Ejemplo n.º 1
0
static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                 float tolerance = kFlatnessThreshold) {
    Sk2f l = p2 - p0; // Line from p0 -> p2.

    // lwidth = Manhattan width of l.
    Sk2f labs = l.abs();
    float lwidth = labs[0] + labs[1];

    // d = |p1 - p0| dot | l.y|
    //                   |-l.x| = distance from p1 to l.
    Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l);
    float d = dd[0] - dd[1];

    // We are collinear if a box with radius "tolerance", centered on p1, touches the line l.
    // To decide this, we check if the distance from p1 to the line is less than the distance from
    // p1 to the far corner of this imaginary box, along that same normal vector.
    // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l:
    //
    //   abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n)
    //
    // Which reduces to:
    //
    //   abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance
    //   abs(d) <= (abs(n.x) + abs(n.y)) * tolerance
    //
    // Use "<=" in case l == 0.
    return std::abs(d) <= lwidth * tolerance;
}
Ejemplo n.º 2
0
void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
                                    const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) {
    if (SkCubicType::kLoop != fCurrCubicType) {
        // Serpentines and cusps are always monotonic after chopping around inflection points.
        SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));

        if (AppendCubicMode::kApproximate == mode) {
            // This section passes through an inflection point, so we can get away with a flat line.
            // This can cause some curves to feel slightly more flat when inspected rigorously back
            // and forth against another renderer, but for now this seems acceptable given the
            // simplicity.
            this->appendLine(p0, p3);
            return;
        }
    } else {
        Sk2f tan0, tan1;
        get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);

        if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
            this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
                                                 maxSubdivisions - 1);
            return;
        }

        if (AppendCubicMode::kApproximate == mode) {
            Sk2f c;
            if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) {
                this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
                                                     maxSubdivisions - 1);
                return;
            }

            this->appendMonotonicQuadratic(p0, c, p3);
            return;
        }
    }

    // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    // Since the cubic segment is known to be convex at this point, our flatness check is simple.
    if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
        this->appendLine(p0, p3);
        return;
    }

    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    SkASSERT((p0 != p3).anyTrue());
    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    p3.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kMonotonicCubicTo);
    ++fCurrContourTallies.fCubics;
}
Ejemplo n.º 3
0
inline void GrCCFillGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
                                                       const Sk2f& p2) {
    // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    if (are_collinear(p0, p1, p2)) {
        this->appendLine(p0, p2);
        return;
    }

    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    SkASSERT((p0 != p2).anyTrue());
    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kMonotonicQuadraticTo);
    ++fCurrContourTallies.fQuadratics;
}
Ejemplo n.º 4
0
GrCCPathCache::MaskTransform::MaskTransform(const SkMatrix& m, SkIVector* shift)
        : fMatrix2x2{m.getScaleX(), m.getSkewX(), m.getSkewY(), m.getScaleY()} {
    SkASSERT(!m.hasPerspective());
    Sk2f translate = Sk2f(m.getTranslateX(), m.getTranslateY());
    Sk2f transFloor;
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
    // On Android framework we pre-round view matrix translates to integers for better caching.
    transFloor = translate;
#else
    transFloor = translate.floor();
    (translate - transFloor).store(fSubpixelTranslate);
#endif
    shift->set((int)transFloor[0], (int)transFloor[1]);
    SkASSERT((float)shift->fX == transFloor[0]);  // Make sure transFloor had integer values.
    SkASSERT((float)shift->fY == transFloor[1]);
}
Ejemplo n.º 5
0
inline void GrCCFillGeometry::appendLine(const Sk2f& p0, const Sk2f& p1) {
    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    if ((p0 == p1).allTrue()) {
        return;
    }
    p1.store(&fPoints.push_back());
    fVerbs.push_back(Verb::kLineTo);
}
Ejemplo n.º 6
0
void GrCCFillGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
                                            float w) {
    SkASSERT(w >= 0);

    Sk2f base = p2 - p0;
    Sk2f baseAbs = base.abs();
    float baseWidth = baseAbs[0] + baseAbs[1];

    // Find the height of the curve. Max height always occurs at T=.5 for conics.
    Sk2f d = (p1 - p0) * SkNx_shuffle<1,0>(base);
    float h1 = std::abs(d[1] - d[0]); // Height of p1 above the base.
    float ht = h1*w, hs = 1 + w; // Height of the conic = ht/hs.

