the features (one or more files) SegServer segmentsServer; // Create the segment server for managing the segments/clusters LabelServer labelServer; // Create the lable server, for indexing the segments/clusters initializeClusters(listFile,segmentsServer,labelServer,config); // Reading the segmentation files for each feature input file verifyClusterFile(segmentsServer,fs,config); // Verify if the segments ending before the end of the feature files String fileInit=listFile.getElement(0); config.setParam("fileSize", String::valueOf(fs.getFeatureCountOfASource(fileInit))); if(config.existsParam("fileRefPath")){ // assumption: all the segments in the segment server come from the same source file !!! displayAllSegmentsFromRef(config, fileInit, fs.getFeatureCountOfASource(fileInit)); } for(unsigned long icluster=0;icluster<segmentsServer.getClusterCount();icluster++){ // for each cluster SegCluster& cluster=segmentsServer.getCluster(icluster); SegServer segOutputServer; TurnDetection(config,cluster,segOutputServer,ss,fs,ms,labelServer); displayAllSegments(config,segOutputServer); for(unsigned long i=0;i<segOutputServer.getSegCount();i++){ Seg& segment=segOutputServer.getSeg(i); Resultat.createSeg(segment.begin(),segment.length(),segment.labelCode(),segment.string(),segment.sourceName()); } }//for icluster saveSegmentation(config,Resultat,fs,outputFilesPath,1); }// while } // end try catch (Exception& e){ cout << e.toString().c_str() << endl; } }//launchTurnDetectionProcess
void TurnDetection(Config& config, SegCluster& cluster,SegServer& segOutputServer, StatServer& ss,FeatureServer &fs,MixtureServer& ms,LabelServer& labelServer){ SegServer segTemp; segOutputServer.removeAllClusters(); segOutputServer.removeAllSegs(); SegServer actualSeg; String et_temp="speech"; Label l(et_temp); SegCluster& clusterSeg=actualSeg.createCluster(labelServer.addLabel(l),et_temp," "); //Create the cluster L String crit="DGLR"; if(config.existsParam("clusteringCrit")) crit=config.getParam("clusteringCrit"); double threshold=0.0; if(config.existsParam("clusteringCritThresh")) threshold=config.getParam("clusteringCritThresh").toDouble(); unsigned long winSize=50; if(config.existsParam("winSize")) winSize=config.getParam("winSize").toLong(); unsigned long winStep=5; if(config.existsParam("winStep")) winStep=config.getParam("winStep").toLong(); double alpha=0.7; if(config.existsParam("alpha")) alpha=config.getParam("alpha").toDouble(); unsigned long start1=0, end1=0; unsigned long start2=0, end2=0; unsigned long accu=0; for(unsigned long iseg=0; iseg<cluster.getCount(); iseg++){ Seg& segment=(Seg&)cluster.get(iseg); if(verbose) cout << "Segment" << iseg << ": " << segment.begin() << " " << endSeg(&segment) << endl; if(segment.length() <= 2*winSize){ clusterSeg.add(actualSeg.createSeg(segment.begin(),endSeg(&segment)-segment.begin()+1,0,segment.string(),segment.sourceName())); if(debug) cout << "add: " << segment.begin() << " " << endSeg(&segment) << endl; } else{ ObjectRefVector res; start1=segment.begin(); end1=start1+winSize-1; start2=end1+1; end2=start2+winSize-1; accu = start1; while(end2 < endSeg(&segment)){ if(verbose){ cout << "Computation between: " << start1 << " " << end1; cout << " and " << start2 << " " << end2 << endl; } SegCluster& c1=segTemp.createCluster(); c1.add(segTemp.createSeg(start1,winSize,0,"null",segment.sourceName())); SegCluster& c2=segTemp.createCluster(); c2.add(segTemp.createSeg(start2,winSize,0,"null",segment.sourceName())); CritInfo *resCrit=new