void ASMFitResult::toDiffPointList(vector< Point_<int> > &pV) const { ShapeVec sv; asmModel->projectParamToShape(params, sv); sv.restoreToPointList(pV, transformation); vector<Point_<int> > pV2; toMeanPointList(pV2); int i,len=pV.size(); for(i=0;i<len;i++){ pV[i].x-=pV2[i].x; pV[i].y-=pV2[i].y; } }
void SimilarityTrans::transform(const ShapeVec &src, ShapeVec &dst) const{ int nP = src.nPoints(); dst.create(nP<<1, 1); double xt, yt; for (int i=0; i < nP; i++) { xt = src.X(i); yt = src.Y(i); dst.X(i) = a * xt - b * yt + Xt; dst.Y(i) = b * xt + a * yt + Yt; } }
void SimilarityTrans::invTransform(const ShapeVec &src, ShapeVec &dst) const{ int nP = src.nPoints(); double x11, x12, x21, x22; x11 = a/(a*a+b*b); x12 = b/(a*a+b*b); x21 = -b/(a*a+b*b); x22 = a/(a*a+b*b); dst.create(nP<<1, 1); double xt, yt; for (int i=0; i < nP; i++) { xt = src.X(i) - Xt; yt = src.Y(i) - Yt; dst.X(i) = x11 * xt + x12 * yt; dst.Y(i) = x21 * xt + x22 * yt; } }
void SimilarityTrans::setTransformByAlign(const ShapeVec &x, const ShapeVec &xp) { int nP = x.rows / 2; a = xp.dot(x) / x.dot(x); b = 0; for (int i=0; i<nP; i++) b += x.X(i) * xp.Y(i) - x.Y(i)*xp.X(i); b /= x.dot(x); double xxm, xym; xxm = x.getXMean(); xym = x.getYMean(); Xt = -a * xxm + b * xym + xp.getXMean(); Yt = -b * xxm - a * xym + xp.getYMean(); }
void ASMModel::findParamForShapeBTSM(const ShapeVec &Y, const ShapeVec &Y_old, FitResult & fitResult, FitResult &b_old, int l) { //const double c[3] = {0.005, 0.005, 0.001}; const double c[3] = {0.0005, 0.0005, 0.0005}; double rho2, delta2, x2; double p; ShapeVec y_r, y_rpr, xFromParam, xFromY, x; ShapeVec yt = Y_old; yt -= Y; rho2 = c[l] * yt.dot(yt); SimilarityTrans curTrans = b_old.transformation; Mat_< double > curParam, tmpFullParam, lastParam; curParam.create(pcaPyr[l].eigenvalues.rows, 1); for (int i=0; i<pcaPyr[l].eigenvalues.rows; i++) if (i<b_old.params.rows) curParam(i, 0) = b_old.params(i, 0); else curParam(i, 0) = 0; //curParam = curParam.rowRange(0, pcaPyr[l].eigenvalues.rows); int ii=0; do{ double s = curTrans.getS(); lastParam = curParam.clone(); // Expectation Step curTrans.backTransform(Y, y_r); p = sigma2Pyr[l]/(sigma2Pyr[l] + rho2/(s * s)); //printf("p: %g, rho2/s2: %g, sigma2: %g\n", p, rho2/(s * s), sigma2Pyr[l]); delta2 = 1/(1/sigma2Pyr[l] + s*s / rho2); // printf("p: %g, rho2/s2: %g, sigma2: %g, delta2: %g\n", // p, rho2/(s * s), sigma2Pyr[l], delta2); this->pcaPyr[l].backProject(curParam, xFromParam); pcaFullShape->project(y_r, tmpFullParam); pcaFullShape->backProject(tmpFullParam, y_rpr); x = p*y_rpr + (1-p) * xFromParam; x2 = x.dot(x) + (x.rows - 4) * delta2; // printf("p: %g, rho2/s2: %g, sigma2: %g, delta2: %g, x.x: %g, x2: %g\n", // p, rho2/(s * s), sigma2Pyr[l], delta2, x.dot(x), x2); // Maximization Step pcaPyr[l].project(x, curParam); for (int i=0; i<pcaPyr[l].eigenvalues.rows; i++) curParam(i, 0) *= (pcaShape->eigenvalues.at<double>(i, 0))/ (pcaShape->eigenvalues.at<double>(i, 0)+sigma2Pyr[l]); int nP = x.rows / 2; curTrans.a = Y.dot(x) / x2; curTrans.b = 0; for (int i=0; i<nP; i++) curTrans.b += x.X(i) * Y.Y(i) - x.Y(i)*Y.X(i); curTrans.b /= x2; curTrans.Xt = Y.getXMean(); curTrans.Yt = Y.getYMean(); //clampParamVec(curParam); ii++; } while (norm(lastParam-curParam)>1e-4 && ii<20); fitResult.params = curParam; fitResult.transformation = curTrans; }
void ASMModel::resultToPointList(const FitResult& fitResult, vector< Point_<int> >& pV) { ShapeVec sv; projectParamToShape(fitResult.params, sv); sv.restoreToPointList(pV, fitResult.transformation); }
void ASMFitResult::toPointList(vector< Point_<int> > &pV) const { ShapeVec sv; asmModel->projectParamToShape(params, sv); sv.restoreToPointList(pV, transformation); }