    // i.e. (ht/hs <= baseWidth * kFlatnessThreshold). Use "<=" in case base == 0.
    if (ht <= (baseWidth*hs) * kFlatnessThreshold) {
        // We are flat. (See rationale in are_collinear.)
        this->appendLine(p0, p2);
        return;
    }

    // i.e. (w > 1 && h1 - ht/hs < baseWidth).
    if (w > 1 && h1*hs - ht < baseWidth*hs) {
        // If we get within 1px of p1 when w > 1, we will pick up artifacts from the implicit
        // function's reflection. Chop at max height (T=.5) and draw a triangle instead.
        Sk2f p1w = p1*w;
        Sk2f ab = p0 + p1w;
        Sk2f bc = p1w + p2;
        Sk2f highpoint = (ab + bc) / (2*(1 + w));
        this->appendLine(p0, highpoint);
        this->appendLine(highpoint, p2);
        return;
    }

    SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    SkASSERT((p0 != p2).anyTrue());
    p1.store(&fPoints.push_back());
    p2.store(&fPoints.push_back());
    fConicWeights.push_back(w);
    fVerbs.push_back(Verb::kMonotonicConicTo);
    ++fCurrContourTallies.fConics;
}
Ejemplo n.º 7
0
void GrDrawVerticesOp::onPrepareDraws(Target* target) const {
    bool hasColorAttribute;
    bool hasLocalCoordsAttribute;
    sk_sp<GrGeometryProcessor> gp = this->makeGP(&hasColorAttribute, &hasLocalCoordsAttribute);
    size_t vertexStride = gp->getVertexStride();

    SkASSERT(vertexStride == sizeof(SkPoint) + (hasColorAttribute ? sizeof(uint32_t) : 0) +
                                     (hasLocalCoordsAttribute ? sizeof(SkPoint) : 0));

    int instanceCount = fMeshes.count();

    const GrBuffer* vertexBuffer;
    int firstVertex;

    void* verts = target->makeVertexSpace(vertexStride, fVertexCount, &vertexBuffer, &firstVertex);

    if (!verts) {
        SkDebugf("Could not allocate vertices\n");
        return;
    }

    const GrBuffer* indexBuffer = nullptr;
    int firstIndex = 0;

    uint16_t* indices = nullptr;
    if (this->isIndexed()) {
        indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex);

        if (!indices) {
            SkDebugf("Could not allocate indices\n");
            return;
        }
    }

    int vertexOffset = 0;
    // We have a fast case below for uploading the vertex data when the matrix is translate
    // only and there are colors but not local coords.
    bool fastAttrs = hasColorAttribute && !hasLocalCoordsAttribute;
    for (int i = 0; i < instanceCount; i++) {
        const Mesh& mesh = fMeshes[i];
        if (indices) {
            int indexCount = mesh.fVertices->indexCount();
            for (int j = 0; j < indexCount; ++j) {
                *indices++ = mesh.fVertices->indices()[j] + vertexOffset;
            }
        }
        int vertexCount = mesh.fVertices->vertexCount();
        const SkPoint* positions = mesh.fVertices->positions();
        const SkColor* colors = mesh.fVertices->colors();
        const SkPoint* localCoords = mesh.fVertices->texCoords();
        bool fastMesh = (!this->hasMultipleViewMatrices() ||
                         mesh.fViewMatrix.getType() <= SkMatrix::kTranslate_Mask) &&
                        mesh.hasPerVertexColors();
        if (fastAttrs && fastMesh) {
            struct V {
                SkPoint fPos;
                uint32_t fColor;
            };
            SkASSERT(sizeof(V) == vertexStride);
            V* v = (V*)verts;
            Sk2f t(0, 0);
            if (this->hasMultipleViewMatrices()) {
                t = Sk2f(mesh.fViewMatrix.getTranslateX(), mesh.fViewMatrix.getTranslateY());
            }
            for (int j = 0; j < vertexCount; ++j) {
                Sk2f p = Sk2f::Load(positions++) + t;
                p.store(&v[j].fPos);
                v[j].fColor = colors[j];
            }
            verts = v + vertexCount;
        } else {
            static constexpr size_t kColorOffset = sizeof(SkPoint);
            size_t localCoordOffset =
                    hasColorAttribute ? kColorOffset + sizeof(uint32_t) : kColorOffset;