CritInfo(clusteringCriterionWithoutWorldInitOneGaus(config, c1, c2, ss, fs,crit),false,end1); res.addObject((Object&)*resCrit); start1+=winStep; end1+=winStep; start2+=winStep; end2+=winStep; } /* smoothing */ /* for(unsigned long i=1; i<res.size()-1; i++){ CritInfo &resCrit=(CritInfo&)(res.getObject(i)); CritInfo &resCritP=(CritInfo&)(res.getObject(i-1)); CritInfo &resCritN=(CritInfo&)(res.getObject(i+1)); resCrit.setValue(0.25*resCritP.getValue()+0.25*resCritN.getValue()+0.5*resCrit.getValue()); } */ DoubleVector score_buffer; score_buffer.setSize(2); score_buffer[0 % 2]=((CritInfo&)(res.getObject(0))).getValue(); for(unsigned long i=1; i<res.size()-1; i++) { CritInfo &resCrit=(CritInfo&)(res.getObject(i)); CritInfo &resCritN=(CritInfo&)(res.getObject(i+1));//right window score_buffer[i % 2]=resCrit.getValue(); resCrit.setValue(0.25*score_buffer[(i-1) % 2]+0.25*resCritN.getValue()+0.5*resCrit.getValue()); } /* to look for maxima in the criterion value curve */ /* if difference on left and right of a point with neighboor points is over alpha*standard deviation => maxima is found ! */ double sum=0.0; double sum2=0.0; for(unsigned long i=0; i<res.size(); i++){ CritInfo &resCrit=(CritInfo&)res.getObject(i); sum += resCrit.getValue(); sum2+=resCrit.getValue()*resCrit.getValue(); } double mean=sum/(double)res.size(); double std=sqrt((sum2/(double)(res.size())-(mean*mean))); if(verbose){ cout << "Mean and std: " << mean << " " << std << endl; } CritInfo &resCrit=(CritInfo&)res.getObject(0); resCrit.setDec(false); for(unsigned long i=1, j=0; i<res.size()-1; i++){ /* for each value */ /* search left min */ j=i-1; double minL=((CritInfo&)res.getObject(i)).getValue(); bool ok=true; while(ok && (j > 0)){ if(((CritInfo&)res.getObject(j)).getValue() < minL){ minL =((CritInfo&)res.getObject(j)).getValue(); j--; }else{ ok = false; } } if(myabs(((CritInfo&)res.getObject(i)).getValue()-minL) > alpha*std){ // search right min j=i+1; double minR=((CritInfo&)res.getObject(i)).getValue(); ok=true; while(ok && (j < res.size())){ if(((CritInfo&)res.getObject(j)).getValue() < minR){ minR = ((CritInfo&)res.getObject(j)).getValue(); j++; }else{ ok = false; } } if(myabs(((CritInfo&)res.getObject(i)).getValue()-minR) > alpha*std){ ((CritInfo&)res.getObject(i)).setDec(true); }else{ ((CritInfo&)res.getObject(i)).setDec(false); } }else{ ((CritInfo&)res.getObject(i)).setDec(false); } /*double max=((CritInfo&)res.getObject(i)).getValue(); double minL=((CritInfo&)res.getObject(i-1)).getValue(); double minR=((CritInfo&)res.getObject(i+1)).getValue(); if((minL < max) && (minR < max) && (max > mean+std)) ((CritInfo&)res.getObject(i)).setDec(true); else ((CritInfo&)res.getObject(i)).setDec(false); */ } start1 = segment.begin(); for(unsigned long i=0; i<res.size(); i++){ cout << ((CritInfo&)res.getObject(i)).getFrame() << " " << ((CritInfo&)res.getObject(i)).getValue() << " => " << ((CritInfo&)res.getObject(i)).getDec() << endl; if(((CritInfo&)res.getObject(i)).getDec()){ clusterSeg.add(actualSeg.createSeg(start1,((CritInfo&)res.getObject(i)).getFrame()-start1+1,0,segment.string(),segment.sourceName())); if(verbose) cout << "add: " << start1 << " " << ((CritInfo&)res.getObject(i)).getFrame() << endl; start1=((CritInfo&)res.getObject(i)).getFrame()+1; } } // last point cout << "last point: " << start1 << " fin segment: " << endSeg(&segment) << endl; if(start1 < endSeg(&segment)){ clusterSeg.add(actualSeg.createSeg(start1,endSeg(&segment)-start1+1,0,segment.string(),segment.sourceName())); if(verbose) cout << "add: " << start1 << " " << endSeg(&segment) << endl; } } } displayAllClusters(config, actualSeg); segOutputServer=actualSeg; }