            for (int j = 0; j < vertexCount; ++j) {
                if (this->hasMultipleViewMatrices()) {
                    mesh.fViewMatrix.mapPoints(((SkPoint*)verts), &positions[j], 1);
                } else {
                    *((SkPoint*)verts) = positions[j];
                }
                if (hasColorAttribute) {
                    if (mesh.hasPerVertexColors()) {
                        *(uint32_t*)((intptr_t)verts + kColorOffset) = colors[j];
                    } else {
                        *(uint32_t*)((intptr_t)verts + kColorOffset) = mesh.fColor;
                    }
                }
                if (hasLocalCoordsAttribute) {
                    if (mesh.hasExplicitLocalCoords()) {
                        *(SkPoint*)((intptr_t)verts + localCoordOffset) = localCoords[j];
                    } else {
                        *(SkPoint*)((intptr_t)verts + localCoordOffset) = positions[j];
                    }
                }
                verts = (void*)((intptr_t)verts + vertexStride);
            }
        }
        vertexOffset += vertexCount;
    }

    GrMesh mesh(this->primitiveType());
    if (!indices) {
        mesh.setNonIndexedNonInstanced(fVertexCount);
    } else {
        mesh.setIndexed(indexBuffer, fIndexCount, firstIndex, 0, fVertexCount - 1);
    }
    mesh.setVertexData(vertexBuffer, firstVertex);
    target->draw(gp.get(), fHelper.makePipeline(target), mesh);
}
Ejemplo n.º 8
0
void GrDrawVerticesOp::fillBuffers(bool hasColorAttribute,
                                   bool hasLocalCoordsAttribute,
                                   bool hasBoneAttribute,
                                   size_t vertexStride,
                                   void* verts,
                                   uint16_t* indices) const {
    int instanceCount = fMeshes.count();

    // Copy data into the buffers.
    int vertexOffset = 0;
    // We have a fast case below for uploading the vertex data when the matrix is translate
    // only and there are colors but not local coords. Fast case does not apply when there are bone
    // transformations.
    bool fastAttrs = hasColorAttribute && !hasLocalCoordsAttribute && !hasBoneAttribute;
    for (int i = 0; i < instanceCount; i++) {
        // Get each mesh.
        const Mesh& mesh = fMeshes[i];

        // Copy data into the index buffer.
        if (indices) {
            int indexCount = mesh.fVertices->indexCount();
            for (int j = 0; j < indexCount; ++j) {
                *indices++ = mesh.fVertices->indices()[j] + vertexOffset;
            }
        }

        // Copy data into the vertex buffer.
        int vertexCount = mesh.fVertices->vertexCount();
        const SkPoint* positions = mesh.fVertices->positions();
        const SkColor* colors = mesh.fVertices->colors();
        const SkPoint* localCoords = mesh.fVertices->texCoords();
        const SkVertices::BoneIndices* boneIndices = mesh.fVertices->boneIndices();
        const SkVertices::BoneWeights* boneWeights = mesh.fVertices->boneWeights();
        bool fastMesh = (!this->hasMultipleViewMatrices() ||
                         mesh.fViewMatrix.getType() <= SkMatrix::kTranslate_Mask) &&
                        mesh.hasPerVertexColors();
        if (fastAttrs && fastMesh) {
            // Fast case.
            struct V {
                SkPoint fPos;
                uint32_t fColor;
            };
            SkASSERT(sizeof(V) == vertexStride);
            V* v = (V*)verts;
            Sk2f t(0, 0);
            if (this->hasMultipleViewMatrices()) {
                t = Sk2f(mesh.fViewMatrix.getTranslateX(), mesh.fViewMatrix.getTranslateY());
            }
            for (int j = 0; j < vertexCount; ++j) {
                Sk2f p = Sk2f::Load(positions++) + t;
                p.store(&v[j].fPos);
                v[j].fColor = colors[j];
            }
            verts = v + vertexCount;
        } else {
            // Normal case.
            static constexpr size_t kColorOffset = sizeof(SkPoint);
            size_t offset = kColorOffset;
            if (hasColorAttribute) {
                offset += sizeof(uint32_t);
            }
            size_t localCoordOffset = offset;
            if (hasLocalCoordsAttribute) {
                offset += sizeof(SkPoint);
            }
            size_t boneIndexOffset = offset;
            if (hasBoneAttribute) {
                offset += 4 * sizeof(int8_t);
            }
            size_t boneWeightOffset = offset;

            for (int j = 0; j < vertexCount; ++j) {
                if (this->hasMultipleViewMatrices()) {
                    mesh.fViewMatrix.mapPoints(((SkPoint*)verts), &positions[j], 1);
                } else {
                    *((SkPoint*)verts) = positions[j];
                }
                if (hasColorAttribute) {
                    if (mesh.hasPerVertexColors()) {
                        *(uint32_t*)((intptr_t)verts + kColorOffset) = colors[j];
                    } else {
                        *(uint32_t*)((intptr_t)verts + kColorOffset) = mesh.fColor;
                    }
                }
                if (hasLocalCoordsAttribute) {
                    if (mesh.hasExplicitLocalCoords()) {
                        *(SkPoint*)((intptr_t)verts + localCoordOffset) = localCoords[j];
                    } else {
                        *(SkPoint*)((intptr_t)verts + localCoordOffset) = positions[j];
                    }
                }
                if (hasBoneAttribute) {
                    const SkVertices::BoneIndices& indices = boneIndices[j];
                    const SkVertices::BoneWeights& weights = boneWeights[j];
                    for (int k = 0; k < 4; k++) {
                        size_t indexOffset = boneIndexOffset + sizeof(int8_t) * k;
                        size_t weightOffset = boneWeightOffset + sizeof(uint8_t) * k;
                        *(int8_t*)((intptr_t)verts + indexOffset) = indices.indices[k];
                        *(uint8_t*)((intptr_t)verts + weightOffset) = weights.weights[k] * 255.0f;
                    }
                }
                verts = (void*)((intptr_t)verts + vertexStride);
            }
        }
        vertexOffset += vertexCount;
    }
}
Ejemplo n.º 9
0
// Finds where to chop a non-loop around its intersection point. The resulting cubic segments will
// be chopped such that a box of radius 'padRadius', centered at any point along the curve segment,
// is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M).
//
// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
// drawn with quadratic splines instead of cubics.
//
// A loop intersection falls at two different T values, so this method takes Sk2f and computes the
// padding for both in SIMD.
static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2,
                                                       const Sk2f& C0, const Sk2f& C1,
                                                       ExcludedTerm skipTerm, float Cdet,
                                                       SkSTArray<4, float>* chops) {
    SkASSERT(chops->empty());
    SkASSERT(padRadius >= 0);

    padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on.

    // The parametric functions for distance from lines L & M are:
    //
    //     l(T) = (T - Td)^2 * (T - Te)
    //     m(T) = (T - Td) * (T - Te)^2
    //
    // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
    // 4.3 Finding klmn:
    //
    // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    Sk2f T2 = t2/s2; // T2 is the double root of l(T).
    Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T).

    // Convert l(T), m(T) to power-basis form:
    //
    //                                      |  1   1 |
    //    |l(T)  m(T)| = |T^3  T^2  T  1| * | l2  m2 |
    //                                      | l1  m1 |
    //                                      | l0  m0 |
    //
    // From here on we use Sk2f with "L" names, but the second lane will be for line M.
    Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1);
    Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2);
    Sk2f l0 = -T2*T2*T1;

    // The equation for line L can be found as follows:
    //
    //     L = C^-1 * (l excluding skipTerm)
    //
    // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.)
    // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather
    // than divide by determinant(C) here, we have already performed this divide on padRadius.
    Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1;
    Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1.
    Sk2f Ly =  C0[0]*l2or1 - C1[0];

    // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan
    // with of L. (See rationale in are_collinear.)
    Sk2f Lwidth = Lx.abs() + Ly.abs();
    Sk2f pad = Lwidth * padRadius;

    // Is l(T=0) outside the padding around line L?
    Sk2f lT0 = l0; // l(T=0) = |0  0  0  1| dot |1  l2  l1  l0| = l0
    Sk2f outsideT0 = lT0.abs() - pad;

    // Is l(T=1) outside the padding around line L?
    Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1  1  1  1| dot |1  l2  l1  l0|
    Sk2f outsideT1 = lT1.abs() - pad;

    // Values for solving the cubic.
    Sk2f p, q, qqq, discr, numRoots, D;
    bool hasDiscr = false;

    // Values for calculating one root (rarely needed).
    Sk2f R, QQ;
    bool hasOneRootVals = false;

    // Values for calculating three roots.
    Sk2f P, cosTheta3;
    bool hasThreeRootVals = false;

    // Solve for the T values where l(T) = +pad and m(T) = -pad.
    for (int i = 0; i < 2; ++i) {
        float T = T2[i]; // T is the point we are chopping around.
        if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) {
            // The padding around T is completely out of range. No point solving for it.
            continue;
        }

        if (!hasDiscr) {
            p = Sk2f(+.5f, -.5f) * pad;
            q = (1.f/3) * (T2 - T1);
            qqq = q*q*q;
            discr = qqq*p*2 + p*p;
            numRoots = (discr < 0).thenElse(3, 1);
            D = T2 - q;
            hasDiscr = true;
        }

        if (1 == numRoots[i]) {
            if (!hasOneRootVals) {
                Sk2f r = qqq + p;
                Sk2f s = r.abs() + discr.sqrt();
                R = (r > 0).thenElse(-s, s);
                QQ = q*q;
                hasOneRootVals = true;
            }

            float A = cbrtf(R[i]);
            float B = A != 0 ? QQ[i]/A : 0;
            // When there is only one root, ine L chops from root..1, line M chops from 0..root.
            if (1 == i) {
                chops->push_back(0);
            }
            chops->push_back(A + B + D[i]);
            if (0 == i) {
                chops->push_back(1);
            }
            continue;
        }

        if (!hasThreeRootVals) {
            P = q.abs() * -2;
            cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs();
            hasThreeRootVals = true;
        }

        static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
        float theta = std::acos(cosTheta3[i]) * (1.f/3);
        float roots[3] = {P[i] * std::cos(theta) + D[i],
                          P[i] * std::cos(theta + k2PiOver3) + D[i],
                          P[i] * std::cos(theta - k2PiOver3) + D[i]};

        // Sort the three roots.
        swap_if_greater(roots[0], roots[1]);
        swap_if_greater(roots[1], roots[2]);
        swap_if_greater(roots[0], roots[1]);

        // Line L chops around the first 2 roots, line M chops around the second 2.
        chops->push_back_n(2, &roots[i]);
    }
}
Ejemplo n.º 10
0
// Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be
// chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is
// guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M).
//
// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
// drawn with flat lines instead of cubics.
//
// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
// for both in SIMD.
static inline void find_chops_around_inflection_points(float padRadius, Sk2f tl, Sk2f sl,
                                                       const Sk2f& C0, const Sk2f& C1,
                                                       ExcludedTerm skipTerm, float Cdet,
                                                       SkSTArray<4, float>* chops) {
    SkASSERT(chops->empty());
    SkASSERT(padRadius >= 0);

    padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on.

    // The homogeneous parametric functions for distance from lines L & M are:
    //
    //     l(t,s) = (t*sl - s*tl)^3
    //     m(t,s) = (t*sm - s*tm)^3
    //
    // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
    // 4.3 Finding klmn:
    //
    // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    //
    // From here on we use Sk2f with "L" names, but the second lane will be for line M.
    tl = (sl > 0).thenElse(tl, -tl); // Tl=tl/sl is the triple root of l(t,s). Normalize so s >= 0.
    sl = sl.abs();

    // Convert l(t,s), m(t,s) to power-basis form:
    //
    //                                                  | l3  m3 |
    //    |l(t,s)  m(t,s)| = |t^3  t^2*s  t*s^2  s^3| * | l2  m2 |
    //                                                  | l1  m1 |
    //                                                  | l0  m0 |
    //
    Sk2f l3 = sl*sl*sl;
    Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sl*tl*-3 : sl*tl*tl*3;

    // The equation for line L can be found as follows:
    //
    //     L = C^-1 * (l excluding skipTerm)
    //
    // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.)
    // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather
    // than divide by determinant(C) here, we have already performed this divide on padRadius.
    Sk2f Lx =  C1[1]*l3 - C0[1]*l2or1;
    Sk2f Ly = -C1[0]*l3 + C0[0]*l2or1;

    // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan
    // with of L. (See rationale in are_collinear.)
    Sk2f Lwidth = Lx.abs() + Ly.abs();
    Sk2f pad = Lwidth * padRadius;

    // Will T=(t + cbrt(pad))/s be greater than 0? No need to solve roots outside T=0..1.
    Sk2f insideLeftPad = pad + tl*tl*tl;

    // Will T=(t - cbrt(pad))/s be less than 1? No need to solve roots outside T=0..1.
    Sk2f tms = tl - sl;
    Sk2f insideRightPad = pad - tms*tms*tms;

    // Solve for the T values where abs(l(T)) = pad.
    if (insideLeftPad[0] > 0 && insideRightPad[0] > 0) {
        float padT = cbrtf(pad[0]);
        Sk2f pts = (tl[0] + Sk2f(-padT, +padT)) / sl[0];
        pts.store(chops->push_back_n(2));
    }

    // Solve for the T values where abs(m(T)) = pad.
    if (insideLeftPad[1] > 0 && insideRightPad[1] > 0) {
        float padT = cbrtf(pad[1]);
        Sk2f pts = (tl[1] + Sk2f(-padT, +padT)) / sl[1];
        pts.store(chops->push_back_n(2));
    }
}